首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
沼液回流对棉花秸秆产甲烷效率及微生物群的影响   总被引:1,自引:0,他引:1  
试验在中温条件下采用连续搅拌反应器(CSTR)研究了沼液长期回流对棉花秸秆厌氧发酵的影响,对固定进水负荷下的发酵罐运行参数的动态变化进行了持续监测。结果发现:在水力停留时间为15 d,进水有机负荷为4 g TS·L~(-1)d~(-1)的条件下,与未回流组相比,回流组在第153天时产气受到抑制,产气下降了23.1%;pH值在7.1上下波动而未回流组为6.8;氨态氮浓度为108 mg·L~(-1),未回流组在71 mg·L~(-1)左右;粘度由54 mPa·s增至139m Pa·s;VFAs含量高于未回流组,其中乙酸和乳酸积累较为明显。结果表明:一方面,沼液回流提高了反应器有机负荷率及缓冲能力,大大节约淡水资源,同时对产沼气体系产生搅拌作用,节约资源和能源。另一方面,回流组沼液粘度的增加、乙酸和乳酸的积累是其产甲烷率降低的原因,其纤维素分解菌种类较少,但主要产甲烷菌-甲烷鬃毛菌随着乙酸的积累而增长,对稳定沼液回流条件下的厌氧发酵体系起到了重要作用。  相似文献   

2.
文章以法国梧桐落叶为原料,在35℃±2℃的中温条件下进行批式厌氧消化试验,发酵原料VS(挥发性固体)浓度设为2%,运行时间为50 d。结果表明,发酵过程中p H值先下降后上升,最后稳定在7.25左右,VFA呈先上升后下降的趋势,最终低于500 mg·L~(-1)。氨氮含量最高达700.4 mg·L~(-1),未出现氨氮抑制,SCOD整体呈现下降趋势,发酵结束时在1000 mg·L~(-1)以下。法国梧桐落叶TS(总固体)产气率为313.65 m L·g~(-1),VS产气率为356.76m L·g~(-1),TS和VS降解率分别为28.36%和33.41%,累积产甲烷量为8628.50 m L,单位原料甲烷产率为148.92m L·mg~(-1)。以修正后的Gompertz方程对厌氧消化过程进行动力学拟合,方程相关系数为R~2=0.9965,修正后的Gompertz方程能够真实地表征法国梧桐落叶厌氧消化过程。  相似文献   

3.
为提高链霉素菌渣厌氧发酵效率,文章以链霉素菌渣含固率20 gVS·L~(-1)为基础,通过添加不同比例的酱油渣(依次为5 gVS·L~(-1),10 gVS·L~(-1),15 gVS·L~(-1),20 gVS·L~(-1)),中温30℃,进行批式混合厌氧发酵。定期监测体系的产气情况和发酵液理化性质,结果发现链霉素菌渣与酱油渣进行混合厌氧发酵,显著提高系统启动速率,总产气量和产气能力相比于两种原料单独处理均显著提高,链霉素菌渣+酱油渣的添加量为20+15 gVS·L~(-1)时的产气能力最高。4种比例混合处理发酵过程中的pH值,氨氮,SCOD,VFA等变化趋势基本一致。对混合发酵过程中的BMP实验结果进行产沼气协同效果评估,菌渣和酱油渣添加比例为(20+5~20+15)gVS·L~(-1)时,两种底物混合发酵具有显著协同作用,提高沼气产量20%以上。  相似文献   

4.
不同温度和有机负荷下猪场粪污沼气发酵产气性能   总被引:1,自引:0,他引:1  
文章通过猪场粪污半连续沼气发酵试验,研究不同温度(10℃,15℃,20℃,25℃,30℃,35℃)和不同有机负荷条件下的产气性能,评估污染物去除效果,出水p H值,NH_3-N和挥发酸等指标变化特征。结果表明:最大容积产气率取决于温度,在10℃,15℃,20℃,25℃,30℃,和35℃温度下的最大容积产气率分别是0.071 L·L~(-1)d~(-1),0.271 L·L~(-1)d~(-1),1.173 L·L~(-1)d~(-1),1.948 L·L~(-1)d~(-1),2.196 L·L~(-1)d~(-1),2.871 L·L~(-1)d~(-1);此时COD去除负荷分别为0.760 g COD·L~(-1)d~(-1),0.943 g COD·L~(-1)d~(-1),3.053 g COD·L~(-1)d~(-1),4.010 g COD·L~(-1)d~(-1)和4.693 g COD·L~(-1)d~(-1),COD去除率分别为71.8%,82.6%,80.3%,87.9%,88.1%和88.8%。在10℃~35℃温度下,挥发酸浓度均随着有机负荷的增加而增加。在20℃~35℃的高有机负荷阶段,已产生挥发酸积累的现象,但均在1000 mg·L~(-1)以下,未达到抑制浓度;在10℃,当有机负荷1 g TS·L~(-1)d~(-1),挥发酸浓度1000 mg·L~(-1),容积产气率开始下降。  相似文献   

