首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
燃煤飞灰(以下简称飞灰)作为时间标记物克服了放射性同位素137Cs示踪方法不能鉴定大气核爆炸之前的土壤再分布过程这一缺陷。本文利用土体中的飞灰研究坡耕地黑土有机碳的时空再分布特征。尝试建立飞灰在土壤中分层的方法,根据飞灰和土壤有机碳(SOC)随土壤深度的分布特征鉴定土壤堆积厚度,以及堆积土壤的相对年代。结果表明:用飞灰示踪技术鉴定的埋藏土壤表层与SOC含量随深度变化确定的埋藏表层吻合较好,景观中低洼部位在飞灰出现前就有一定的土壤堆积。各地貌部位坡肩侵蚀最为严重,有机碳含量最低;坡顶坡度较小,侵蚀微弱;坡脚和坡足发生沉积。土壤沉积速率在1.01~5.56mm a-1之间。研究结果还表明堆积部位埋藏层的SOC含量较高,说明有相当数量的有机碳被隐遁在目前的耕作层之下。因此,在评价农田土壤作为大气CO2“源”或“汇”时应该考虑景观中土壤物质迁移和埋藏作用的影响。  相似文献   

2.
坡耕地土壤有机碳再分布特征及其迁移累积平衡   总被引:6,自引:3,他引:3  
利用137Cs和飞灰示踪技术,研究坡耕地黑土近50年和近100年来土壤再分布过程,计算坡耕地土壤有机碳(SOC)迁移和累积平衡。结果表明:利用SOC的深度分布特征鉴定坡脚和坡足原始埋藏土壤的表面分别位于地表下70和80cm,其埋藏层的SOC含量分别比与其接壤的上覆土层SOC含量高5.2和0.4gkg。坡顶、坡肩和坡背均遭受侵蚀,年平均侵蚀的土壤厚度为0.2、5.0和2.2mmyr。坡脚和坡足部位飞灰到达的深度分别为70和80cm,与埋藏层表面相吻合。坡脚飞灰出现于埋藏A层之中,表明沉积区在蒸汽机车开始使用前已被开垦为农田(或已有侵蚀和堆积发生)。根据137Cs和飞灰分布深度构建了不同年代的坡型,结果表明侵蚀部位剥蚀的土壤多堆积在坡脚和坡足,且搬运的土壤物质先累积于坡脚,随着景观坡度变缓,土壤累积逐渐向坡足过渡。研究区(1m宽)坡顶、坡肩和坡背近百年来由于土壤侵蚀共失去683kgSOC,其中60%(418kgSOC)沉积在坡脚和坡足等低洼部位,其中有257kgSOC是近50年累积的。  相似文献   

3.
以侵蚀和沉积过程明显的黑土坡耕地为研究对象,通过测定不同地形部位表层和典型剖面土壤不同粒级的水稳性团聚体、颗粒态有机碳(POC)以及团聚体结合态有机碳含量,探讨土壤侵蚀和沉积对土壤有机碳(SOC)损失、迁移和累积过程的影响。研究结果表明:上坡三个侵蚀部位表层土壤大团聚体、矿质结合态有机碳(MOC)以及团聚体结合态有机碳含量随侵蚀速率增加而减小;沉积部位(尤其是坡脚)POC含量和POC/SOC较低,而MOC含量和MOC/SOC较高。始终处于沉积状态的坡脚部位,各粒级有机碳组分的深度分布均表现出土壤累积和埋藏特征,并随着粒级的减小累积现象趋于明显。上述结果反映了土壤侵蚀优先使与细颗粒和微团聚体结合的SOC迁移流失,并在低洼的沉积区累积;埋藏层中的侵蚀物质(如微团聚体、颗粒态有机质)通过深埋作用和重新团聚作用形成稳定的大团聚体,最终促进SOC的固定。  相似文献   

4.
利用在土壤表面人为添加钛铁矿粉以示踪表层土壤垂直和顺坡再分配过程,通过对比耕作前与模拟耕作20次、40次土壤有机碳和全氮垂直分布特征,研究紫色土旋耕机等高耕作所产生的土壤顺坡和垂直搬运耦合作用对有机碳、全氮垂直分布过程的影响机制。结果显示:强烈耕作后坡顶侵蚀深度超过原土壤剖面厚度,但土壤剖面厚度依然与耕作深度相当,这是由于耕作对坡顶土壤起着顺坡搬运(耕作侵蚀)和垂直搬运(破碎母岩)的双重作用。磁性示踪剂的深度分布显示出耕作引起表层土壤垂直向下迁移,但不同坡位垂直分布机制不同。坡顶土壤有机碳和全氮浓度明显减小,这是由于强烈的耕作侵蚀向下坡搬运耕层土壤,同时耕作垂直搬运引起母岩碎屑向耕层混入产生稀释作用;坡趾表层0—5 cm土壤有机碳和全氮浓度减小,但是5—20 cm明显增加,表明耕作侵蚀引起来自上坡的低浓度土壤在坡趾堆积。这些结果表明旋耕机等高耕作下土壤同时发生顺坡传输与垂直迁移,两者相互作用导致耕作侵蚀区和耕作沉积区呈现出明显不同的有机碳、全氮垂直分布模式。  相似文献   

