首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Botrytis cinerea infects waxflower (Chamelaucium spp.) flowers and can induce them to abscise from their petioles before disease becomes evident. Botrytis cinerea infection of flowers was studied on two waxflower cultivars by light and electron microscopy. Pot‐grown waxflower flowers were harvested, inoculated with aqueous suspensions of B. cinerea conidia, incubated at 20–22°C and >95% RH and examined within 96 h post‐inoculation (hpi). Conidial germination on petals started 4 hpi, penetration via germ tube tips was 6 hpi and protoappressoria were formed 8 hpi. Germination on petals approximately doubled every 4–6 h to 18 hpi. Conidial germination was ca. 50% at 22–24 hpi. Botrytis cinerea infected most waxflower flower organs, including petals, anthers and filaments, stigma and hypanthium, within 24 hpi. Hyaline and lobate appressoria were observed 36 hpi. Infection cushions on stamen bases were formed 36 hpi by saprophytic hyphae that originated from anthers. This infection process can give rise to tan‐coloured symptoms typical of botrytis disease that radiate from this part of the flower. Subcuticular hyphae were present at high density near stamen bases and evidently resulted from multiple penetrations from single infection cushions. The subcuticular hyphae grew within the hypanthium and towards the centre of the floral tube. When flower abscission occurred, floral tube tissues close to the abscission zone remained uninfected. This observation infers possible transmission of a signal (e.g. ethylene) upon B. cinerea infection. Thus, B. cinerea causes flower abscission apparently as a defence response.  相似文献   

2.
Eggplant roots colonized by a sterile, white mycelial endophyte (SWM) were previously found to become highly resistant to Verticillium wilt. SWM alone, however, caused no visible, disease symptoms, such as wilting or necrosis. The mechanism of the symptomless infection by SWM was investigated in this study. Electron microscopy revealed that hyphae of SWM were abundant on and inside the root epidermal cells 2 weeks after inoculation. Many terminal appressoria formed from apical tips of hyphae, and heavy degradation of the host cell walls was evident where hyphae accumulated. By 4 weeks following inoculation, penetration pegs easily breached epidermal cells, and the infection hyphae penetrated outer cortical cells. In response to the hyphal ingress, numerous tubule-like vesicles and membrane-bound, multivesicular bodies accumulated in cortical cytoplasm near the infection sites of the outer cortical cells, but no visible signs of the host reactions were seen in the epidermal cells. Papillae developed at the spaces between cell walls and plasma membranes at the infection sites. The penetration hyphae often grew out of the papillae, but further hyphal ingress was halted in the middle cortical cell layer. By 8 weeks following inoculation, papillae that developed in these cells contained larger amounts of highly electron-dense material and were reinforced by multilamellate, fibrous elements. Hyphae that entered such papillae were confined to them, and the hyphal cytoplasm degenerated. As the result of the activated resistance reactions, root vascular cylinders remained intact, and the host plants did not wilt.  相似文献   

3.
Botrytis cinerea is able to build-up resistance to pyrrolnitrin, an antibiotic produced by diverse biocontrol agents, possibly compromising the durability of this method of disease control. The development of two near-isogenic lines of B. cinerea differing in their level of resistance to pyrrolnitrin was compared in tomato plants and on PDA medium. In tomato plants, significant differences in the percentage of infected petioles 1 day after inoculation and in symptom progression on petioles and stems were observed between the resistant mutant and the sensitive wild-type parent, suggesting a difference in their level of aggressiveness. Cytohistological investigations revealed that conidia of both near-isogenic lines germinated 6 h after inoculation and mycelium developed within petiole tissues 12 h after inoculation. However, while the wild-type parent isolate spread throughout the petiole and rapidly invaded the stem tissues via the leaf-abscission zone 72 h after inoculation, the pyrrolnitrin-resistant mutant failed to extend beyond petiole tissues to invade the stem. Moreover, 72 h after inoculation, the mycelial development of the pyrrolnitrin-resistant mutant was accompanied by abnormal glycogen accumulation and chlamydospore-like cell formation. In contrast, wild-type parent mycelium was normally structured with intensive colonization of stem tissues. Additionally, on PDA medium the mycelium of the pyrrolnitrin-resistant mutant was less vigorous than the wild-type isolate. These results suggest that the acquisition of pyrrolnitrin-resistance in B. cinerea is accompanied by changes in mycelial structure and reduction in mycelial growth, leading to a noticeable loss of aggressiveness on tomato plants.  相似文献   