5.
在不同的pH值和进水总氨氮(TAN)浓度下进行批次实验,对疫病动物尸骸废水高温厌氧消化中的氨抑制作用进行了研究。结果表明,分别固定pH值为7.0,7.4,7.8,8.2时,每个pH值下设置4个初始TAN浓度为100,800,1400,2400 mg·L~(-1),COD去除率分别下降了11.1%,26.7%,50.4%,74.4%,游离氨(FAN)浓度则分别从4,9,20,38 mg·L~(-1)上升到90,214,474,916 mg·L~(-1),FAN浓度的升高是反应器COD去除率下降的主要原因。产酸作用与产甲烷作用受氨抑制程度均随着TAN的升高而增加,且pH值越高,增加的趋势越明显,pH值为8.2时,FAN对两者的IC_(50)分别为843和453 mg·L~(-1),产甲烷作用比产酸作用对FAN更敏感,这导致VFA在反应器中积累。总VFA分别由26,48,129,214 mg·L~(-1)升至150,304,528,656 mg·L~(-1),其中乙酸分别由22,28,76,90mg·L~(-1)升至90,154,356,426 mg·L~(-1),VFA的积累类型表现为乙酸型,FAN抑制了乙酸营养型产甲烷菌的活性。  相似文献   

6.
文章为提高低温条件下猪粪厌氧消化产气量,应用响应面法对其厌氧消化工艺的生物强化参数进行试验优化。通过Design-Express 8.0.6.1软件的Box-Behnken中心组合试验设计,以原料产气量为响应值,研究Fe~(2+),Ni~(2+)和Co~(2+)三元素离子浓度对猪粪产气量的影响,建立相关数学模型,并对模型进行降维优化分析,最后进行试验验证。结果表明,低温条件下,Fe~(2+)和Ni~(2+)元素浓度对于猪粪产气量的影响表现为极显著。最优工艺条件是Fe~(2+)浓度为5.0 mg·L~(-1),Ni~(2+)浓度为22.5μg·L~(-1),Co~(2+)浓度为25.0μg·L~(-1)时,厌氧消化沼气的产量为572.64 mL。与预测值584.67 mL的相对误差为2.1%,所建模型能较好地优化厌氧消化工艺的生物强化参数。  相似文献   

7.
啤酒糟产沼气潜力试验研究   总被引:1,自引:0,他引:1  
文章以啤酒糟为发酵原料,在厌氧发酵温度35℃±1℃条件下进行序批式沼气发酵试验,发酵历时60 d,总固体TS浓度为6%时,其原料产气率为115 mL·g~(-1),TS产气率为139 mL·g~(-1)TS,VS产气率为149 mL·g~(-1)VS,池容产气率为0.11 mL·mL~(-1)d~(-1)。结果表明,啤酒糟是较好的沼气发酵原料。  相似文献   

