首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The protective activity of a crude extract prepared from the green macroalga, Ulva armoricana, previously shown to induce plant defence responses, was evaluated on three plant species, common bean, grapevine and cucumber, cultivated in the greenhouse and inoculated with three powdery mildew pathogens Erysiphe polygoni, E. necator and Sphareotheca fuliginea respectively. Chemical analyses showed that the extract was enriched in ulvans, which are green algae polysaccharides essentially composed of uronic acid and sulphated rhamnose. Weekly applications were performed by spraying of the green algal extract at various dilutions on bean, grapevine and cucumber leaves. A significant effect (50% protection) was observed using a dilution corresponding to about 3 g l−1 dry matter and up to 90% reduction of symptom severity was obtained for the highest concentration (1/9 dilution, 6 g l−1 dry matter) for the three plant species. To study the natural variability of the protective activity, five extracts prepared from algae batches harvested at different year periods were evaluated. Although polysaccharide composition varied among batches, all extracts elicit a reporter gene regulated by a defence-gene promoter in a transgenic tobacco line, and protect cucumber plants against powdery mildew infection. Together, these data demonstrate that U. armoricana is a reproducible source of active compounds which can be used to efficiently protect crop plants against powdery mildew diseases.  相似文献   

2.
D-pinitol is an effective agent for controlling powdery mildew (Podosphaera xanthii) in cucumber. In this study, we determined the mechanisms of D-pinitol in controlling powdery mildew in cucumber plants. We compared P. xanthii development on cucumber leaf surface treated with D-pinitol or water (2 mg ml−1) at different time points after inoculation. The germinating conidia, hyphae, and conidiophores of the pathogen were severely damaged by D-pinitol at any time of application tested. The highest level of suppression of fungal development was obtained at 3 days after inoculation. The contents of chlorophyll, total phenolics, flavonoid, and gallic acid and its derivatives (GAD); the activities of phenylalanine ammonialyase (PAL), polyphenoloxidase (PPO), peroxidase (POX), and superoxide dismutase (SOD); and the expression of the genes encoding for PR-1, peroxidase (POX), lipoxygenase (LOX1), chitinase (Chit1) were higher in the cucumber leaves treated with D-pinitol and inoculated than in the leaves either treated with D-pinitol or inoculated with the pathogen. These results suggest that D-pinitol triggers several plant defense responses in cucumber leading to pathogen suppression and resistance to powdery mildew.  相似文献   

3.
4.
Downy mildew of lettuce, caused by Bremia lactucae, is difficult to control in soilless systems by using conventional methods of disease management because few chemicals are registered, while resistant cultivars face the problem of resistance break down; therefore other methods for disease control need to be investigated. The effect of silicon salt as well as increased electrical conductivities against downy mildew was evaluated in four experiments carried out in hydroponically systems, using the cultivar of lettuce “Cobham Green”, known for its susceptibility to the pathogen. Silicon, as potassium silicate, was added at 100 mg l−1 of nutrient solution at three levels of electrical conductivity: 1.5–1.6 mS cm−1 (EC1), 3.0–3.5 mScm−1 (EC2, 0.70 g l−1 NaCl) and 4.0–4.5 mS cm−1 (EC3, 0.95 g l−1 NaCl) respectively. Lettuce plants, grown for 14–20 (trials 1 and 2) and 36–45 (trials 3 and 4) days in the different nutrient solutions tested, were inoculated with B. lactucae conidia with a maximum of two inoculations before final disease assessment carried out 14–21 days after the inoculation able to give symptoms. EC and potassium silicate significantly influenced downy mildew incidence and severity, while their interaction was not a significant factor. The addition to the standard nutrient solution (EC1) of potassium silicate resulted in a significant reduction of downy mildew severity in trials 1 and 2 where plants were artificially inoculated 15 and 20 days after transplanting. This efficacy was slight on plants grown for 36 and 45 days before inoculation in a soil drenched with EC1 amended with potassium silicate. EC2 gave a significantly similar downy mildew reduction than EC2 added with potassium silicate in trial 3. Plants grown for 36 and 45 days at the highest electrical conductivity (EC3) showed a significant reduction in severity of downy mildew compared with that observed at EC2 level. The best results, in terms of disease control, were given by the addition of potassium silicate to the EC3 solution. This combination also led to a significantly increased plant biomass. The possibility and benefits of applying potassium silicate and increased EC amendments in practice is discussed.  相似文献   