4.
Minimizing losses to pests and diseases is essential for producing sufficient food to feed the world's rapidly growing population. The necrotrophic fungus Botrytis cinerea triggers devastating pre‐ and post‐harvest yield losses in tomato (Solanum lycopersicum). Current control methods are based on the pre‐harvest use of fungicides, which are limited by strict legislation. This investigation tested whether induction of resistance by β‐aminobutyric acid (BABA) at different developmental stages provides an alternative strategy to protect post‐harvest tomato fruit against B. cinerea. Soil‐drenching plants with BABA once fruit had already formed had no impact on tomato susceptibility to B. cinerea. However, BABA application to seedlings significantly reduced post‐harvest infection of fruit. This resistance response was not associated with a yield reduction; however, there was a delay in fruit ripening. Untargeted metabolomics revealed differences between fruit from water‐ and BABA‐treated plants, demonstrating that BABA triggered a defence‐associated metabolomics profile that was long lasting. Targeted analysis of defence hormones suggested a role of abscisic acid (ABA) in the resistance phenotype. Post‐harvest application of ABA to the fruit of water‐treated plants induced susceptibility to B. cinerea. This phenotype was absent from the ABA‐exposed fruit of BABA‐treated plants, suggesting a complex role of ABA in BABA‐induced resistance. A final targeted metabolomic analysis detected trace residues of BABA accumulated in the red fruit. Overall, it was demonstrated that BABA induces post‐harvest resistance in tomato fruit against B. cinerea with no penalties in yield.  相似文献   

5.
In high‐tech, heated tomato glasshouses, stem infections caused by Botrytis cinerea usually end up girdling the stem, resulting in plant death and consequently high economic losses. Such infections originate primarily from wounds created during leaf pruning, a common cultural practice in which it is intended to remove leaves completely, resulting in smooth stem wounds. However, hasty leaf pruning often results in numerous petiole stubs accidentally left behind. In this study analysis of disease incidences clearly proved that pruning leaves flush to the stem resulted in absolute resistance of the stem wounds, whereas petiole stubs displayed a high level of susceptibility to B. cinerea. Postponing inoculation of wounds after pruning indicated that development of nearly complete resistance occurs within 48 h after deleafing. Monitoring of the wound wetness period showed that drying of the wound surface is not the cause of the decreased susceptibility, contrary to what was commonly believed. Tomato mutants deficient in disease signalling showed altered phenotypes for susceptibility to B. cinerea, indicating that defences against this pathogen in petiole stubs depend on ethylene signalling. Additionally, the decreased susceptibility of mutants deficient in the biosynthesis of jasmonates and abscisic acid suggest an antagonistic effect of these signal molecules. On the other hand, resistance of smooth stem wounds could not be altered by disruption of salicylic acid, ethylene, jasmonate or abscisic acid signalling. This indicates that this remarkable absolute resistance to B. cinerea does not depend on the major disease signalling pathways.  相似文献   

6.
为明确IDD家族IDD4基因在拟南芥Arabidopsis thaliana抵抗灰葡萄孢菌Botrytis cinerea侵染过程中的作用,通过统计病情指数检测拟南芥野生型(wild type,WT)植株、过表达植株IDD4-OE和缺失突变体idd4植株感染灰葡萄孢菌情况,利用组织染色检测叶片细胞死亡和H2O2的积累情况,采用实时荧光定量PCR(real-time quantitative-PT-PCR,qRT-PCR)技术分析灰葡萄孢菌肌动蛋白基因Bc. ACTIN在3种植株叶片中的表达情况,并施加0.1 mmol/L外源水杨酸(salicylic acid,SA)后测定IDD4-OE植株的病情指数。结果显示,不同株系对灰葡萄孢菌的抗性由高到低依次为idd4>WT>IDD4-OE,IDD4-OE植株中病原菌感染部位的寄主细胞死亡程度比idd4植株严重。染色结果表明,病原菌侵染拟南芥后4 h,接种部位已有H2O2积累。qRT-PCR反应结果显示,Bc. ACTINIDD4-OE中比在idd4植株中的表达水平更高,表明灰葡萄孢菌在IDD4-OE植株中的繁殖速率更快。对IDD4-OE植株外源施加SA后,其病情指数、Bc. ACTIN表达量与WT植株间均无显著差异,说明SA能将感病植株的抗性提高至WT植株的水平,表明IDD4作为负调控因子参与了拟南芥对灰葡萄孢菌的抗性调控,SA在其中发挥着重要作用。  相似文献   

