首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 763 毫秒
1.
This study investigates the infection process of Phoma koolunga on field pea (Pisum sativum) stems and leaves using different susceptible and resistant pea genotypes for each tissue, viz. 05P778‐BSR‐701 (resistant) and 06P830‐(F5)‐BSR‐5 (susceptible) for stems and ATC 866 (resistant) and ATC 5347 (susceptible) for leaves. On both resistant and susceptible genotypes, light and scanning electron microscopy showed P. koolunga conidia infect stem and leaf tissues directly via appressoria or stomatal penetration, but with more infections involving formation of appressoria on stems than on leaves. On leaves of the resistant genotype, at 72 h post‐inoculation, P. koolunga penetrated more frequently via stomata (5.2 conidia per 36 893 μm2) than by formation of appressoria (1.8 conidia); yet no such difference was observed on stems of the resistant genotype. In contrast, at the same time point, the number of conidia infecting the susceptible genotype by formation of appressoria on either stems (135 conidia) or leaves (11.3 conidia) was significantly greater than via stomata (8 and 7.3 conidia, stems and leaves, respectively). Mean germ tube length of germinating P. koolunga conidia on both stems (29.8 μm) and leaves (32.9 μm) of the resistant genotype was less than on the susceptible genotype (40.5 and 63.7 μm, stem and leaves, respectively). In addition, there were differences in the number of germ tubes emerging from conidia on resistant and susceptible genotypes. These are the first insights into the nature of leaf and stem resistance mechanisms operating in field pea against P. koolunga.  相似文献   

2.
3.
Phytophthora root rot (PRR) of avocado, caused by Phytophthora cinnamomi, is a significant threat to sustainable production wherever the crop is grown. Resistant rootstocks in combination with phosphite applications are the most effective options for managing this disease. Recently, the mechanisms underpinning PRR resistance have been investigated by the avocado community. Here, biochemical assays and confocal and scanning electron microscopy were used to investigate early defence responses in PRR resistant and ‐susceptible avocado rootstocks. Zoospore germination and subsequent hyphal growth for the pathogen were significantly inhibited on the surface of resistant avocado roots. When penetration occurred in the resistant R0.06 rootstock, callose was deposited in the epidermal cells, parenchyma and cortex of roots. In addition, β‐1,3‐glucanase was released early (6 h post‐inoculation, hpi) in response to the pathogen, followed by a significant increase in catalase by 24 hpi. In contrast, susceptible R0.12 roots responded only with the deposition of lignin and phenolic compounds incapable of impeding pathogen colonization. In this study, PRR resistance was attributed to a timely multilayered response to infection by P. cinnamomi.  相似文献   

4.
Phoma koolunga is a recently recognized pathogen in the ascochyta blight complex of field pea (Pisum sativum). Unlike the other three ascochyta blight pathogens, survival of P. koolunga is poorly understood. Survival of this fungus was examined on field pea stubble and as pseudosclerotia on the surface of, and buried in, field soil. Pseudosclerotia were formed in plates containing potato dextrose agar (PDA) mixed with sand or amended with fluorocytocin. After 1 month, P. koolunga was recovered on amended PDA from 93% of stubble sections retrieved from the soil surface, 36% of buried stubble sections and 100% of pseudosclerotia buried in field soil, pasteurized or not. The frequency of recovery of P. koolunga decreased over time and the fungus was not recovered from stubble on the soil surface at 15 months, nor was it recovered from stubble buried in soil at 11 months or later, or from pseudosclerotia buried for 18 months. In a pot bioassay, most ascochyta blight lesions developed on plants inoculated with stubble retrieved from the soil surface after 1 month. Infectivity of the inoculum decreased over time. Disease on plants inoculated with stubble that had been buried or left on the soil surface for up to 6 and 5 months, respectively, and pseudosclerotia retrieved at 14 months and later from field soil did not differ from the non‐inoculated control. These results suggest that field pea stubble may play a role in survival of P. koolunga, especially if it remains on the soil surface. In addition, pseudosclerotia were able to persist in soil and infect field pea plants into the next season.  相似文献   