5.
Asian soybean rust (ASR), caused by the fungus Phakopsora pachyrhizi, causes significant yield losses worldwide. Nickel (Ni) plays a key role in the metabolism of some profitable crops, such as soybeans, because it is a constituent of several biomolecules and is required for the catalytic process of several enzymes. This study investigated the effect of foliar Ni treatment on the potentiation of soybean cultivar TMG 135 resistance to P. pachyrhizi infection at the microscopic, biochemical, and molecular levels. The severity of ASR decreased by 35% in plants treated with Ni. The malondialdehyde concentration, an indicator of cellular oxidative damage, was high in the leaves of plants that were not treated with Ni and was linked to ASR severity and the extensive colonization of the palisade and spongy parenchyma cells by fungal hyphae. The lignin concentration, β-1,3-glucanase activity, and expression of the URE gene and the defence-related genes PAL1.1, PAL2.1, CHI1B1, and PR-1A were up-regulated in Ni-treated plants infected with P. pachyrhizi. The information provided by this study shows the great potential of Ni to increase the basal level of soybean resistance to ASR and to complement other control methods within the context of sustainable agriculture.  相似文献   

6.

Research has shown the occurrence of the hormesis effect in some upland rice cultures resulting from low-dose application of glyphosate. Glyphosate herbicide is widely used in Brazilian agriculture for controlling the large quantity of weeds. The aim of this work was to verify the effects of low-dose application of glyphosate herbicide on agronomic characteristics in upland rice. The experimental design used was randomized blocks comprising five low-dose applications of glyphosate herbicide (10, 20, 40, 70, and 100?g acid equivalent [a.e.] ha?1) and the control, in two stages of development of the rice culture (tillering [V4] and floral differentiation [R1]) with four repetitions. The agronomic traits of upland rice were evaluated. Data were subjected to variance analysis, polynomial regression analysis for the quantitative factor, and Tukey’s test for the qualitative factor at p?<?0.05. The grain yield and the number of spikelets per panicle increased with the application of 10?g a.e. ha?1 of glyphosate at the floral differentiation stage. Until the low dose of 75?g a.e. ha?1, there was an increase in the number of panicles. Low doses between 70 and 100?g a.e. ha?1 applied in R1 provided less spikelets per panicle, lower 100-grain weight, and lower grain yield. The leaf flavonoid content increased due to the increase in the low doses of glyphosate herbicide.

  相似文献   

7.
A spray inoculation of the first leaf of 2-leaf stage cucumber plants with a non-pathogenic isolate of Alternaria cucumarina or Cladosporium fulvum before a challenge inoculation with the pathogen Sphaerotheca fuliginea induced systemic resistance to powdery mildew on leaves 2–5. Systemic resistance was expressed by a significant (p < 0.05) reduction in the number of powdery mildew colonies produced on each leaf of the induced plants, as compared with water-sprayed plants. Systemic resistance was evident when a prior inoculation with each of the inducing fungi was administered 1, 3 or 6 days before the challenge inoculation with S. fuliginea. Increasing the inoculum concentration of A. cucumarina or C. fulvum enhanced the systemic protection and provided up to 71.6% or 80.0% reduction, respectively, in the number of colonies produced on upper leaves, relative to controls. Increasing the inoculum concentration of S. fuliginea used for challenge inoculation, increased the number of powdery mildew colonies produced on both induced and non-induced plants. Pre-treated plants, however, were still better protected than controls, indicating that the level of systemic protection was related to the S. fuliginea inoculum concentration. The induction of systemic resistance against powdery mildew by biotic agents, facilitates the development of a wide range of disease management tools.  相似文献   