7.
Root exudates secreted from plants can modify rhizosphere microbiota by enhancing or inhibiting the growth of biological control agents (BCAs) and/or pathogens. Similarly, microorganisms can modify the secretion of plant root exudates. The aim of this study was to analyse the effect of a Botrytis cinerea leaf infection on the secretion of tomato root exudates and on the populations of the BCA Trichoderma asperellum strain T34 (T34). This study found that the secretion pattern of root exudates in tomato plants was influenced by B. cinerea infection in plant leaves. An increase in the levels of gluconic acid was observed, while levels of sucrose and inositol decreased. A decrease in the severity of B. cinerea by the induction of systemic resistance triggered by T34 was also observed. Tomato plants infected with B. cinerea maintained the populations of T34 in the roots, while populations of T34 decreased in plants not inoculated with the pathogen. Samples exposed to media containing gluconic acid (as the only carbon source or at the same concentration found in roots exudates) saw an increase in the in vitro growth of T34 compared to media without gluconic acid. In conclusion, a change in the secretion pattern of root exudates caused by B. cinerea, together with the enhanced growth of T34 in the presence of gluconic acid, indicates the existence of leaf to root communication. The result of this is enhanced populations of T34, and in turn induced disease resistance and a consequential reduction in disease severity.  相似文献   

8.
Each living cell of a plant produces photons in certain conditions. Under normal physiological conditions, cell photon emission is stationary and minimal. Disturbance in the oxidative homeostasis by biotic stress is manifested by increased ‘biophoton’ production. Such biophoton responses of plants may be used as an integral indicator of the degree of oxidative homeostasis misbalance. Our results demonstrate that biophoton generation has been much higher in a resistant potato variety than in a susceptible one till 10 h after Phytophthora infestans inoculation. In contrast, ultra-weak luminescence from detached susceptible potato and moderately resistant pelargonium leaves increased from 1–4 to 4–5 days after inoculation with Phytophthora infestans or Botrytis cinerea, respectively. Pre-treatment of susceptible potato leaves with a defence inducer, arachidonic acid, resulted in a transient burst of light in response to P. infestans lasting for 30–45 h post inoculation (hpi). This study presents the potential adaptation of functional imaging of ultra-weak luminescence to monitor time-dependent free radical processes during disease development and its application to draw conclusions on plant resistance to pathogens of different lifestyle. Moreover, it has been shown that imaging of temporal biophoton generation from potato leaves treated with arachidonic acid might be a helpful marker in mapping oxidative changes leading to systemic acquired resistance (SAR).  相似文献   

9.
Genes encoding an acidic wheat class IV chitinase (383), an acidic wheat β 1,3-glucanase (638) and a rice cationic peroxidase (POC1) were introduced into ‘Nantes Coreless’ carrot (Daucus carota) by Agrobacterium-mediated transformation. The genes were introduced singly or in various combinations followed by selection imposed by the herbicide phosphinothricin. Regenerated plantlets were screened for presence and expression of the three transgenes using PCR, Southern and Northern hybridisations. Eighteen transgenic lines expressing a single transgene and 2 lines each co-expressing 638/383 and 383/POC1 were assessed for resistance to the necrotrophic fungal pathogens Botrytis cinerea and Sclerotinia sclerotiorum. Percentage leaf area diseased was measured 4 and 7 days after inoculation (dai) and compared to non-transformed control plants. Six lines expressing β-1,3-glucanase 638 alone had no enhanced resistance to B. cinerea at 4 dai and only slight resistance to S. sclerotiorum; there was no effect at 7 dai. Two out of the six lines expressing 383 alone had enhanced tolerance to both pathogens with a 20–50% reduction in disease development at 7 dai. Two lines co-expressing 638/383 had slight reductions in disease by (10–20%) similar to that of the lines expressing chitinase 383 alone. Highest levels of disease resistance were seen in transgenic lines expressing POC1, alone or in combination with chitinase 383. Disease symptoms were slower to develop and symptoms were reduced by up to 90% for B. cinerea and 70% for S. sclerotiorum. The 383/POC1 co-expressing plants developed disease at levels similar to that of POC1 alone. Petioles of plants over-expressing POC1 had higher levels of lignin accumulation constitutively compared to control plants, which was greatly enhanced following inoculation with S. sclerotiorum. These results indicate that peroxidase over-expression can lead to significant disease reduction against necrotrophic pathogens in transgenic carrot plants.  相似文献   

