首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Zymoseptoria tritici is the causal agent of septoria tritici blotch (STB), a foliar wheat disease important worldwide. Succinate dehydrogenase inhibitors (SDHIs) have been used in cereals for effective control of STB for several years, but resistance towards SDHIs has been reported in several phytopathogenic fungi. Resistance mechanisms are target‐site mutations in the genes coding for subunits B, C and D of the succinate dehydrogenase (SDH) enzyme. Previous monitoring data in Europe indicated the presence of single isolates of Z. tritici with reduced SDHI sensitivity. These isolates carried mutations leading to amino acid exchanges: C‐T79N, C‐W80S in 2012; C‐N86S in 2013; B‐N225T and C‐T79N in 2014; and C‐V166M, B‐T268I, C‐N86S, C‐T79N and C‐H152R in 2015. The current study provides results from microtitre and greenhouse experiments to give an insight into the impact of different mutations in field isolates on various SDHIs. In microtitre tests, the highest EC50 values for all tested SDHIs were obtained with mutants carrying C‐H152R. Curative greenhouse tests with various SDHIs confirmed the findings of microtitre tests that isolates with C‐H152R are, in general, controlled with lower efficacy than isolates carrying B‐T268I, C‐T79N and C‐N86S. SDHI‐resistant isolates of Z. tritici found in the field were shown to have cross‐resistance towards all SDHIs tested. So far, SDHI‐resistant isolates of Z. tritici have been found in low frequencies in Europe. Therefore, FRAC recommendations for resistance management in cereals, including a limited number of applications, alternation and combination with other MOAs, should be followed to prolong SDHI field efficacy.  相似文献   

2.
3.
Globally, bread wheat production is threatened by fungal diseases, including the devastating disease Septoria tritici blotch (STB). Given the global importance of STB, and the difficulty in identifying novel sources of resistance to this disease, we screened a variety of wheat genotypes, including wild, ancestral, and mutagenized lines, for their STB response. This delineated a panel of wild wheat relatives and Watkins collection lines with exceptional resistance to a range of Zymoseptoria tritici isolates, some of which are highly virulent on modern, elite wheat varieties. Additionally, we characterized the STB susceptibility of 500 lines of the wheat cultivar Cadenza TILLING population and developed backcross derivatives of two TILLING lines that show dominant partial resistance to STB. These backcross lines are partially resistant to multiple isolates of Z. tritici, and, with the wild and ancestral lines identified, provide a useful reservoir of STB-resistant germplasm for use in wheat breeding programmes.  相似文献   

4.
Infection efficiency is a key epidemiological parameter that determines the proportion of pathogen spores able to infect and cause lesions once they have landed on a susceptible plant tissue. In this study, an improved method to measure infection efficiency of Zymoseptoria tritici using a replicated greenhouse experiment is presented. Zymoseptoria tritici is a fungal pathogen that infects wheat leaves and causes septoria tritici blotch (STB), a major disease of wheat worldwide. A novel experimental setup was devised, where living wheat leaves were attached to metal plates, allowing for time-resolved imaging of disease progress in planta. Because lesions were continuously appearing, expanding and merging during the period of up to 3 weeks, daily measurements were necessary for accurate counting of lesions. Reference membranes were also used to characterize the density and spatial distribution of spores inoculated onto leaf surfaces. In this way, the relationship between the number of lesions and the number of viable spores deposited on the leaves was captured and an infection efficiency of about 4% was estimated from the slope of this relationship. This study provides a proof of principle for accurate and reliable measurement of infection efficiency of Z. tritici. The method opens opportunities for determining the genetic basis of the component of quantitative resistance that suppresses infection efficiency. This knowledge would improve breeding for quantitative resistance against STB, a control measure considered more durable than deployment of major resistance genes.  相似文献   

5.
Septoria tritici blotch (STB) caused by the fungal pathogen Zymoseptoria tritici continues to be the most economically destructive disease of winter wheat throughout Ireland. Due to the widespread development of fungicide resistance in the Irish Z. tritici population, integrated strategies to control STB are increasingly necessary. A key component of such strategies will be the deployment of winter wheat cultivars with improved levels of STB resistance. Unfortunately, due to the nature of Z. tritici, such resistances are at risk of being overcome by the pathogen. In late summer 2020, foci of STB were observed across a range of winter wheat cultivars under evaluation for recommendation in Ireland. Common amongst these was the cultivar Cougar in each of their pedigree. To determine if the foci observed in 2020 resulted from strains virulent to Cougar, isolate collections were established and virulence screens conducted on Cougar and a range of the cultivars currently under evaluation. These confirmed the presence of Cougar-virulent strains in the Irish Z. tritici population, and that this virulence affects not just Cougar, but also cultivars derived from it. Although the foci observed in 2020 were in both fungicide-untreated and -treated plots, there was no evidence that these strains are more sensitive or resistant to fungicides compared to the wider Irish Z. tritici population, with moderate resistance to the SDHIs and azoles dominating. Combined, the present study confirms the need to ensure a diversity of control measures for STB, including ensuring a range of STB resistances are used.  相似文献   

