首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Efficacy of four different essential oils against the subterranean termite, Coptotermes curvignathus Holmgren, was assessed in various bioassays. Laboratory results indicate that the highest termite mortality was found in Dipterocarpus sp. essential oil after 24 h (LC50 = 1.62 %) and the lowest in Melaleuca cajuputi (LC50 = 4.60 %). The wood consumption in the filter paper treated with Dipterocarpus sp. oil is also smaller than for the other three essential oils tested. However, the other three essential oils also inhibited termite susceptibility of the specimens. Dipterocarpus sp. (keruing oil) was the most effective insect antifeedant and repellent against C. curvignathus. The results suggest that essential oils might have some beneficial activity of economic value and are considered good candidates for the development of new chemicals (repellents or antifeedants) for termite control.  相似文献   

2.
The extensive use of synthetic insecticides and fumigants for control stored-product insects has led to the development of resistance. Essential oils from aromatic plants may provide proper alternatives to currently used insect control agents. Essential oils from 20 Egyptian plants were obtained by hydrodistillation. The chemical composition of the oils was identified by gas chromatograph/mass spectrometer. Fumigant and contact toxicities of the essential oils were evaluated against Sitophilus oryzae. The inhibitory effects of the essential oils on acetylcholinesterase and adenosine triphosphatases activities were examined. The oils were composed of monoterpene hydrocarbons (i.e., limonene, sabinene, β-pinene and γ-terpinene) and oxygenated monoterpenes (i.e., terpinen-4-ol, β–thujone, 4-terpineol, α-citral and 1,8-cineole) with the exception of the oil of Schinus terebinthifolius which was contained sesquiterpenes, and the oil of Vitex agnus-castus which contained similar amounts of monoterpenes and sesquiterpenes. In the fumigation assay, the oils of Origanum vulgare (LC50 = 1.64 mg/L air), Citrus lemon (LC50 = 9.89 mg/L air), Callistemon viminals (LC50 = 16.17 mg/L air), Cupressus sempervirens (LC50 = 17.16 mg/L air), and Citrus sinensis (LC50 = 19.65 mg/L air) showed high toxicity to S. oryzae. In the contact assay, the oils of Artemisia judaica, C. viminals, and O. vulgare caused the highest toxicity to S. oryzae with LC50 values of 0.08, 0.09, and 0.11 mg/cm2, respectively. The oil of A. judaica (I50 = 16.1 mg/L) invoked the highest inhibitory effect on AChE activity, while the oils of C. viminals and O. vulgare were the most potent inhibitors to ATPases activity with I50 values of 4.69 and 6.07 mg/L, respectively. The results indicate that the essential oils of A. Judaica, O. vulgare, C. limon, C. viminals, and C. sempervirens could be applicable to the management of populations of S. oryzae.  相似文献   

3.
Essential oils from inflorescences and roots of Eupatorium adenophorum Spreng (Asteraceae) have been investigated for their antimicrobial, phytotoxic and antioxidant activities. Based on GC–MS, the oil from inflorescences is dominated by sesquiterpenes (55.9 %) with γ-cadinene (18.4 %), γ-muurolene (11.7 %), 3-acetoxyamorpha-4,7(11)-diene-8-one (7.4 %) and bornyl acetate (6.3 %) as the major constituents. The oil obtained from the roots contained both sesquiterpenes (34.3 %) and monoterpenes (32.5 %) in almost equal proportions with E,E-cosmene (19.9 %), γ-muurolene (10.1 %), isothymol (7.5 %), β-cadinene (7.0 %) and α-phellandren-8-ol (5.9 %) as the major constituents. Both oils exhibited significant antifungal activity against five phytopathogenic fungi. The inflorescence oil showed higher antibacterial activity against Klebsiella pneumoniae, while the root oil was more effective against Staphylococcus aureus. The oils strongly inhibited or delayed germination and seedling growth of the weed Phalaris minor in a dose-dependent manner. As evidenced by a DPPH assay, the essential oils also exhibited significant free radical scavenging activity.  相似文献   