10.
Botrytis cinerea causes gray mold disease and affects hundreds of plant species, including tomato (Lycopersicon esculentum). The wild nightshade, Solanum lycopersicoides, is cross compatible with tomato and is more resistant to B. cinerea, thus representing a potential source for crop improvement. Tests involving droplet inoculation of detached leaves and spray inoculation of entire seedlings demonstrated that resistance to B. cinerea varies among S. lycopersicoides accessions, with S. lycopersicoides LA2951 being the most resistant accession tested. Expression of resistance in the intergeneric hybrid (L. esculentum cv. 'VF36' × S. lycopersicoides LA2951) suggested that resistance is at least partially dominant in tomato. A green fluorescent protein-tagged B. cinerea strain was used for confocal microscopic comparison of infection in leaves of S. lycopersicoides and tomato. Even though S. lycopersicoides supported spore germination, there was evidence for hyphal lysis and death 3 days after inoculation, at a time when lesions were expanding on susceptible tomato plants. The reduced frequency of B. cinerea lesion spread on S. lycopersicoides explains why this fungus produced fewer spores in this wild nightshade than in tomato.  相似文献   

11.
The application of silicon to the roots or leaves reduces the severity of powdery mildew (Podosphaera xanthii) in melon but the latter treatment is less effective. This study compared key biochemical defence responses of melon triggered by P. xanthii after root or foliar treatment with potassium silicate (PS). Treatments consisted of pathogen‐inoculated or mock‐inoculated plants supplied with PS via roots or foliarly, as well as a non‐treated control. The activity of defence enzymes and the concentration of phenolic compounds, lignin and malondialdehyde were determined from leaf samples at different time points after inoculation. Pathogen‐inoculated plants irrigated with PS showed both an accumulation of silicon and primed defence responses in leaves that were not observed in pathogen‐inoculated plants either sprayed with PS or not treated. These responses included the anticipated activity of peroxidase and accumulation of soluble phenols, the activation of chitinase and repression of catalase, and the stronger activation of superoxide dismutase, peroxidase and β‐1,3‐glucanase. Moreover, the lignin concentration increased in response to inoculation, whereas the malondialdehyde concentration decreased. For the foliar treatment, however, only an increase in lignin deposition was observed compared with the control plants. The results show that silicon strongly plays an active role in modulating the defence responses of melon against P. xanthii when supplied to the roots as opposed to the foliage.  相似文献   

12.
The effect of microclimate variables on development ofClonostachys rosea and biocontrol ofBotrytis cinerea was investigated on rose leaves and crop residues. C.rosea established and sporulated abundantly on inoculated leaflets incubated for 7–35 days at 10°, 20° and 30°C and then placed on paraquat—chloramphenical agar (PCA) for 15 days at 20°C. On leaflets kept at 10°C, the sporulation after incubation on PCA increased from 60% to 93% on samples taken 7 to 21 days after inoculation, but decreased to 45% on material sampled after 35 days. A similar pattern was observed on leaves incubated at either 20° or 30°C. The sporulation ofC. rosea on leaf disks on PCA was not affected when the onset of high humidity occurred 0, 4, 8, 12 or 16 h after inoculation. However, sporulation was reduced to 54–58% on leaflets kept for 20–24 h under dry conditions after inoculation and before being placed on PCA. The fungus sporulated on 68–74% of the surface of leaf disks kept for up to 24 h at high humidity after inoculation, but decreased to 40–51% if the high humidity period before transferral to PCA was prolonged to 36–48 h. The growth ofC. rosea on leaflets was reduced at low inoculum concentrations (103 and 104 conidia/ml) because of competition with indigenous microorganisms, but at higher concentrations (105 and 106 conidia/ml) the indigenous fungi were inhibited. Regardless of the time of application ofC. rosea in relation toB. cinerea, the pathogen’s sporulation was reduced by more than 99%. The antagonist was able to parasitize hyphae and conidiophores ofB. cinerea in the leaf residues. AsC. rosea exhibited flexibility in association with rose leaves under a wide range of microclimatic conditions, and in reducingB. cinerea sporulation on rose leaves and residues, it can be expected to suppress the pathogen effectively in rose production systems.  相似文献   