6.
Zymoseptoria tritici, the causal agent of septoria tritici blotch, a serious foliar disease of wheat, is a necrotrophic pathogen that undergoes a long latent period. Emergence of insensitivity to fungicides, and pesticide reduction policies, mean there is a pressing need to understand septoria and control it through greater varietal resistance. Stb6 and Stb15, the most common qualitative resistance genes in modern wheat cultivars, determine specific resistance to avirulent fungal genotypes following a gene‐for‐gene relationship. This study investigated compatible and incompatible interactions of wheat with Z. tritici using eight combinations of cultivars and isolates, with the aim of identifying molecular responses that could be used as markers for disease resistance during the early, symptomless phase of colonization. The accumulation of TaMPK3 was estimated using western blotting, and the expression of genes implicated in gene‐for‐gene interactions of plants with a wide range of other pathogens was measured by qRT‐PCR during the presymptomatic stages of infection. Production of TaMPK3 and expression of most of the genes responded to inoculation with Z. tritici but varied considerably between experimental replicates. However, there was no significant difference between compatible and incompatible interactions in any of the responses tested. These results demonstrate that the molecular biology of the gene‐for‐gene interaction between wheat and Zymoseptoria is unlike that in many other plant diseases, indicate that environmental conditions may strongly influence early responses of wheat to infection by Z. tritici, and emphasize the importance of including both compatible and incompatible interactions when investigating the biology of this complex pathosystem.  相似文献   

7.
The evolution of fungicide resistance in the cereal pathogen Zymoseptoria tritici is a serious threat to the sustainability and profitability of wheat production in Europe. Application of azole fungicides has been shown to affect fitness of Z. tritici variants differentially, so it has been hypothesized that combinations of azoles could slow the evolution of resistance. This work assessed the effects of dose, mixtures and alternations of two azoles on selection for isolates with reduced sensitivity and on disease control. Naturally infected field trials were carried out at six sites across Ireland and the sensitivity of Z. tritici isolates monitored pre‐ and post‐treatment. Epoxiconazole and metconazole were applied as solo products, in alternation with each other, and as a pre‐formulated mixture. Full and half label doses were tested. Isolates were partially cross‐resistant to the two azoles, with a common azole resistance principal component accounting for 75% of the variation between isolates. Selection for isolates with reduced azole sensitivity was correlated with disease control. Decreased doses were related to decreases in sensitivity but the effect was barely significant (= 0·1) and control was reduced. Single applications of an active ingredient (a.i.) caused smaller decreases in sensitivity than double applications. Shifts in sensitivity to the a.i. applied to a plot were greater than to the a.i. not applied, and the decrease in sensitivity was greater to the a.i. applied at the second timing. These results confirm the need to mix a.i.s with different modes of action.  相似文献   

8.
9.
Septoria tritici blotch caused by the fungus Zymoseptoria tritici is one of the most devastating foliar diseases of wheat. Knowledge regarding mechanisms involved in resistance against this disease is required to breed durable resistances. This study compared the expression of defence and pathogenicity determinants in three cultivars in semicontrolled culture conditions. The most susceptible cultivar, Alixan, presented higher necrosis and pycnidia density levels than Altigo, the most resistant one. In Premio, a moderately resistant cultivar, necrosis developed as in Alixan, while pycnidia developed as in Altigo. In noninfectious conditions, genes coding for PR1 (pr1), glucanase (gluc) and allene oxide synthase (aos) were constitutively expressed at a higher level in both Altigo and Premio than in Alixan, while chitinase2 (chit2), phenylalanine ammonia‐lyase (pal), peroxidase (pox2) and oxalate oxidase (oxo) were expressed at a higher level in Premio only. Except for aos, all genes were induced in Alixan during the first steps of the symptomless infection phase. Only pox2, oxo, gluc and pal genes in Altigo and pal, chs and lox genes in Premio were up‐regulated at some time points. Basal cultivar‐dependent resistance against Z. tritici could therefore be explained by various gene expression patterns rather than high expression levels of given genes. During the necrotrophic phase, Z. tritici cell wall‐degrading enzyme activity levels were lower in Altigo and Premio than in Alixan, and were associated more with pycnidia than with necrosis. Similar tissue colonization occurred in the three cultivars, suggesting an inhibition of the switch to the necrotrophic lifestyle in Altigo.  相似文献   