4.
Picus® acoustic tomography was used to map incipient stages of fungal decay in the sapwood of standing Douglas fir, beech, oak, and sycamore trees 2, 16, and 27 months after wounding and artificial inoculation with brown-, soft-, and white-rot decay fungi. Some wood properties were additionally measured before (velocity of sound) and after (moisture content, weight loss, and density of sound, discoloured and/or decayed wood) tree felling (28 months). With the exception of Trametes versicolor in sycamore, wood decay was not evident from the tomograms in any host-fungus combination. In comparison to measurements after two months, the device recorded a reduction in sound velocity in some host-fungus combinations after 16 and 27 months. In beech, there was a significant reduction in sound velocity after inoculation with Ganoderma applanatum, Kretzschmaria deusta, and Trametes versicolor. Similarly, a reduction in sound velocity was recorded in sycamore inoculated with Kretzschmaria deusta and Trametes versicolor. In all these combinations, losses in wood weight and wood density were also found. Results showed that the detection of incipient fungal decay at the periphery of tree stems needs to be improved such that tomograms of the Picus® acoustic tomograph are capable of identifying decay progressing from the sapwood inwards.  相似文献   

5.
The present study examined the chemical composition, in vitro antioxidant, anti-hyaluronidase and antifungal activities of essential oils of Melaleuca leucadendron Linn. from Gundih-Central Java, Indonesia in different plant ages of 5, 10 and 15 years old. The Chemical composition of essential oils were analyzed by GC/MS. Twenty-six components were identified, of which 1,8-cineole (49.22–55.04 %), α-terpineol (8.79–10.70 %), d-limonene (5.58–6.39 %), and β-caryophyllene (5.03–7.64 %) were the main compounds in these oils. The antioxidant assay and anti-hyaluronidase assay showed that M. leucadendron leaf oils possess mild antioxidant activity with IC50 between 7.21 and 9.23 mg/ml and anti-hyaluronidase activity with IC50 between 1.94 and 3.03 mg/ml. The antifungal assay showed the effectiveness of these essential oils against Fomitopsis palustris (IC50 0.12–3.16 mg/ml), Trametes versicolor (IC50 0.01–0.06 mg/ml), Cladosporium cladosporioides (IC50 0.03–0.49 mg/ml), and Chaetomium globosum (IC50 0.06–0.15 mg/ml).  相似文献   

6.
Vegetable oils provide boron retention of about 30% of initial amount depending on oil drying properties. Linseed oil is the most efficient, followed by soybean oil and rapeseed oil. Durability of C. japonica and F. crenata wood specimens has been enhanced by application of linseed oil alone but not enough to reduce termite’s attack of Coptotermes formosanus. Treating wood with a 1.0% w/w boric acid solution prior to oil treatment protects C. japonica from termite and fungi degradations. Efficiency against termites is mainly due to boron retention by oil but hydrophobic oil also forms a barrier decreasing fungi penetration. Boron efficacy threshold around 0.7 kg/m3BAE, lower than classical boron treatments thresholds indicates that oil water-repellence reinforces boron biostatic effect.  相似文献   

7.
We evaluated fungal decay and mold resistance, leaching, and water absorption of nano-compounds and Paraloid B72® (PB72) in treated wood specimens to develop new methods of consolidation by combining nano-particles and consolidants. Scots pine wood specimens were treated with dispersions of nano-CuO, nano-ZnO, nano-B2O3, nano-TiO2, and nano-CeO2. PB72 treatments of nano-particle-treated wood specimens were then carried out by either vacuum or immersion for 24 h. Previously, decayed wood specimens were also consolidated with the nano-compounds and PB72. PB72 treatments reduced element release from treated wood specimens. Nearly all nano-compounds + PB72 treatments increased the biological performance of treated wood specimens against decay fungi tested. PB72-only treated wood specimens had the highest weight losses in decay tests. No improvements were obtained in mold resistance tests when the nano-compounds and PB72 were combined. In nano-compound-only treatments, unleached specimens showed slightly lower water absorption values compared to untreated control specimens. Incorporation of PB72 into nano-compound-treated wood specimens resulted in considerably lower water absorption and volumetric swell. In previously decayed specimens treated with the nano-compounds and PB72 solution, water absorption after 2-h immersion declined compared to control specimens.  相似文献   