13.
14.
15.
The effectiveness ofTrichoderma harzianum in suppression of tomato stem rot caused byBotrytis cinerea was examined on tomato stem pieces and on whole plants. Ten days after simultanous inoculation withB. cinerea andT. harzianum, the incidence of infected stem pieces was reduced by 62–84%, the severity of infection by 68–71% and the intensity of sporulation by 87%. Seventeen days after inoculation of wounds on whole plants, the incidence of stem rot was reduced by 50 and 33% at 15 and 26 °C, respectively, and the incidence of rot at leaf scar sites on the main stem was reduced by 60 and 50%, respectively. Simultanous inoculation and pre-inoculation withT. harzianum gave good control ofB. cinerea (50 and 90% disease reduction, 10 days after inoculation). The rate of rotting was not reduced by the biocontrol agent once infection was established. However, sporulation byB. cinerea was specifically reduced on these rotting stem pieces. Temperature had a greater effect than vapour pressure deficit (VPD) on the efficacy of biocontrol. Suppression ofB. cinerea incidence byT. harzianum on stem pieces was significant at 10 °C and higher temperatures up to 26 °C. Control of infection was significantly lower at a VPD of 1.3 kPa (60% reduction), than at VPD<1.06 kPa (90–100% control). Reductions in the severity of stem rotting and the sporulation intensity of grey mould were generally not affected by VPD in the range 0.59–1.06 kPa. Survival ofT. harzianum on stems was affected by both temperature and VPD and was greatest at 10 °C at a low VPD and at 26 ° C at a high VPD.  相似文献   

16.
Botrytis cinerea is a non-specific, necrotrophic pathogen that attacks many plant species, including Arabidopsis and tomato. Since senescing leaves are particularly susceptible to infection by B. cinerea, we hypothesized that the fungus might induce senescence as part of its mode of action and that delaying leaf senescence might reduce the severity of B. cinerea infections. To examine these hypotheses, we followed the expression of Arabidopsis SAG12, a senescence-specific gene, upon infection with B. cinerea. Expression of SAG12 is induced by B. cinerea infection, indicating that B. cinerea induces senescence. The promoter of SAG12, as well as that of a second Arabidopsis senescence-associated gene, SAG13, whose expression is not specific to senescence, were previously analyzed in tomato plants and were found to be expressed in a similar manner in the two species. These promoters were previously used in tomato plants to drive the expression of isopentenyl transferase (IPT) from Agrobacterium to suppress leaf senescence (Swartzberg et al. in Plant Biology 8:579–586, 2006). In this study, we examined the expression of these promoters following infection of tomato plants with B. cinerea. Both promoters exhibit high expression levels upon B. cinerea infection of non-senescing leaves of tomato plants, supporting our conclusion that B. cinerea induces senescence as part of its mode of action. In contrast to B. cinerea, Trichoderma harzianum T39, a saprophytic fungus that is used as a biocontrol agent against B. cinerea, induces expression of SAG13 only. Expression of IPT, under the control of the SAG12 and SAG13 promoters in response to infection with B. cinerea resulted in suppression of B. cinerea-induced disease symptoms, substantiating our prediction that delaying leaf senescence might reduce susceptibility to B. cinerea. Contribution from the Agriculture Research Organization, The Volcani Center, Bet Dagan, Israel, No. 127/2006 series.  相似文献   