10.
This is the first genetic study reporting on the interaction and molecular mapping of resistance to the barley grass stripe rust pathogen (Puccinia striiformis f. sp. pseudo‐hordei, Psph) in common wheat. Seedlings of 638 wheat accessions were tested and it was determined that wheat is a near‐nonhost to Psph based on rare susceptibility observed in <2% of commercial cultivars and <5% of wheat landraces. As previously observed for P. striiformis f. sp. tritici (Pst), the Australian cultivar Teal was highly susceptible to Psph. In contrast, a selection of cv. Avocet carrying complementary resistance genes Yr73 and Yr74 (Avocet R; AvR) was resistant. The Teal × AvR (T/A) doubled haploid (DH) population was used to map resistance in AvR to Psph. Infection types on the T/A DH lines inoculated with Psph and Pst indicated that all DH lines carrying both Yr73 and Yr74 were also resistant to Psph; however, fewer DH lines were susceptible to Psph than expected, suggesting the resistance was more complex. QTL analysis using 9053 DArT‐Seq markers determined that resistance to Psph was polygenically inherited and mapped to chromosomes 3A, 3D, 4A and 5B. The 3DL and 5BL markers co‐located with Yr73 and Yr74, suggesting an overlap between host and non‐host resistance mechanisms.  相似文献   

11.
A field study is described which explored the possibility of controlling Stagonospora nodorum and Septoria tritici on wheat using a barley pathogen, Drechslera teres. Pre-treatment of wheat cv. Hussar flag leaves with D. teres resulted in a significant reduction in disease caused by S. nodorum and S. tritici, resulting in a significant increase in grain yield. When cv. Brigadier leaves were treated with D. teres prior to inoculation with S. nodorum there was an initial increase in disease expression whilst D. teres had no effect on symptoms produced by S. tritici on cv. Brigadier. There was significantly less disease on leaves of cvs. Hussar and Brigadier pre-treated with D. teres prior to inoculation with an equal mixture of S. nodorum and S. tritici compared to plants pre-treated with water. It is concluded that D. teres and other non-host pathogens show potential as biological control agents for S. nodorum and S. tritici.  相似文献   

12.
Stripe rust of wheat caused by Puccinia striiformis f. sp. tritici has recently become a production problem on wheat in Alberta, Canada, and stripe rust of barley caused by Pstriiformis f. sp. hordei occurs regularly. A total of 261 isolates of Pstriiformis were collected from wheat, barley, Hordeum jubatum and triticale plants in Alberta, Canada from 2007 to 2012, and compared to isolates from other provinces and the USA. The genetic diversity of the pathogen was assessed using 11 simple sequence repeat (SSR) markers and by examining a length polymorphism in the ribosomal DNA (rDNA) intergenic spacer 1 (IGS1) region. A total of 28 SSR genotypes were detected within Alberta. The 13 genotypes common on wheat (Pstriiformis f. sp. tritici) were distinct from the 15 genotypes common on barley (Pstriiformis f. sp. hordei). Four SSR genotypes, two within each forma specialis, represented 85% of the isolates recovered. Genotypic diversity was low, population genetic analysis indicated a clonal structure, and the genotypes were widely dispersed. In both formae speciales, the dominant genotype varied between years. The second most common Pstriiformis f. sp. hordei genotype was found to be more closely related to older Pstriiformis f. sp. tritici genotypes from the USA than to other Pstriiformis f. sp. hordei genotypes.  相似文献   