8.
Essential oils of Achillea biebersteinii, Achillea santolina and Achillea mellifolium were obtained by hydrodistillation and analyzed using gas chromatography/mass spectrometry. The plant oils were tested for their toxic and repellent activities against the Khapra beetle, Trogoderma granarium (Everts) (Coleoptera: Dermestidae). T. granarium was sensitive to the oils via topical application, contact and fumigation bioassays, where A. biebersteinii oil was the most toxic regardless of the technique used. Using topical application, a dosage of 15 μg/mg insect of A. biebersteinii oil was sufficient to kill 100 and 83.2.0 % after 7 days exposure of adults and 2nd instar larvae, respectively. Meanwhile, twice this concentration of A. santolina and A. mellifolium oils caused 90.4 (72.5 %) and 73.8 (60.1 %) adult and larval mortality after 7 days, respectively. Using fumigation and 7 days exposure, a concentration of 50.0 μl/l air of A. biebersteinii oil displayed the strongest activity (percentage adult and larval mortalities of 100.0 and 88.0 %), respectively, while A. santolina and A. mellifolium oils at the same concentration caused 92.5 (76.8 %) and 76.1 (61.3 %) adult and larval mortality, respectively. The three oils were strongly repellent to the larvae and adults of T. granarium. The repellent activity was time and concentration-dependent, where A. biebersteinii oil was the most effective, even though at low concentrations (percentage repellency of 100 and 81.0 % were recorded against adults and larvae after 6 h exposure to a concentration of 0.22 μl/cm2, respectively). Results suggested the potential use of Achillea oils as natural grain protectants against T. granarium.  相似文献   

9.
Natural essential oils have received increased attention as alternatives to synthetic pesticides for pest management of foodstuffs. Recently, microencapsulation and other controlled release techniques are used to increase insecticidal efficiency and persistence of essential oils with slow and controlled release. In this study, the possibility of improving the insecticidal activity of plant essential oils was investigated for effective management of two stored product beetle pests. Self-assembly technique was used to prepare nanogels of myristic acid-chitosan loaded by essential oil extracted from cumin, Cuminum cyminum L. Fumigant toxicity of C. cyminum oil and oil-loaded nanogels (OLNs) were investigated at 4, 7, 10, 13, and 16 µL/L air against the granary weevil Sitophilus granarius L. and 8, 11, 14, 17, and 20 µL/L air for confused flour beetle Tribolium confusum Jacquelin du Val. Experiments were conducted at 27 ± 1 °C and 55 ± 5 % relative humidity in continuous darkness. Insecticidal bioassay revealed that OLNs were more toxic than C. cyminum oil against tested beetle pests. The persistence of the oil and OLNs was also evaluated against two tested species. Results indicated that C. cyminum oil completely lost its insecticidal activity after 12 days, whereas at the same period, the OLNs lost about 60 % of its activity when applied against S. granarius and 15% for T. confusum. Therefore, it could be concluded that encapsulation improved the persistence of the oil.  相似文献   

10.
The Columbia root-knot nematode (CRKN), Meloidogyne chitwoodi, is an EPPO A2 type quarantine pest since 1998. This nematode causes severe damage in economically important crops such as potato and tomato, making agricultural products unacceptable for the fresh market and food processing. Commonly used nematicidal synthetic chemicals are often environmentally unsafe. Essential oils (EOs) may constitute safer alternatives against RKN. EOs, isolated from 56 plant samples, were tested against CRKN hatching, in direct contact bioassays. Some of the most successful EOs were fractionated and the hydrocarbon molecules (HM) and oxygen-containing molecules (OCM) fractions tested separately. 24 EOs displayed very strong hatching inhibitions (≥90 %) at 2 µL mL?1 and were further tested at lower concentrations. Dysphaniaambrosioides, Filipendula ulmaria, Ruta graveolens, Satureja montana and Thymbra capitata EOs revealed the lowest EC50 values (<0.15 µL mL?1). The main compounds of these EOs, namely 2-undecanone, ascaridol, carvacrol, isoascaridol, methyl salicylate, p-cymene and/or γ-terpinene, were putatively considered responsible for CRKN hatching inhibition. S. montana and T. capitata OCM fractions showed hatching inhibitions higher than HM fractions. The comparison of EO and corresponding fractions EC50 values suggests interactions between OCM and HM fractions against CRKN hatching. These species EOs showed to be potential environmentally friendly CRKN hatching inhibitors; nonetheless, bioactivity should be considered globally, since its HM and OCM fractions may contribute, diversely, to the full anti-hatching activity.  相似文献   