5.
为了更好的揭示特殊地形下水蚀过程对土壤结构和有机碳含量分配的影响,选取典型南方红壤丘陵区-青原山小流域为研究区,采用核素137Cs示踪技术研究小流域侵蚀沟道的水土流失现状,分析了沟道侵蚀对土壤团聚体稳定性及有机碳含量的影响。结果表明:侵蚀沟道的坡顶处137Cs含量最高,且高于背景值,属于沉积区,而坡上、坡脚属于中度侵蚀,坡中属于轻度侵蚀;侵蚀沟道顺坡而下侵蚀过程依次表现为绝对沉积、绝对侵蚀、相对沉积和绝对侵蚀,其中植被和地形因子是主导因素;沉积区相比于侵蚀区平均质量直径(Mean Weight Diameter,MWD)和大团聚体含量(粒径≥0.25 mm)更高,侵蚀区中相对沉积的坡中有着更稳定的土壤团粒结构;沉积区各个粒径的土壤团聚体有机碳含量均高于侵蚀区,侵蚀区的土壤团聚体有机碳更趋向于均匀分配,土壤理化性质的空间差异也会影响土壤团聚体有机碳含量。侵蚀沟道中土壤侵蚀模式与传统坡面并不一致,土壤结构及相关碳组分主要受地形和植被支配下的土壤侵蚀程度影响。关键词:土壤;侵蚀;侵蚀沟道;团聚体;有机碳;137Cs  相似文献   

6.
坡耕地黑土剖面有机碳的分布和δ13C值研究   总被引:6,自引:0,他引:6       下载免费PDF全文
以一东北黑土典型漫岗坡耕地为研究对象,通过测定不同地形部位(坡顶、坡肩、坡背、坡脚和坡足)部分土壤属性和δ13C值,探索土壤侵蚀和沉积对土壤有机碳(SOC)动态的影响。结果表明:表层土壤δ13C值与地形坡度、土壤粘粒含量、土壤含水量、pH值都显著相关。δ13C在土壤剖面中随深度变化,能够反映作物残体输入和土壤累积特征,有助于鉴定原始埋藏土壤表层。侵蚀部位土壤δ13C值与SOC含量线性拟合的倾斜角β与地形坡度成正相关,与粘粒含量成负相关,是反映SOC周转的一个良好指标。坡肩和坡背C3-C显著低于坡顶(对照点),C4-C含量无显著性差异,说明不同侵蚀程度的地形部位SOC含量差异主要是由C3-C引起;坡脚和坡足C4-C显著低于坡肩和坡背,说明沉积区新碳损失更大。  相似文献   

7.
红壤坡耕地侵蚀过程中土壤有机碳的选择性迁移   总被引:3,自引:0,他引:3  
土壤侵蚀对土壤有机碳的稳定性、碳素平衡及全球碳循环的影响已引起了人们的广泛关注,但对不同类型有机碳在侵蚀过程中的流失、迁移及消长行为与过程的差异还知之甚少.为此,本文在我国亚热带地区选择了一由泥页岩低丘形成的坡耕地,采用1.44 m2微径流小区与集水小区观察试验相结合的方法,采样分析了土壤、微径流小区土壤剥离物和集水小区排水口沉积物中有机总碳、黑碳、颗粒态有机碳和腐殖质碳,比较研究了各形态有机碳迁移行为的差异性.结果表明,微径流小区收集的土壤剥离物中有机总碳含量高于土壤,前者与后者有机总碳的比值(富集系数)在1.63~2.53之间.说明富含有机碳的土壤物质被优先剥离.集水小区收集的沉积物与土壤有机总碳的比值(富集系数)为1.30~2.33,低于土壤剥离物与土壤有机总碳的比值,说明在径流运移过程中侵蚀物质中的部分有机碳发生了损失,微径流小区试验收集的土壤剥离物中黑碳的富集系数为1.46~2.32.而集水区收集的沉积物中黑碳的富集系数为1.91~2.74.高于径流小区试验,说明黑碳在整个侵蚀迁移过程中发生了连续富集,这可能与黑碳比重较轻、对微生物降解抗性较强、容易发生悬迁有关.  相似文献   