8.
Portulaca oleracea (common purslane) is a summer annual weed with wide geographic distribution and is problematic in many crops worldwide. Field experiments were conducted to determine the effects of different management practices on P. oleracea emergence in soyabean fields. Two tillage systems [conventional tillage (CT) and no‐till (NT)], three soyabean seeding rates (SR) (200 000, 300 000 and 400 000 seeds ha?1) and three imazethapyr doses (0, 50, and 100 g a.i. ha?1 applied pre‐emergence) were considered as experimental factors. Portulaca oleracea emergence was affected by management practices including tillage system, soyabean SR and imazethapyr dose. Conventional tillage required a thermal time (TT) of 195.95 and 221.30 d °C to reach 50% emergence in 2016 and 2017, respectively, while for NT, the respective TT requirements were 182.34 and 203.32 d °C. On increasing soyabean SR from 200 000 to 400 000 seeds ha?1, the TT requirements for 50% emergence (T50) of P. oleracea also increased. The T50 at the herbicide dose of 100 g a.i. ha?1 was 193.05 and 220.67 d °C in 2016 and 2017, respectively, while for the non‐herbicide treatment, the respective TT requirements were 165.98 and 202.94 d °C. From an integrated weed management perspective, a combination of CT with a SR of 400 000 seeds ha?1 and a 100 g a.i. ha?1 imazethapyr dose not only resulted in the lowest P. oleracea seedling density m?2 but also caused the longest delay in the time to reach the T50. Findings from our study may facilitate the development of effective P. oleracea management strategies.  相似文献   

9.

Salinity is a crucial problem which has affected crop productivity globally. Ascorbic acid is considered helpful against abiotic stresses due to its powerful antioxidant potential. In the pot experiment, salinity stress (0, 35, 70, and 105?mM) was applied to sweet peppers in split doses after 20 days of transplantation. To mitigate the adverse effects of salinity, ascorbic acid (0, 0.40, 0.80, and 1.20?mM) was applied as foliar spray after a 6-day interval during vegetative growth. Sweet pepper plants sprayed with distilled water (control) recorded maximum plant height (cm), leaf area (cm2), number of branches, stem diameter (mm), number of fruit plant?1, fruit diameter (cm), yield plant?1 (g), and chlorophyll content (mg 100?g?1), while the maximum polyphenol oxidase (PPO) activity (unit mg protein?1 min?1) and ascorbate peroxidase (APX) activity (unit mg protein?1 min?1) were recorded in plants treated with 70?mM NaCl application. Salinity stress beyond 70?mM significantly reduced all the studied parameters. An ascorbic acid concentration of 1.20?mM significantly mitigated the negative effects of salt stress and recorded maximum plant height (cm), number of leaves plant?1, leaf area (cm2), number of branches plant?1, stem diameter (mm), number of fruit plant?1, fruit diameter (cm), yield plant?1 (g), chlorophyll content (mg 100?g?1), PPO activity (unit mg protein?1 min?1), and APX activity (unit mg protein?1 min?1). Hence, a 1.20?mM concentration of foliar ascorbic acid could be used in saline conditions up to 70?mM of sodium chloride (NaCl) for better growth, productivity, and enzymatic activity of sweet peppers.

  相似文献   

10.
Cashew powdery mildew is presently the most important disease of cashew trees in all Brazilian growing regions. Although it was described over a century ago, it had never threatened the Brazilian cashew industry until the first decade of the 21st century. Morphological and pathogenic evidence indicated the possibility of different pathogen species being involved in early and late types of cashew powdery mildew. This study was designed to elucidate this issue by comparing two different powdery mildew fungi occurring on cashew plants in Brazil according to the morphological characteristics, phylogenetic relationships with closely related powdery mildew fungi and pathogenic relationships. Based on morphology, molecular phylogenetics and pathogenicity on cashew, it was shown that two species of powdery mildew specimens are without question associated with cashew trees. One species, which infects young immature tissues such as shiny leaves, flowers and young fruits, is Erysiphe quercicola, while Erysiphe necator is associated exclusively with mature leaves. This is the first report of both E. quercicola and E. necator causing cashew powdery mildew, and the first detection of E. necator on cashew.  相似文献   