13.
Eyespot is an economically important stem base disease of wheat caused by the soilborne fungal pathogens Oculimacula yallundae and Oculimacula acuformis. The most effective method of controlling the disease is host resistance. However, there are only three genetically characterized resistances in wheat varieties and further sources of resistance are required. Previous studies have identified resistances in wild relatives, but use of these resistances has been limited by linkage drag with deleterious traits exacerbated by low rates of recombination. Therefore, the identification of novel resistances in hexaploid wheat germplasm is desirable. The Watkins collection currently consists of 1056 hexaploid wheat landraces that represent global wheat diversity at the time of its collection in the 1920s and 1930s. As such, it may contain beneficial agronomic traits such as eyespot resistance. The Watkins collection was screened for resistance to O. yallundae based on a glasshouse test of all 1056 accessions and a polytunnel test of 44 accessions selected from a previous field trial. Resistant lines identified in these tests were retested against both O. yallundae and O. acuformis. This identified 17 accessions with resistance to one or both of the pathogen species. From these, two accessions (1190094.1 and 1190736.3) provided a high level of resistance to both pathogen species. An F4 population derived from accession 1190736.3 indicated that the resistance to O. acuformis in this accession is conferred by a single gene and therefore would be suitable for introgression into elite wheat varieties to provide an alternative source of eyespot resistance.  相似文献   

14.
The use of cultivar mixtures to control foliar fungal diseases is well documented for windborne diseases, but remains controversial for splash‐dispersed diseases. To try to improve this strategy, a cultivar mixture was designed consisting of two wheat cultivars with contrasted resistance to Mycosphaerella graminicola , responsible for the rainborne disease septoria tritici blotch (STB), in a 1:3 susceptible:resistant ratio rather than the 1:1 ratio commonly used in previous studies. The impact of natural STB epidemics in this cultivar mixture was studied in field experiments over 4 years. Weekly assessments of the number of sporulating lesions, pycnidial leaf area and green leaf area were carried out on the susceptible cultivar. In years with sufficient STB pressure, disease impacts on the susceptible cultivar in the mixture were always significantly lower than in the pure stand (e.g. 42% reduction of pycnidial leaf area for the three upper leaves in 2008 and 41% in 2009). In years with low STB pressure (2010 and 2011), a reduction of disease impacts was also shown but was not always significant. After major rainfall events, the number of sporulating lesions observed on the susceptible cultivar after one latent period was reduced on average by 45% in the mixture compared to the pure stand. All the measurements showed that a susceptible cultivar was consistently protected, at least moderately, in a mixture under low to moderate STB pressure. Therefore, the results prove that the design of an efficient cultivar mixture can include the control of STB, among other foliar diseases.  相似文献   

15.
16.
Septoria tritici blotch (STB) caused by the ascomycete Zymoseptoria tritici (Z. tritici) is currently the most prevalent foliar disease in wheat in the Nordic-Baltic region. Fungicide availability in this region differs greatly and is generally more limited than in other European regions. Monitoring of fungicide sensitivity is an essential tool to survey changes in fungal populations in order to react and be able to adapt recommendations for fungicide use. In this study the authors give an overview of the current situation of 14α-demethylation inhibitor (DMI) and quinone outside inhibitor (QoI) sensitivity of Z. tritici from Scandinavia and the Baltic countries. A total of 985 isolates from the Nordic-Baltic region were investigated for EC50 of DMI epoxiconazole and prothioconazole. Fungicide sensitivity remains at a high level with values ranging from 0.07 to 0.48 mg L?1 for epoxiconazole and 1.17 to 9.47 mg L?1 for prothioconazole. Point mutation I381V in the DMI target gene CYP51 was dominant throughout the region, but mutations D134G, V136A/C and S524T were also detected in the population in 2014. Screening for inserts in the CYP51 promoter region revealed that a ~ 1000 bp insert is predominant in the entire region. Only a single isolate was found in Denmark, harbouring the 120 bp insert, known to reduce fungicide sensitivity. Two Danish isolates which had elevated resistance levels were associated with an enhanced efflux. Significant differences were found across the area for the presence of G143A, conferring QoI resistance. As there is only limited access to results from this area, these findings can serve as reference for future fungicide sensitivity investigations and for evaluation of changes in the Northern European Z. tritici population.  相似文献   

17.
Brachypodium distachyon (Bd) is increasingly being used as a model for cereal diseases and to study cereal root architecture. Rhizoctonia solani AG 8 is a necrotrophic root pathogen that infects wheat soon after germination resulting in reduced plant growth and yield loss. Genetic resistance to R. solani AG 8 is not available in commercial wheat cultivars, although some quantitative levels of resistance have previously been found in mutant lines and grass relatives. Resistance mechanisms in cereals remain unknown. The ability to use Bd as a model to study the wheat–R. solani AG 8 pathosystem was investigated. The results presented show that Bd is susceptible to R. solani AG 8 and that the pathogen infects both species to a similar degree, producing comparable disease symptoms. Root length reduction was the primary indicator of disease, with shoots also affected. The second objective was to develop a repeatable phenotyping method to screen Bd populations for resistance to R. solani AG 8. Results of a preliminary experiment provide evidence for variation in resistance between Bd inbred lines. This is the first report showing the potential of Bd as a model plant for discovery of quantitative genetic variation in resistance to a necrotrophic cereal root pathogen.  相似文献   