11.
Few studies have analyzed how tree species within a mixed natural forest affect the dynamics of soil chemical properties and soil biological activity. This study examines seasonal changes in earthworm populations and microbial respiration under several forest species (Carpinus betulus, Ulmus minor, Pterocarya fraxinifolia, Alnus glutinosa, Populus caspica and Quercus castaneifolia) in a temperate mixed forest situated in northern Iran. Soil samplings were taken under six individual tree species (n = 5) in April, June, August and October (a total of 30 trees each month) to examine seasonal variability in soil chemical properties and soil biological activity. Earthworm density/biomass varied seasonally but not significantly between tree species. Maximum values were found in spring (10.04 m?2/16.06 mg m?2) and autumn (9.7 m?2/16.98 mg m?2) and minimum in the summer (0.43 m?2/1.26 mg m?2). Soil microbial respiration did not differ between tree species and showed similar temporal trends in all soils under different tree species. In contrast to earthworm activity, maximum microbial activity was measured in summer (0.44 mg CO2–C g soil?1 day?1) and minimum in winter (0.24 mg CO2–C g soil?1 day?1). This study shows that although tree species affected soil chemical properties (pH, organic C, total N content of mineral soils), earthworm density/biomass and microbial respiration are not affected by tree species but are controlled by tree activity and climate with strong seasonal dynamics in this temperate forest.  相似文献   

12.
The present study describes an efficient method for in vitro plant regeneration in B. arundinacea through axillary shoot bud proliferation. Nodal explants were excised, cultured on MS medium containing different concentrations of 6-benzylaminopurine (BAP), kinetin (KIN) (0.5–5.0 mg l?1) alone and/or in combinations with KIN/BAP (0.5 mg l?1). The highest frequency (91.5 %) of multiple shoot bud induction with maximum number of shoots (85 shoots/explant) was noticed on MS medium + 3.0 mg l?1 BAP + 0.5 mg l?1 KIN. The regenerated multiple shoots were elongated on MS medium + 4.0 mg l?1 KIN + 2.0 mg l?1 gibberellic acid (GA3) with maximum shoot length (4.9 cm). The elongated shoots were transferred to MS medium containing indole-3 butyric acid (IBA; 0.5–5.0 mg l?1) alone and/or in combination with 0.5 mg l?1 KIN and BAP. Highest frequency of rooting (75 %) was obtained on half-strength MS medium + 2.0 mg l?1 IBA + 0.5 mg l?1 KIN. After hardening, the plantlets were shifted to the green house and subsequently established in the field conditions with 90 % survival rate. random amplified polymorphic DNA (RAPD) markers were used to evaluate the genetic stability of the regenerants. RAPD profiles generated from the regenerated plants were found to be monomorphic, similar to the control. Results confirmed that the regenerated plants were true-to-type in nature and the developed micropropagation protocol could be used for large scale plant production of B. arundinacea.  相似文献   

13.
The silverleaf whitefly Bemisia tabaci (Genn.) biotype B (Hemiptera: Aleyrodidae) is an economically important pest of tomatoes Solanum lycopersicum (L.), causing irregular ripening on fruits and transmitting several plant pathogenic geminiviruses. The management of this pest is commonly based on repetitive spraying with synthetic pesticides, causing serious environmental damages and increase of resistance by insect population. In the present study, essential oils from the leaves of Artemisia camphorata Vill., Ageratum conyzoides L., Foeniculum vulgare Mill., Lippia alba (Mill.) N. E. Br., Plectranthus neochilus Schltr., and Tagetes erecta L. were investigated for their possible repellent and oviposition-deterrent effects against B. tabaci biotype B on tomato. In a multi-choice assay, P. neochilus essential oil was the most active repellent and oviposition deterrent. Essential oils of A. conyzoides and T. erecta significantly deterred the female B. tabaci biotype B from laying eggs on treated tomato leaflets compared with the control. (E)-Caryophyllene (30.67 %) and the monoterpenes α-pinene (15.02 %) and α-thujene (11.70 %) were identified as the major constituents of the essential oil of P. neochilus. Our findings demonstrated the potential of essential oil of P. neochilus and other oils in the reduction of settlement and oviposition of B. tabaci biotype B on tomato.  相似文献   

14.
A capillary zone electrophoresis (CZE) method for simple and rapid determination of ellagic acid (EA) in Eucalyptus globulus wood and in the filtrate from unbleached kraft pulp has been developed. This is the first application of CZE for the detection of EA in industrial streams from cellulosic pulp production. The EA determinations in wood extractives and in pulp filtrates were succeeded only after sample acidification. This new CZE analytical procedure allowed reliable determinations of EA in E. globulus wood (1.1 ± 0.6 g kg?1 of dry wood) and in the filtrates from unbleached kraft pulp (98 ± 0.7 mg L?1). Gas chromatography–mass spectrometry was used as a reference method for the quantification of EA in industrial samples.  相似文献   