8.
为研究铵氮对处理餐厨垃圾的厌氧污泥产甲烷活性的影响,文章设计了甲烷转化率和日均甲烷产量与进水铵氮(NH~+_4-N)浓度负荷的对应关系两种判断方法,用于确定铵氮(NH~+_4-N)对厌氧污泥产甲烷活性的毒性负荷。结果表明:中温条件下(30℃~35℃),以模拟餐厨垃圾组分的混合短链脂肪酸为厌氧序批间隙式反应器(Anaerobic sequencing batch reactor,以下简称ASBR)的进水基质,测定铵氮(NH~+_4-N)对厌氧污泥产甲烷活性的毒性负荷,发现厌氧污泥对铵氮(NH~+_4-N)有一定的耐受能力;在进水铵氮(NH~+_4-N)浓度≤1 g·L~(-1)时,对厌氧污泥的产甲烷活性无显著影响,但当进水铵氮(NH~+_4-N)浓度在1.5~7.5 g·L~(-1)d~(-1)之间时,厌氧污泥产甲烷活性毒性负荷两种判定方式,即厌氧污泥中的甲烷日均产量和甲烷转化率均与铵氮浓度呈现明显负相关关系,由此可得,使厌氧污泥活性下降10%和50%的铵氮(NH~+_4-N)浓度分别为1.61 g·L~(-1),1.88 g·L~(-1)和6.82 g·L~(-1),6.69 g·L~(-1)。实验说明适当的铵氮(NH~+_4-N)可以提升ASBR中厌氧污泥的产甲烷活性,但过高的铵氮(NH~+_4-N)浓度则会抑制产甲烷活性。  相似文献   

9.
研究以餐厨垃圾为原料,在中温(37℃)和高温(55℃)条件下开展批次试验。通过测定各项产气指标探究不同温度对餐厨垃圾厌氧发酵产气性能的影响,并采用Gompertz模型和一级动力学模型对中温和高温条件下餐厨垃圾厌氧发酵累计产甲烷量进行拟合。结果表明,高温厌氧发酵最大产甲烷潜能为398.33 mL·g-1VS,高出中温发酵32.37%,高温条件下餐厨垃圾厌氧发酵累积沼气产量和甲烷产量分别为665.89和399.41 mL·g-1VS,显著高于中温条件下的累积沼气产量及甲烷产量。餐厨垃圾高温发酵甲烷生成速率常数k为0.43558 d-1,高于中温发酵动力学常数(k=0.31367 d-1),餐厨垃圾高温厌氧发酵产甲烷速率高于中温发酵。综上所述,相较于中温条件,高温条件下餐厨垃圾批次厌氧发酵产气性能更优异。  相似文献   

10.
文章采用马铃薯渣为底物建立单相与两相厌氧发酵系统进行批示实验,考察其在不同系统F/M比下的运行性能。运行数据表明:两相厌氧系统在产甲烷潜能、甲烷产率、比产甲烷效率及能量回收效率方面均比单相厌氧系统呈现出更高的性能。在最优的F/M比8下,两相厌氧系统产氢相最大产氢潜能、氢产率及比产氢效率分别为384.2±11.6 mL,18.9±2.2 mL·h~(-1)和56.7±2.2 mL·g~(-1)VS_(removed),产甲烷相最大产甲烷潜能、甲烷产率、比产甲烷效率分别为391.2±12.8 mL,7.8±1.2 mL·h~(-1)和102.1±12.6 mL·g~(-1)VS_(removed),系统最大能量回收效率为5.5×10~(-3)kW·h。  相似文献   

11.
随着我国畜牧业快速发展,畜禽粪便量激增,已经成为许多城市及农村的新兴污染。文章采用牛粪消化液为接种物,在中温(36℃)条件下,对猪粪进行了干式厌氧消化中试试验,旨在探索其最佳的进料量、系统稳定性和潜在的氨抑制问题。研究结果表明,当进料量为600 kg·d~(-1)时,沼气产量,甲烷含量,VS降解率,物料产气率,甲烷产率分别为45~55 m~3·d~(-1),62%,50%,117~143 mL·g~(-1)VSd~(-1),72~88 mL·g~(-1)VSd~(-1)。从综合产气率和VS降解率两方面评价,当进料量为600 kg·d~(-1),该干式厌氧消化中试系统运行稳定、处理效率高,并可获得较好的产气效果。在该条件下,氨氮与游离氨浓度与系统产气性能没有直接线性关系,且在浓度分别高达5000 mg·L~(-1)和1100 mg·L~(-1)时系统没有明显的抑制作用,因为系统内的微生物尤其是产甲烷菌在高浓度氨氮的环境下受到一定程度的驯化,对高浓度氨氮有了更强的抵抗力。  相似文献   