5.
6.
Studies were undertaken to compare susceptible and resistant host responses to Pseudocercosporella capsellae in cotyledons of Brassica carinata, B. juncea and B. napus in order to define the mechanisms of resistance in these three species. On both resistant and susceptible hosts, hyphal penetration was always through stomatal openings and without infection pegs or appressoria. On resistant B. carinata ATC94129P, up to 72% of spores disintegrated and, generally, germination (<22%) and germ tube lengths (<25 μm) were comparatively low. Resistant B. napus Hyola 42 had the lowest germination (8%) and susceptible B. carinata UWA#012 had the highest (51%). On resistant B. carinata ATC94129P, germ tube extension was impeded across 24–60 h post‐inoculation (hpi) and percentage stomatal penetration lower (4%) at 60 hpi compared with susceptible B. carinata UWA#012 (26%). Stomatal densities (stomata/14 757 μm2) on resistant B. juncea Dune (2·12) and B. napus Hyola 42 (1·62) were lower than for susceptible B. juncea Vardan (2·40) and B. napus Trilogy (2·03). Resistant B. carinata ATC94129P had greater stomatal density (1·89) than susceptible B. carinata UWA#012 (1·58). Overall, B. juncea had greater stomatal density (2·26) compared with B. napus (1·83) and B. carinata (1·74). In resistant B. carinata ATC94129P, P. capsellae induced 28% stomata to close, while in susceptible B. carinata UWA#012 no such closure was induced. Epicuticular wax crystalloids were present only on resistant B. carinata ATC94129P and probably also contribute towards resistance.  相似文献   

7.
The phenotype of the R gene‐mediated resistance derived from oilseed rape (Brassica napus) cv. Imola against the light leaf spot plant pathogen, Pyrenopeziza brassicae, was characterized. Using a doubled haploid B. napus mapping population that segregated for resistance against P. brassicae, development of visual symptoms was characterized and symptomless growth was followed using quantitative PCR and scanning electron microscopy on leaves of resistant/susceptible lines inoculated with suspensions of P. brassicae conidia. Initially, in controlled‐environment experiments, growth of P. brassicae was unaffected; then from 8 days post‐inoculation (dpi) some epidermal cells collapsed (‘black flecking’) in green living tissue of cv. Imola and from 13 to 36 dpi there was no increase in the amount of P. brassicae DNA and no asexual sporulation (acervuli/pustules). By contrast, during this period there was a 300‐fold increase in P. brassicae DNA and extensive asexual sporulation in leaves of the susceptible cv. Apex. However, when leaf tissue senesced, the amount of P. brassicae DNA increased rapidly in the resistant but not in the susceptible cultivar and sexual sporulation (apothecia) was abundant on senescent tissues of both. These results were consistent with observations from both controlled condition and field experiments with lines from the mapping population that segregated for this resistance. Analysis of results of both controlled‐environment and field experiments suggested that the resistance was mediated by a single R gene located on chromosome A1.  相似文献   

8.
9.
A total of 242 Pisum accessions were screened for resistance to Pseudomonas syringae pv. pisi under controlled conditions. Resistance was found to all races, including race 6 and the recently described race 8. Fifty‐eight accessions were further tested for resistance to P. syringae pv. syringae under controlled conditions, with some highly resistant accessions identified. Finally, a set of 41 accessions were evaluated for resistance to P. syringae pv. pisi and pv. syringae under spring‐ and winter‐sowing field conditions. R2, R3 and R4 race‐specific resistance genes to P. syringae pv. pisi protected pea plants in the field. Resistance sources to race 6 identified under controlled conditions were ineffective in the field. Frost effects were also evaluated in relation to disease response. Results strongly suggest that frost tolerance is effective in lowering the disease effects caused by P. syringae pv. pisi and pv. syringae under frost‐stress conditions, even in the absence of disease resistance genes, although the highest degree of this protection is reached when frost tolerance and disease‐resistance genes are combined in the same genetic background.  相似文献   

10.
G Li  S G Wu  R X Yu  T Cang  L P Chen  X P Zhao  L M Cai  C X Wu 《Weed Research》2013,53(5):314-321
Plant glutathione S‐transferase (GST) forms a major part of the herbicide detoxification enzyme network in plants. A GST cDNA was isolated from Echinochloa crus‐galli and characterised. The gene, designated EcGST1 (E. crus‐galli GeneBank no: JX518596 ), has a 684 bp open reading frame predicted to encode a 25 kD protein. Sequence alignment showed that EcGST1 is a GST homologue. Its expression in response to quinclorac treatment was monitored in seedlings (leaves and roots) and adult plants (leaves, roots, stems and seeds) of quinclorac‐resistant (R) and susceptible (S) biotypes of E. crus‐galli. EcGST1 expression was 1.5–3 times greater in the R plants than in the S plants. However, after exposure to quinclorac, the difference in the expression levels of EcGST1 in R plants, compared with S plants, increased to a ratio of 6–10. Enhanced EcGST1 levels should enable greater quinclorac detoxification following quinclorac stimulation in R plants. GST‐based metabolism may be partially responsible for resistance to quinclorac in E. crus‐galli. The results suggest a new resistance mechanism for this R biotype in Chinese rice fields.  相似文献   