15.
Antifungal and antitermitic activities of wood vinegar produced from Vitex pubescens were evaluated. Three kinds of wood vinegar were produced at three different pyrolysis temperatures, i.e. at 350, 400 and 450 °C. A PDA dilution method was employed to assay antifungal activity of the vinegars with a white-rot fungus Trametes versicolor and a brown-rot fungus Fomitopsis palustris. Termiticidal activity and repellent effect were evaluated by a no-choice test and a choice test with Reticulitermes speratus and Coptotermes formosanus. All wood vinegars exhibited antifungal activity against both fungi. Wood vinegar of 450 °C had the higher activity than those of 400 and 350 °C. It was assumed that acid component contributed to the increase in controlling the growth of fungal. The wood vinegar exhibited antitermite activity to both R. speratus and C. formosanus workers in the no-choice experiment. However, it needed relatively high concentration to obtain the perfect mortality. For instance, the wood vinegar of 10 % concentration was needed to achieve 100 % mortality against C. formosanus, whereas for R. speratus only 3 % of wood vinegar was required. In the direct-choice experiment, wood vinegar had a significantly repellent effect to both termites at the lowest treating concentration of 10 %.  相似文献   

16.
Plant-based products, namely essential oils (EOs), are environmentally friendly alternatives for the control of disease vectors, hosts and/or parasites. Here, we studied the general toxicity and biopesticidal potential of EOs and phenylpropanoids from Foeniculum vulgare var. vulgare (bitter fennel), a perennial plant well adapted to temperate climates. EO/compound toxicity was tested against a freshwater snail and potential intermediate host of Fasciola hepatica (Radix peregra), a mosquito and former European malaria vector (Anopheles atroparvus) and one of the most damaging plant-parasitic nematodes, the root-knot nematode (Meloidogyne javanica). Lethal concentrations (LC50; LC90) of EOs (infrutescences/stems with leaves) and compounds were calculated by probit analysis. All displayed noteworthy activity against R. peregra adults (LC50 21–39 µg ml?1) and A. atroparvus larvae (LC50 16–56 µg ml?1). trans-Anethole revealed acute nematicidal activity after 24 and 48 h (LC50 310 and 249 µg ml?1, respectively), and estragole (1,000 µg ml?1) showed some effectiveness against M. javanica hatching and juveniles after 15 days. Plant and EO yields were determined to evaluate the bitter fennel productivity. The chemical composition of the EOs was analyzed by gas chromatography coupled to mass spectrometry. EOs extracted from whole plants, infrutescences and stems with leaves were characterized by estragole-dominant profiles (28–65 %), considerable amounts of phellandrene (10–34 %) and fenchone (6–16 %), and minor trans-anethole contents (1–4 %). Although additional toxicological studies against nontarget organisms are required, our study demonstrates that bitter fennel is a productive source of molluscicides and larvicides, and thus a potential sustainable biological agent to control particular host species, namely freshwater snails and mosquitoes.  相似文献   

17.
Bioassays were performed to determine the antifungal and insecticidal activity of clove essential oil (EO), several botanical compounds (eugenol, carvacrol, allylisothiocyanate (AITC) and ethyl formate (EtF)) against mycotoxigenic fungi (Aspergillus westerdijkiae and Fusarium graminearum) and the rice weevil, Sitophilus oryzae. Antifungal activity was quantified by measuring conidia germination inhibition and mycelial growth inhibition zone to determine the minimum inhibitory concentration (MIC). Mortality of insects was determined through either contact toxicity assay (impregnated filter paper) or fumigation toxicity assay (airtight exposure chamber). A four-parameter logistic regression of fungi inhibitory growth rate to the dose of tested substances, either by the agar diffusion assay or the micro-atmosphere test, showed that AITC had antifungal and sporicide activity. The concentration at MIC for A. westerdijkiae and F. graminearum was 24.2 and 19.8???l?l?1, respectively, whereas clove essential oil (EO) was 755 and 352???l?l?1 after 72?h incubation period. Bioassays with S. oryzae showed that clove EO contact insecticidal activity was similar to pure eugenol and carvacrol: LD90s were 366, 385 and 442???l?dm?2, respectively. The fumigation insecticidal activity of AITC was LC95?=?10.8???l?l?1. For EtF and clove EO, only the LC50 could be accurately determined after 24?h exposure time which was observed at 41 and 210???l?l?1, respectively (vs. 6.4???l?l?1 for AITC LC50). The combined antifungal activity on mycotoxigenic seed-borne fungi and insecticidal activity against the rice weevil demonstrated that AITC in vapour phase may be a promising active substance for the preservation grain stored in unsafe conditions with a risk of fungal growth.  相似文献   