11.
White mould (Sclerotinia sclerotiorum) is a destructive disease of soybean worldwide. However, little is known of its impact on soybean production in Brazil. A meta‐analytic approach was used to assess the relationship between disease incidence and soybean yield (35 trials) and between incidence and sclerotia production (29 trials) in experiments conducted in 14 locations across four seasons. Region, site elevation and season included as moderators in random‐effects and random‐coefficients models did not significantly explain the variability in the slopes of the incidence–yield relationship. The Pearson's r, obtained from back‐transforming the Fisher's Z estimated by an overall random‐effects model, showed that incidence of white mould was moderately and negatively correlated with yield (= ?0.76, < 0.0001). A random‐coefficients model estimated a slope of ?17.2 kg ha?1%?1, for a mean attainable yield of 3455 kg ha?1, indicating that a 10% increase in white mould incidence would result in a mean yield reduction of 172 kg ha?1. White mould incidence and production of sclerotia were strongly and positively correlated (= 0.85, < 0.0001). For every 10% increase in white mould incidence, 1 kg ha?1 of sclerotia was produced. The relationship between disease incidence and production of sclerotia was stronger in southern regions and at higher elevation. In the absence of management, economic losses associated with white mould epidemics, assuming 43% incidence in 22% of the soybean area, were estimated at approximately US $1.47 billion annually within Brazil.  相似文献   

12.
Powdery mildew (Erysiphe cruciferarum) is an important disease in oilseed rape crops worldwide, but of sporadic importance in most southern Australian crops. Six Brassica napus cultivars were exposed to E. cruciferarum simultaneously in four plant age cohorts. First symptoms of powdery mildew appeared 9 days after inoculation (dai) on the oldest plants [42 days after seeding (das)], but 44 dai in the youngest plants that were exposed to inoculum from sowing, although final disease severity did not differ with the plant age at exposure. The maximum level of pod peduncle infestation was unaffected by plant age (= 0.37) or cultivar (= 0.28). The effect of temperature was also investigated. The development of disease on plants was slower and final severity reduced at a day/night temperature 14/10 °C compared with 22/17 °C. In vitro, maximum growth of germ tubes from conidia of E. cruciferarum was at 15–20 °C and survival of conidia reduced by temperatures >30 °C. The results explain the sporadic nature of powdery mildew outbreaks in winter‐grown oilseed rape in Australia, where slow rates of infection occur when seasonal colder prevailing winter conditions coincide with the presence of younger plants, together curtailing rapid disease development until temperatures increase in late winter/early spring. These results explain why epidemics are most severe in the two warmer cropping regions, viz. the northern agricultural region of Western Australia and New South Wales. This study suggests that with increases in winter temperatures under future climate scenarios, earlier and more severe powdery mildew outbreaks in Australia will be favoured.  相似文献   

13.
Parathion (O,O-diethyl O-4-nitrophenyl phosphorothioate) and fenvalerate [(RS)-α-cyano-3-phenoxybenzyl (RS)-2-(4-chlorophenyl)-3-methylbutyrate] were applied by controlled droplet applicators (CDAs) and conventional hydraulic nozzles in refined soybean oil, soybean oil + water, or water, to mature cotton plants (Gossypium hirsutum L.) as ULV (ultra-low volume, < 5 litre ha?1), VLV(very low volume, 5-50 litre ha?1), or LV(low volume, 50–200 litre ha?1) carrier rates. The use of CDA or soybean oil applied as ULV and VLV sprays did not produce greater deposition or persistence for either insecticide during the 49-h test period following application. In general, insecticide persistence was greatest when applied with water or soybean oil + water as LV sprays using the conventional TX8 hydraulic nozzle.  相似文献   

14.
Grapevine leaves infected with powdery mildew are a source of inoculum for fruit infection. Leaves emerging on a single primary shoot of Vitis vinifera cv. Cabernet Sauvignon were exposed to average glasshouse temperatures of 18°C (0·23 leaves emerging/day) or 25°C (0·54 leaves emerging/day). All leaves on 8–10 shoots with approximately 20 leaves each were inoculated with Erysiphe necator conidia to assess disease severity after 14 days in the 25°C glasshouse. Two photosynthetic ‘source’ leaves per shoot on the remaining 8–10 shoots were treated with 14CO2 to identify, by autoradiography, the leaf position completing the carbohydrate sink‐to‐source transition. There was a clear association between the mean modal leaf position for maximum severity of powdery mildew (position 3·7 for 18°C; position 4·4 for 25°C) and the mean position of the leaf completing the sink‐to‐source transition (position 3·8 for 18°C; position 4·7 for 25°C). The mean modal leaf position for the maximum percentage of conidia germinating to form secondary hyphae was 4·2 for additional plants grown in the 25°C glasshouse. A higher rate of leaf emergence resulted in a greater proportion of diseased leaves per shoot. A Bayesian model, consisting of component models for disease severity and leaf ontogenic resistance, had parameters representing the rate and magnitude of pathogen colonization that differed for shoots developing in different preinoculation environments. The results support the hypothesis that the population of leaves in a vineyard capable of supporting substantial pathogen colonization will vary according to conditions for shoot development.  相似文献   