11.
Plasmodiophora brassicae, causal agent of clubroot of crucifers, poses a serious threat to Canadian canola production. The effects of fallow (F) periods and bait crops (clubroot‐susceptible canola (B) and perennial ryegrass (R)) on clubroot severity and P. brassicae resting spore populations were evaluated in five sequences: R–B, B–R, R–F, B–F and F–F. Both host and non‐host bait crops reduced clubroot severity in a subsequent crop of a susceptible canola cultivar compared with fallow. Resting spore and P. brassicae DNA concentrations decreased in all treatments, but were lowest for the R–B and B–R bait crop sequences. In addition, two studies were conducted in mini‐plots under field conditions to assess the effect of rotation of susceptible or resistant canola cultivars on clubroot severity and P. brassicae resting spore populations. One study included three crops of susceptible canola compared with a 2‐year break of oat–pea, barley–pea, wheat–wheat or fallow–fallow. The other study assessed three crops of resistant canola, two crops of resistant canola with a 1‐year break, one crop of resistant canola and a 2‐year break, and a 3‐year break with barley followed by a susceptible canola. The rotations that included non‐host crops of barley, pea or oat reduced clubroot severity and resting spore concentrations, and increased yield, compared with continuous cropping of either resistant or susceptible canola. Growing of a susceptible canola cultivar contributed 23–250‐fold greater gall mass compared with resistant cultivars.  相似文献   

12.
White leaf spot disease (Pseudocercosporella capsellae) is widespread across oilseed, vegetable and forage brassicas. Light (LM) and scanning electron (SEM) microscope studies were undertaken to investigate host–pathogen interactions on cotyledons of resistant and susceptible Brassica carinata, B. juncea and B. napus. Under LM, unique brown structures were present, particularly on susceptible genotypes, in two morphologically distinct forms: first, as thread‐like structures within cortical tissue by 24 h post‐inoculation (hpi) and secondly, as brown ropy strand structures either within cortical tissues (internal ropy strands), or extruded out through stomatal pores (ropy strand extrusions). Under LM, these brown structures were most prevalent in highly susceptible B. juncea ‘Vardan’ that had both a high incidence within cortical tissue (70%) and of ropy strand extrusions (73%), as did susceptible B. napus ‘Trilogy’ within cortical tissue (60%). Under SEM, both these genotypes showed thread‐like structures smaller than hyphae forming highly branched networks and ropy strand‐like structures. While there were fewer brown structures in susceptible B. carinata UWA #012 (35%), fine, thread‐like structures forming networks were again prominent (SEM). In contrast, for resistant genotypes, brown structures (LM) were of very low frequency or absent; only 5% in resistant B. juncea ‘Dune’ and none in resistant B. napus ‘Hyola 42’ or highly resistant B. carinata ATC94129P. Under SEM, fine, thread‐like structures were present in the resistant B. juncea ‘Dune’ and B. napus ‘Hyola 42’. Liquid chromatographic analyses of brown structures revealed that both internal ropy strands within cortical tissues and ropy strand extrusions contained the mycotoxin cercosporin.  相似文献   

13.
Each living cell of a plant produces photons in certain conditions. Under normal physiological conditions, cell photon emission is stationary and minimal. Disturbance in the oxidative homeostasis by biotic stress is manifested by increased ‘biophoton’ production. Such biophoton responses of plants may be used as an integral indicator of the degree of oxidative homeostasis misbalance. Our results demonstrate that biophoton generation has been much higher in a resistant potato variety than in a susceptible one till 10 h after Phytophthora infestans inoculation. In contrast, ultra-weak luminescence from detached susceptible potato and moderately resistant pelargonium leaves increased from 1–4 to 4–5 days after inoculation with Phytophthora infestans or Botrytis cinerea, respectively. Pre-treatment of susceptible potato leaves with a defence inducer, arachidonic acid, resulted in a transient burst of light in response to P. infestans lasting for 30–45 h post inoculation (hpi). This study presents the potential adaptation of functional imaging of ultra-weak luminescence to monitor time-dependent free radical processes during disease development and its application to draw conclusions on plant resistance to pathogens of different lifestyle. Moreover, it has been shown that imaging of temporal biophoton generation from potato leaves treated with arachidonic acid might be a helpful marker in mapping oxidative changes leading to systemic acquired resistance (SAR).  相似文献   