17.
The possible involvement of salicylic acid in systemic acquired resistance ofCucumis sativus againstSphaerotheca fuliginea was studied. Cucumber plants were inoculated with tobacco necrosis virus on the cotyledons and the level of endogenous salicylic acid in the first true leaf was determined by gas chromatography. Salicylic acid increased continously from the second day after virus inoculation to the fifth day, when the same leaf was inoculated withSphaerotheca fuliginea. In healthy plants, the efficiency of exogenous salicylic acid in inducing resistance was assayed by applying aqueous solutions at different times beforeSphaerotheca fuliginea inoculation. To evaluate the level of induced resistance, the following parameters were examined by light microscopy: percentage of conidial germination, length of the hyphae derived from single conidia, number of haustoria, percentage of epidermal cells with lignified walls and of necrotic cells underlying fungal hyphae. In treated plants conidial germination was reduced, the total length of the hyphae was shorter, the number of haustoria was lower and the haustorium-containing epidermal cells had more frequently lignified walls. Moreover, an evident increase in callose deposition was observed leading to the formation of oversized papillae around the penetration pegs. These results indicate that the application of salicylic acid before inoculation withSphaerotheca fuliginea reduces the intensity of the infectious process and that salicylic acid is involved in the expression of systemic resistance in cucumber challenged by the biotrophic pathogenSphaerotheca fuliginea.  相似文献   

18.
Two new pathogens of pyrethrum, described as Paraphoma chlamydocopiosa and Paraphoma pye, isolated from necrotic leaf lesions on pyrethrum plants in northern Tasmania, Australia, were identified using morphological characters, phylogenetic analysis of the internal transcribed spacer (ITS), elongation factor 1‐α (EF1‐α) and β‐tubulin (TUB) genes, and pathogenicity bioassays. Bootstrap support in the combined and individual gene region phylogenetic trees supported the two species that were significantly different from the closely related P. chrysanthemicola and P. vinacea. Morphological characteristics also supported the two new species, with conidia of P. chlamydocopiosa being considerably longer and wider than either P. chrysanthemicola or P. vinacea, and P. pye being distinct in forming bilocular pycnidia. Glasshouse pathogenicity tests based on root dip inoculation resulted in P. chlamydocopiosa and P. pye infecting the crown and upper root tissues of pyrethrum plants, and significant reduction in biomass 2 months after inoculation. Both of these Paraphoma species caused leaf lesions during in vitro and in vivo bioassays 2 weeks after foliar spray inoculation. Although P. chlamydocopiosa and P. pye were shown to be crown rot pathogens, they were also commonly isolated from leaves of diseased plants in pyrethrum fields of northern Tasmania.  相似文献   

19.
The present study investigated resistance against Botrytis cinerea after heat shock treatment in melon plants. Heat shock at 50 °C for 20 s 0–24 h before inoculation resulted in maximal B. cinerea symptom reduction and peroxidase gene expression, which peaked 12 and 72 h post-treatment and decreased 24–48 h post-treatment, suggesting pathogenesis-related protein expression priming. Hot water dipping did not directly inhibit mycelia growth. Plants treated with 2-benzisothiazol-3(2H)-one 1,1-dioxide, which induces systemic acquired resistance, demonstrated higher peroxidase gene expression but no B. cinerea resistance, indicating possible involvement of additional novel mechanisms in heat shock-activated resistance of melon against B. cinerea.  相似文献   

20.
The effect of the amendment of nutrient solutions with soluble potassium silicate on the response of cucumber (cv. Corona) root and hypocotyl tissues infected by Pythium ultimum was examined by light and electron microscopy, and by energy dispersive X-ray analysis (EDX). Plants were grown in 0 or 1·7 m Si-amended nutrient solutions, and root and hypocotyl samples were collected at different times after inoculation with P. ultimum. By 48 h after infection, striking differences in the expression of defence reactions were observed between Si-amended and Si-free cucumber plants. Treatment of plants with Si markedly stimulated the accumulation of an electron-dense, phenolic-like material in infected host tissues, and significantly increased the percentage of cells filled with this material. Fungal hyphae colonizing occluded host cells were seriously damaged, and were often reduced to empty hyphal shells. Additionally, Si-treated cucumber plants responded to P. ultimum infection by forming electron-dense layers along primary and secondary cell walls, as well as over pit membranes of xylem vessels. EDX analysis failed to reveal the presence of silica deposits in P. ultimum-infected plants grown in Si-supplemented media. Our results suggest that a relationship exists between Si treatment, resistance to P. ultimum attack, and expression of plant defence mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号