15.
A 2‐year comprehensive field survey was conducted across major tomato‐growing areas of Iran. Two hundred and thirty‐four tomato fields and six tomato‐producing greenhouses were surveyed for the potential presence of bacterial spot disease. Five hundred and ninety‐six tomato samples with and without symptoms were analysed. While Xanthomonas spp. were found in association with tomato plants both with and without symptoms from five surveyed counties, the bacterial spot disease was observed only in plants from three of them. Only strains isolated from plants with symptoms induced disease symptoms on tomato, while those isolated from symptomless plants caused symptoms only on cabbage and common bean. None of the isolates caused disease symptoms on pepper and eggplant. Phylogenetic analysis showed that X. perforans is the causal agent of tomato bacterial spot in Iran, although X. campestris and X. axonopodis were also associated with symptomless tomato plants. All X. perforans isolates in this study were sensitive to streptomycin, copper sulphate and copper oxychloride at concentrations of 50 mg L?1, 200 mg L?1 and 0.8 g L?1, respectively. Unlike the type strain of X. perforans, isolates in this study did not produce bacteriocin against other Xanthomonas spp., nor were they detected using the usual species‐specific primer pair Bs‐XpF/Bs‐XpR. This suggests an atypical nature of X. perforans strains in Iran, which leads to the hypothesis that X. perforans strains in Iran may have a separate origin to those causing disease epidemics elsewhere. The aggregated dispersal pattern of the diseased tomato fields signifies the seedborne introduction of the pathogen into the country.  相似文献   

16.
The application of silicon to the roots or leaves reduces the severity of powdery mildew (Podosphaera xanthii) in melon but the latter treatment is less effective. This study compared key biochemical defence responses of melon triggered by P. xanthii after root or foliar treatment with potassium silicate (PS). Treatments consisted of pathogen‐inoculated or mock‐inoculated plants supplied with PS via roots or foliarly, as well as a non‐treated control. The activity of defence enzymes and the concentration of phenolic compounds, lignin and malondialdehyde were determined from leaf samples at different time points after inoculation. Pathogen‐inoculated plants irrigated with PS showed both an accumulation of silicon and primed defence responses in leaves that were not observed in pathogen‐inoculated plants either sprayed with PS or not treated. These responses included the anticipated activity of peroxidase and accumulation of soluble phenols, the activation of chitinase and repression of catalase, and the stronger activation of superoxide dismutase, peroxidase and β‐1,3‐glucanase. Moreover, the lignin concentration increased in response to inoculation, whereas the malondialdehyde concentration decreased. For the foliar treatment, however, only an increase in lignin deposition was observed compared with the control plants. The results show that silicon strongly plays an active role in modulating the defence responses of melon against P. xanthii when supplied to the roots as opposed to the foliage.  相似文献   

17.
The effects of seven adjuvants (at 0, 0.5, 1.0 and 2.0 g litre?1) on the efficacies of four fungicides al 0.5 g litre?1 were studied in the laboratory for the control of leaf-spot in celery (caused by Septoria apiicola) and powdery mildew on winter wheat (caused by Erysiphe graminis). The most effective fungicides for controlling leaf-spot were: tebuconazole + triadimenol = flutriafol > mancozeb + oxadixyl > prochloraz. However, addition of adjuvant to the fungicides gave a modified pattern of effectiveness. The efficacy of flutriafol was strongly enhanced by addition of all adjuvants, but those of prochloraz and mancozeb+oxadixyl only partially so. The tested adjuvants were mineral oil + surfactant, a polymer/alkoxylated alkyl ether blend, an ethoxylated alkylphenol, an ethoxylated hexitan ester blend, an ethoxylated nonylphenol and an alkylpolysaccharide- based adjuvant mixture. However, the addition of adjuvants to tebuconazole + triadimenol had a negative effect. Of all the adjuvants tested, the nonylphenol ethoxylate and a mixture of mineral oil /surfactant and alkylpolysaccharides gave the highest efficacy with the fungicides, while the mineral oil/surfactant and the alkylpolysaccharides alone were less effective. There was a positive relationship between high concentrations of adjuvants and their effectiveness, but there were some exceptions. The most effective fungicides for control of powdery mildew in wheat were prochloraz, mancozeb + oxadixyl and tebuconazole + triadimenol. There was a linear relationship between the high efficacy of the fungicide and the concentration of adjuvants to control powdery mildew in wheat. The highest concentration of adjuvant (2-0 g litre?1) gave the highest efficacy for the fungicides.  相似文献   