12.
能源草单独厌氧发酵产气性能研究   总被引:2,自引:0,他引:2  
以柳枝稷、荻和杂交狼尾草为原料,采用批式中温厌氧消化工艺,研究不同能源草的原料特性及厌氧发酵性能。研究结果表明:不同能源草品种其原料特性和产气性能差别较大,并且这种差别与能源草的生长阶段有关。这几种能源草发酵过程中的平均甲烷含量为51%~52%,产甲烷率为214~288 mL·g-1VS,其中杂交狼尾草的产气率要高于柳枝稷和荻,其挥发性固体的最高产气率和产甲烷率分别为552 mL·g-1VS和288 mL·g-1VS,比柳枝稷的产气率和产甲烷率分别高24%和26%。该研究可为筛选适宜厌氧发酵的能源草品种提供参考。  相似文献   

13.
文章采用厌氧消化对苎麻废水进行产沼气研究,比较生物酶浸泡废水、烧碱煮炼废水、煮炼后清洗废水3种不同性质的苎麻废水在产沼气规律和能力方面的差异。结果表明,生物酶浸泡废水产气时间最长,可达4天,其余两种废水仅为3天,且生物酶浸泡废水产气率最高,原料产沼气潜力为1.13 mL·mL~(-1)废水,原料产甲烷潜力为0.49 mL·mL~(-1)废水;其COD和BOD5降解率最高,分别为76.3%和82%;其COD产气率和产甲烷率也最高,分别为169.1 mL·g~(-1)和56.9 mL·g~(-1)。煮炼后清洗废水的BOD5产气率和产甲烷率最高,分别为530.4 mL·g~(-1)和56.9mL·g~(-1)。3种废水都可通过厌氧消化去除大部分有机物,减轻后续处理压力,并且生物酶浸泡废水产气率最高,可用于生产沼气,为苎麻加工提供绿色能源。  相似文献   

14.
文章对鸡粪和餐厨垃圾中温厌氧发酵的产气特性和产甲烷动力学进行研究。鸡粪和餐厨垃圾按照混合比例(以VS计)为2∶1,1∶1和1∶2进行发酵,以鸡粪单独发酵和餐厨垃圾单独发酵为对照试验,底物浓度为15 gVS·L~(-1)。结果表明:鸡粪较少时(鸡粪与餐厨垃圾之比为0∶1,1∶2和1∶1)出现酸化,产甲烷的延迟期较长。甲烷产率和有机物去除率均随餐厨垃圾占比的增加而增大,餐厨垃圾单独发酵时最高,为254.4 mL·g~(-1)VS和54%。利用修正的Gompertz方程和一级动力学模型进行累积甲烷产量的动力学拟合,发现当鸡粪和餐厨垃圾的混合比例为2∶1时,获得最高的最大产甲烷速率3.65 mL·h~(-1)和转化速率常数0.4608 d~(-1),说明该混合比例下,产甲烷的代谢活性较高。  相似文献   

15.
为研究盐分对处理餐厨垃圾的厌氧污泥产甲烷活性的影响,文章设计了甲烷转化率和日均甲烷产量与进水Na Cl浓度负荷的对应关系的两种判断方法,用于确定盐分对厌氧污泥产甲烷活性的毒性负荷。结果表明:中温条件下(30℃~35℃),以模拟餐厨垃圾组分的混合短链脂肪酸为ASBR的进水基质,测定盐分对厌氧污泥产甲烷活性的毒性负荷,发现厌氧污泥对盐分有一定的耐受能力;在进水Na Cl浓度≤16 g·L~(-1)时,对厌氧污泥的产甲烷活性无显著影响,但当进水中的Na Cl浓度在24~64 g·L~(-1)d~(-1)之间时,厌氧污泥甲烷活性毒性负荷两种判定方式,即厌氧污泥中的甲烷日均产量和甲烷转化率均与Na Cl浓度呈现明显负相关,由此可得,使厌氧污泥活性下降10%和50%的Na Cl浓度分别为22.07 g·L~(-1),21.73 g·L~(-1)和51.22 g·L~(-1),50.74 g·L~(-1)。说明适当的盐分可以提升ASBR中厌氧污泥的产甲烷活性,但过高的盐分浓度则会抑制产甲烷活性。  相似文献   