14.
Levels of resistance to Plasmopara viticola, from susceptible to highly resistant, of different grapevine cultivars were observed in vineyards and confirmed by the symptoms developed after inoculations. On the abaxial surface of infected leaves, P. viticola developed abundant sporangiophores on susceptible cultivars (Chasselas, Gamay, Gamaret and Pinot Noir), whereas on less susceptible cultivars (Seyval Blanc and Johanniter) the parasite produced few sporangiophores and some necrotic spots at the site of infection. On resistant cultivars (Bronner, Solaris, IRAC 2091), P. viticola induced a hypersensitive response and only necrotic spots were visible and the disease ceased to develop. Stilbenes were analyzed 4, 7, 24, 48 h post-infection (hpi) on small leaf samples cut from the site of infection. Large differences were observed between the cultivars at 24 and 48 hpi. Susceptible grapevines produced resveratrol and its glycoside, piceide. In contrast, resistant plants produced high concentration of ε- and δ-viniferin. Resveratrol and piceide have little or no toxicity activity against P. viticola, whereas δ-viniferin is highly toxic and can be considered an important marker for resistance of grapevine to downy mildew. The importance of oxidative dimerization of resveratrol in comparison to the extent of its glycosylation in defense reaction of grapevines against P. viticola is discussed.  相似文献   

15.
Cherry leaf spot (CLS), caused by Blumeriella jaapii, is a serious fungal disease of sour cherry (Prunus cerasus). Cultivar Montmorency, the major cultivar grown in the United States, is highly susceptible to CLS. As many as 10 fungicide sprays can be required each growing season to combat this disease; therefore, developing CLS‐resistant cultivars is a top breeding priority. Germplasm previously reported to be resistant or tolerant to CLS was acquired and incorporated into the sour cherry breeding programme at Michigan State University (MSU) and included three cherry species: sour cherry, sweet cherry (P. avium), and the wild species P. canescens. This study aimed to: (i) compare the CLS disease progression profile of the susceptible cultivar Montmorency with those of the resistant and tolerant germplasm; and (ii) gain an understanding of the inheritance of these resistance and tolerance traits by evaluating the host response of progeny individuals belonging to families derived from this germplasm. Significant differences were observed between the susceptible Montmorency and the tolerant and resistant accessions in their response to CLS and its progression during the growing season. Evaluation of the CLS host responses of progeny individuals derived from this germplasm supported a dominant two‐gene model for P. canescens‐derived resistance and a recessive gene model for sweet cherryderived tolerance. These insights into disease progression and trait inheritance improve the efficiency and potential success of breeding sour cherry cultivars with durable resistance to CLS.  相似文献   

16.
Plants express different defence mechanisms in response to pathogens. Understanding the recognition of pathogen‐associated molecular patterns (PAMPs) by specific receptors, and the role of endogenous signals such as AtPep1 that regulate expression of genes in Arabidopsis thaliana, has aided the understanding of the defence mechanisms in different species. The aim of this study was to identify possible orthologous sequences of AtPROPEPs in tomato (Solanum lycopersicum) and characterize its role in resistance to necrotrophic pathogens. The presence of an orthologue of the A. thaliana AtPROPEP1 gene in S. lycopersicum, SlPROPEP, by in silico analysis, is reported here. This has 96% identity with the C‐terminal region of a previously described potato peptide, another possible orthologue of AtPep1. A virus‐induced gene silencing (VIGS) system was employed to investigate the role of the SlPROPEP. Silencing of SlPROPEP in tomato made plants more susceptible to Pythium dissotocum; approximately 30% of SlPROPEP‐silenced plants showed stem constriction compared with 4% in control plants. Furthermore, quantification of P. dissotocum by qPCR revealed that the increase in symptom severity in SlPROPEP‐silenced plants was associated with a 15 times increase in growth of the pathogen compared to control plants. Silencing of SlPROPEP also resulted in decreased expression of genes involved in plant defence against pathogens, such as PR‐1, PR‐5, ERF1, LOX‐D and DEF2. These results suggest that SlPROPEP is involved in tomato resistance to P. dissotocum and probably acts as a pathogen‐associated molecular pattern through signalling pathways mediated by jasmonic acid/ethylene (JA/ET).  相似文献   