18.
To establish control thresholds for chemical control of powdery mildew (Erysiphe cruciferarum) on Brussels sprouts, mildew intensity on leaves and buds was observed on the cultivars Lunet, Tardis and Asgard during three years in unsprayed plots. Mildew infection on the leaves was observed from late August onwards, increasing to moderate or high levels. In one year light infestation of the buds was observed, but no reduction in quality occurred. These preliminary results indicate, that from late August onwards the following levels of leaf injury by powdery mildew can be tolerated: T=5+0.42*(Julian date — 235), in which T is the tolerable leaf injury in percentage leaf area covered. When sampling the crop to assess powdery mildew infection, care must be taken that leaves are sampled from all stem positions, as top leaves tend to be much less infected.  相似文献   

19.
Aerated compost tea (ACT), prepared from immature compost, was applied to foliage and fruit of grapevines (Vitis vinifera) to assess its potential for suppressing two important diseases: botrytis bunch rot, caused by Botrytis cinerea, and powdery mildew, caused by Erysiphe necator. An ACT applied to leaves of Cabernet Sauvignon vines in pots 7 days before inoculation with E. necator conidia reduced mean powdery mildew severity on the three youngest expanded leaves (at inoculation) to less than 1 %; mean severity on non-treated, inoculated leaves was 15 %. Multiple applications of ACTs at two vineyards in different growing seasons suppressed powdery mildew to <1 % mean severity on Chardonnay leaves (non-treated 79 % severity) and bunches (non-treated 77 % severity), and on Riesling leaves (non-treated 24 % severity). The same treatments reduced the incidence of Chardonnay bunches with latent B. cinerea and Riesling bunches with sporulating B. cinerea, although the level of botrytis bunch rot in both experiments was not economically damaging. The numbers of culturable bacteria, fungi and yeasts on Chardonnay leaves were higher than pre-treatment levels 10 days after ACT application, as were fungal numbers on Riesling leaves 21 days after treatment. Suppression by ACTs of two fruit and foliar pathogens of grapevine with different biology and epidemiology indicated potential for their use as a tactic in integrated disease management. Further testing of ACTs in a range of viticultural environments and application regimes will contribute to a better understanding of the impact of this tactic on disease, grape and wine quality.  相似文献   

20.
The lack of robust estimates of soybean yield losses due to target spot led to this study. The objective was to determine whether soybean yield at stage R8 (W, expressed as kg ha−1) was related to target spot severity at soybean stage R5–R6 (S, expressed as %) and to identify variables that could affect this relationship. Plot-level estimates of mean disease severity and yield from 41 selected Uniform Fungicide Trials carried out in Brazil during 2012–2016 growing seasons were used to estimate linear regression coefficients for the relationship between yield and target spot severity through random-coefficient mixed effects model analysis. The overall estimated mean regression intercept and slope were  = 3564 kg ha−1 (disease-free yield) and  = −17.1 kg ha−1 %−1 (W decrease per percent increase in S), respectively. The model was then refitted with different covariates to determine their effects on model parameters. β0 was influenced by baseline yield (less than or greater than 3300 kg ha−1) and β1 was affected by yield response to fungicide treatments. Estimated yield loss at 50% target spot severity ranged from 8% to 42%. Cultivar also had a significant effect on the magnitude of yield reduction due to target spot, which ranged from 11% to 42%, depending on the cultivar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号