18.
Piriformospora indica (Sebacinaceae) is a cultivable root endophytic fungus. It colonizes the roots of a wide range of host plants. In many settings colonization promotes host growth, increases yield and protects the host from fungal diseases. Evaluation was made of the effect of P. indica on fusarium head blight (FHB) disease of winter (cv. Battalion) and spring (cv. Paragon, Mulika, Zircon, Granary, KWS Willow and KWS Kilburn) wheat and consequent contamination by the mycotoxin deoxynivalenol (DON) under UK weather conditions. Interactions of P. indica with an arbuscular mycorrhizal fungus (Funneliformis mosseae), fungicide application (Aviator Xpro) and low and high fertilizer levels were considered. Piriformospora indica application reduced FHB disease severity and incidence by 70%. It decreased mycotoxin DON concentration of winter and spring wheat samples by 70 and 80%, respectively. Piriformospora indica also increased aboveground biomass, 1000‐grain weight and total grain weight. Piriformospora indica reduced disease severity and increased yield in both high and low fertilizer levels. The effect of P. indica was compatible with F. mosseae and foliar fungicide application. Piriformospora indica did not have any effects on plant tissue nutrients. These results suggest that P. indica might be useful in biological control of Fusarium diseases of wheat.  相似文献   

19.
The effect of the quinone outside inhibitors (QoI) azoxystrobin and pyraclostrobin on yields of winter wheat where QoI resistant Mycosphaerella graminicola isolates were dominant was investigated in field trials in 2006 and 2007. Pyraclostrobin significantly increased yields by 1·57 t ha?1 in 2006 and 0·89 t ha?1 in 2007 when compared to the untreated controls, while azoxystrobin only provided a significant increase of 1·28 t ha?1 in 2006. These yield increases were associated with reduction in septoria tritici blotch (STB) development as determined by weekly disease assessments over a 7 week interval. The effect of pyraclostrobin on STB was studied in controlled environment experiments using wheat seedlings inoculated with individual M. graminicola isolates. Pyraclostrobin significantly reduced STB symptoms by up to 62%, whether applied 48 h pre‐ or post‐ inoculation with resistant M. graminicola isolates containing the cytochrome b mutation G143A. Extremely limited disease (<1%) was observed on similarly treated seedlings inoculated with an intermediately resistant isolate containing the cytochrome b mutation F129L, while no disease was observed on seedlings inoculated with a wild‐type isolate. Germination studies of pycnidiospores of M. graminicola on water agar amended with azoxystrobin or pyraclostrobin showed that neither fungicide inhibited germination of spores of resistant isolates containing the mutation G143A. However, pyraclostrobin significantly reduced germ tube length by up to 46% when compared with the untreated controls. Although the QoIs can no longer be relied upon to provide effective M. graminicola control, this study provides an insight into why QoIs still provide limited STB disease control and yield increases even in situations of high QoI resistance.  相似文献   

20.
This study aimed to determine whether powdery mildew caused by Blumeria graminis is an endemic pathogen of triticale (×Triticosecale: Triticum × Secale), emerging as a result of recent changes in its pathogenicity, or whether it is a new pathogen, possibly resulting from hybridization between ff. spp. tritici and secalis. A secondary aim was to consider breeding practices that may have favoured this emergence. Phylogenetic analyses based upon six genes revealed the close relatedness of the novel entity and the ff. spp. tritici and secalis, but the IGS marker finally grouped together the isolates collected on triticale and on wheat, supporting the scenario of a recent host‐range expansion from wheat to triticale. Pathotype analyses concluded that virulence spectra of B. graminis infecting triticale were new in comparison to those observed for other reference formae speciales, and lack of fungicide resistance in triticale isolates strengthens the hypothesis of no or little genetic exchange between wheat and triticale populations of powdery mildew. This adaptation may follow the breakdown of plant resistance genes, which are probably not very diverse in current triticale cultivars since this criterion was not considered as a major one until recent years. Moreover, the complex selection and genetics of this hybrid cereal makes it difficult to predict the transmission of powdery mildew resistance genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号