18.
In the present work, for the first time, the chemical components of essential oils (EOs) and extracts from wood branch (WB) resulted from the tree pruning wastes of Schinus molle L. grown in Egypt were evaluated for their antioxidant and antibacterial activities. EOs, methanol (ME), dichloromethane (DCME) and water (WE) extracts as antioxidant and antibacterial activities were measured. Total phenolic and flavonoid contents as well as analysis of extracts by gas chromatography–mass spectrometry (GC–MS) were reported. The major components in EOs were α-elemol, β-pinene, and α-phellandrene, in ME were 6-(4-chlorophenyl)-3-cyano-4-(N-benzylpiperazino)-2H-pyran-2-one, and 2-naphthalene methanol, decahydro-α,α,4a-trimethyl-8-methylene, in DCME were 12-methyl-E,E-3,13-octadecadien-1-ol, and 1,2-benzenedicarboxylic acid, dioctyl ester, and in WE were β-eudesmol, and (Z,Z,Z)-9,12,15-octadecatrienoic acid, 2,3-dihydroxypropyl ester. The highest total antioxidant activity was found with EOs (90 ± 1.23 %) and WE (86.30 ± 1.40 %). The lowest IC50 values of 13.11 ± 3.00, and 12.66 ± 2.15 μg/mL were found with WE and EOs, respectively. EOs and WE were observed to have good antibacterial activity against Bacillus subtilis, Bacillus cereus, Staphylococcus aureus, Escherichia coli, Sarcina lutea, Pseudomonas aeruginosa, and Micrococcus luteus. In conclusion, the Schinus molle L. WB EOs and extracts might, indeed, be used as a potential source for pharmaceutical or food industries.  相似文献   

19.
This study aimed to evaluate radial and among-family variations of wood properties in Picea jezoensis. A total of 174 trees were randomly selected from 10 open-pollinated families in a progeny trial for measuring stem diameter, dynamic Young’s modulus of log (DMOElog), annual ring width (ARW), air-dry density (AD), modulus of elasticity (MOE), and modulus of rupture (MOR). Mean values of DMOElog, AD, MOE, and MOR were 9.60 GPa, 0.41 g/cm3, 9.44 GPa, and 76.6 MPa, respectively. Significant differences among families were observed in all properties. F values obtained by analyzing variance in wood properties were higher than those generally observed in growth traits. In addition, F values in wood properties remained relatively higher from the 1st to 25th annual ring from the pith, although F value in ARW rapidly decreased with each increase in annual ring number. These results indicate that genetic factors largely contributed to the variance in wood properties compared with the growth traits.  相似文献   

20.
We evaluated the antifungal and antitermite activities of wood vinegars produced from oil palm trunk. The wood vinegars were produced at three different pyrolysis temperatures, 350, 400, and 450 °C. Antifungal activities of vinegars were evaluated using a Petri dish bioassay with 0.5, 1.0, and 1.5% (v/v) against a white-rot fungus, Trametes versicolor, and a brown-rot fungus, Fomitopsis palustris. Antitermite activities were tested using a no-choice bioassay method for Coptotermes formosanus with 2.5, 5.0, 7.5, and 10.0% (v/v). All the wood vinegars exhibited antifungal activities against T. versicolor. In particular, the wood vinegar produced at 350 °C resulted in complete inhibition of T. versicolor growth at 1.0 and 1.5%. However, higher concentrations were required to obtain growth inhibition of F. palustris. All the wood vinegars exhibited antitermite activity to C. formosanus workers in the no-choice experiment at relatively high concentrations. For instance, 10% concentration was required to achieve 100% mortality against C. formosanus at all production temperatures. The lowest mass loss of the treated filter paper of 11.75% was obtained with a 350 °C—10.0% combination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号