17.
18.
In this study, an isolate of Magnaporthe oryzae expressing the green fluorescent protein gene (gfp) was used to monitor early events in the interaction of M. oryzae with resistant rice cultivars harbouring a blast resistance (R) gene. In the resistant cultivars Saber and TeQing (Pib gene), M. oryzae spores germinated normally on the leaf surface but produced morphologically abnormal germ tubes. Germling growth and development were markedly and adversely affected in leaves of these resistant cultivars. Penetration of host cells was never seen, supporting the idea that disruption of germling development on the leaf surface might be one of the resistance mechanisms associated with Pib function. Thus, this particular R gene appeared to function in the absence of host penetration by the fungal pathogen. Confocal laser scanning microscopy of Moryzae‐infected susceptible rice cultivars showed the dimorphic growth pattern that is typically observed during the biotrophic and necrotrophic stages of leaf colonization in susceptible cultivars. The suitability of the gfp‐expressing M. oryzae isolate for further research on R‐gene function and identification of resistant genotypes in rice germplasm collections is discussed.  相似文献   

19.
Ralstonia solanacearum causes bacterial wilt disease in Solanaceae spp. Expression of the Phytophthora inhibitor protease 1 (PIP1) gene, which encodes a papain‐like extracellular cysteine protease, is induced in R. solanacearum‐inoculated stem tissues of quantitatively resistant tomato cultivar LS‐89, but not in susceptible cultivar Ponderosa. Phytophthora inhibitor protease 1 is closely related to Rcr3, which is required for the Cf‐2‐mediated hypersensitive response (HR) to the leaf mould fungus Cladosporium fulvum and manifestation of HR cell death. However, up‐regulation of PIP1 in R. solanacearum‐inoculated LS‐89 stems was not accompanied by visible HR cell death. Nevertheless, upon electron microscopic examination of inoculated stem tissues of resistant cultivar LS‐89, several aggregated materials associated with HR cell death were observed in xylem parenchyma and pith cells surrounding xylem vessels. In addition, the accumulation of electron‐dense substances was observed within the xylem vessel lumen of inoculated stems. Moreover, when the leaves of LS‐89 or Ponderosa were infiltrated with 106 cells mL?1 R. solanacearum, cell death appeared in LS‐89 at 18 and 24 h after infiltration. The proliferation of bacteria in the infiltrated leaf tissues of LS‐89 was suppressed to approximately 10–30% of that in Ponderosa, and expression of the defence‐related gene PR‐2 and HR marker gene hsr203J was induced in the infiltrated tissues. These results indicated that the response of LS‐89 is a true HR, and induction of vascular HR in xylem parenchyma and pith cells surrounding xylem vessels seems to be associated with quantitative resistance of LS‐89 to R. solanacearum.  相似文献   

20.
Sclerotinia stem rot (SSR) of oilseed rape (OSR, Brassica napus), caused by Sclerotinia sclerotiorum, is a serious problem in the UK and worldwide. As fungicide‐based control approaches are not always reliable, identifying host resistance is a desirable and sustainable approach to disease management. This research initially examined the aggressiveness of 18 Sclerotinia isolates (17 S. sclerotiorum, one S. subarctica) on cultivated representatives of B. rapa, B. oleracea and B. napus using a young plant test. Significant differences were observed between isolates and susceptibility of the brassica crop types, with B. rapa being the most susceptible. Sclerotinia sclerotiorum isolates from crop hosts were more aggressive than those from wild buttercup (Ranunculus acris). Sclerotinia sclerotiorum isolates P7 (pea) and DG4 (buttercup), identified as ‘aggressive’ and ‘weakly aggressive’, respectively, were used to screen 96 B. napus lines for SSR resistance in a young plant test. A subset of 20 lines was further evaluated using the same test and also in a stem inoculation test on flowering plants. A high level of SSR resistance was observed for five lines and, although there was some variability between tests, one winter OSR (line 3, Czech Republic) and one rape kale (line 83, UK) demonstrated consistent resistance. Additionally, one swede (line 69, Norway) showed an outstanding level of resistance in the stem test. Resistant lines also had fewer sclerotia forming in stems. New pre‐breeding material for the production of SSR resistant OSR cultivars relevant to conditions in the UK and Europe has therefore been identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号