16.
文章选取污泥和粪便作为研究对象,进行中温批量厌氧消化对照试验。结果表明:污泥和粪便的原料产气潜能分别为27.3 m3·t~(-1)和4.1 m3·t~(-1),粪便和污泥厌氧发酵周期较短。以粪便和污泥作为厌氧消化原料的发酵过程中,酸化现象不明显,较快进入产甲烷阶段,发酵后期p H值和氨氮值升高。粪便COD,TS,VS产气率分别为0.16 m3·kg~(-1)COD,0.14 m3·kg~(-1)TS和0.24 m3·kg~(-1)VS,污泥COD,TS,VS产气率分别为0.36 m3·kg~(-1)COD,0.55 m3·kg~(-1)TS和0.62 m3·kg~(-1)VS。  相似文献   

17.
文章以牛粪和超声预处理污泥为发酵原料,在恒温35℃±1℃及底物浓度为15 gVS·L~(-1)的条件下,采用正常运行的大型沼气池沼液作为接种物,研究不同配比(VS_(污泥)∶VS_(牛粪)分别为1∶0,2∶1,1∶1,1∶2,0∶1)对混合厌氧消化效果的影响。研究表明,在35℃±1℃条件下,超声预处理污泥与牛粪的比例为1∶2时累积产气量高于其他4种比例,VS产气率达到了470.33 mL·g~(-1),甲烷产量在发酵稳定后达到了58.68%。发酵过程中pH值,NH_4~+-N,COD的变化表明了混合厌氧消化能够平衡营养物质,稀释有毒物质,具有协同作用,发酵过程中未出现酸抑制以及氨抑制。进一步研究得出,将超声预处理污泥与牛粪按一定比例混合发酵可以将产气高峰提前,并出现"双峰",提升产气速率,大幅提升了原料的产气潜力。  相似文献   

18.
试验采用牛粪消化液为接种物,在中温(36℃)条件下,对猪粪进行了干式厌氧消化中试试验。结果表明,随着进料量由300 kg·d~(-1)提高到450 kg·d~(-1),系统表现出了较好的稳定性,沼气产量为30~35m3·d~(-1),甲烷含量在57%~62%范围内,含水率下降到81%~82%,VS下降到71%~72%,VS去除率在40%左右,p H值在7.98~8.20范围内,碱度由15000 mg·L~(-1)升高到23000 mg·L~(-1)。随着试验的进行,系统氨氮浓度不断增加,为了防止氨氮抑制情况的发生,从第42天开始对出料进行固液分离,只回流沼渣,最后氨氮浓度稳定在5000 mg·L~(-1)左右,游离氨浓度在750 mg·L~(-1)左右,厌氧消化系统没有出现明显的抑制现象。但就产气情况来看,随着进料量的提高,产气量并没有上升,系统现阶段处于抑制平衡状态。  相似文献   

19.
文章开展了中温(38℃±1℃)条件下含固率为6%,8%的酒糟批式厌氧发酵产沼气的研究。结果表明:酒糟极易酸化形成大量挥发性脂肪酸(VFAs),是良好的沼气发生原料。发酵27 d(发酵基本结束)时,TS为6%,8%的酒糟TS产气率分别为402.08 m L·g~(-1),387.81 m L·g~(-1),VS产气率分别为441.84 m L·g~(-1),426.16 m L·g~(-1)。TS为6%,8%酒糟的最佳发酵周期分别为14 d,15 d。  相似文献   

20.
为了研究废弃食用油脂中温厌氧发酵特性,对废弃食用油脂进行了中温35℃±1℃批式发酵,主要考察了不同原料与接种物比(F/I)和碳氮比(C/N)条件下,甲烷产量和FVA的变化情况,并运用修正的Gompertz模型对其产气模型进行动力学拟合。实验结果表明,在中温条件下,F/I比值为1∶6,1∶3,1∶2和2∶3时,废弃油脂都能较好地进行厌氧发酵产甲烷,最大产甲烷产量分别为737,418,342和300 m L·g~(-1)TS。采用修正Gompertz模型分别对1∶6,1∶3,1∶2和2∶3实验组产甲烷曲线进行拟合,得到产甲烷潜力分别为823.68,461.12,379.43和339.20m L·g~(-1)TS,最大产甲烷速率分别为56.25,31.03,24.79和20.63 m L·d~(-1)g~(-1)TS。C/N值为28∶1,14∶1,7∶1和4∶1时,随着C/N减小最大产甲烷产量不断增大,分别为185,308,395和460 m L·g-1TS。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号