8.
坡耕地黑土有机碳和全氮的迁移与累积平衡   总被引:2,自引:0,他引:2  
本文利用137CS示踪技术计算东北黑土坡耕地土壤再分布速率,结合表层土壤有机碳(SOC)和全氮(TN)含量动态,探索典型漫岗坡地SOC和TN流失量的空间分布特征,据此计算研究区近50年来SOC和TN迁移、累积平衡。研究结果表明:研究区土壤再分布速率介于-24.61~33.56 T/HM2/A,绝大部分地区处于中度和轻度侵蚀状态,约占研究区总面积的83.66%,沉积面积占总面积的15.62%。SOC和TN的流失量与土壤再分布速率相一致,坡肩部位SOC和TN流失量最大,侵蚀损失率分别为407.57 KG/HM2/A和39.94 KG/HM2/A;其次为坡背和坡顶,平均流失量分别为244.2 KG/HM2/A和17.93 KG/HM2/A;坡脚和坡趾表现为累积,平均累积量分别为-207.2 KG/HM2/A和-20.56 KG/HM2/A。整个研究区SOC和TN的相对流失量>50%的面积分别占10.45%和11.21%。整个研究区48年来土壤净迁移泥沙量为45.54 T/A,其中,SOC流失量为612.62 KG/A,TN流失量为47.20 KG/A。考虑迁移泥沙对土壤有机质的富集作用,迁移损失的SOC和TN量比原计算值高52%。  相似文献   

9.
为更好地理解矿区土壤退化机理,该文利用137Cs技术研究了焦作矿区具有15a沉陷历史的采煤沉陷坡土壤侵蚀特征及其对土壤养分的影响。沉陷坡137Cs含量从坡顶到下坡逐渐降低,及至坡脚急剧增大且表现出最高的值。基于137Cs本底(1 645 Bq/m2),沉陷坡坡顶至下坡表现为土壤侵蚀,而坡脚为土壤沉积。沉陷坡土壤侵蚀高达3.75 kg/(m2·a),属于中度侵蚀。沉陷坡土壤黏粒含量沿下坡方向增加,表明水蚀的分选性搬运。与对照区相比,沉陷坡侵蚀区土壤总有机碳(total organic carbon,TOC)、水溶性有机碳(water-soluble organic carbon,WSOC)、全氮、碱解氮、全磷、有效磷含量均出现了显著降低(P0.05);沉积区除WSOC显著降低(P0.05)外,其他养分含量变化不明显(P0.05)。在沉陷坡的侵蚀区,TOC与WSOC含量沿下坡方向逐渐减小,表现出与137Cs一致的分布格局;其他养分含量的坡面变化与137Cs分布不一致。相较于对照区,WSOC/TOC与碳氮比、碳磷比在沉陷坡侵蚀强烈的坡位分别出现了显著增大与降低(P0.05)。研究结果表明:1)焦作矿区自采煤沉陷坡形成以来发生了较严重的水蚀;2)侵蚀引起的土壤再分配影响沉陷坡土壤碳、氮、磷动态,其中,土壤再分配对土壤碳动态的影响最强;3)在土壤侵蚀作用下,采煤沉陷坡侵蚀强烈的坡位土壤有效态碳、氮、磷养分潜在的侵蚀风险大。采煤沉陷坡土壤侵蚀及其对土壤养分的不利影响应引起矿粮复合区土地整治的关注。  相似文献   

10.
地形、生物气候条件具有明显差异的青藏高原约占我国陆地面积的五分之一,开展该地区土壤有机碳和无机碳分布特征的研究对于理解青藏高原土壤碳循环过程与陆地碳库的精确预测以及应对全球气候变化具有重要意义。研究选取位于祁连山中段的阴、阳坡地形序列土壤,分析了不同坡向间以及同一坡向内随海拔高度变化土壤有机碳和无机碳的垂直分布特征及其影响因素。结果表明:阴、阳坡有机碳含量均随土壤深度增加而下降,但阳坡下降的速率(66%~91%)明显高于阴坡(31%~77%);阴坡土壤中碳酸钙基本淋失,通体无机碳含量较低(5.0 g kg-1),阳坡B层土壤无机碳含量是A层的2倍,表现为明显富集。阴坡和阳坡1 m土体总碳密度相当(分别为16.1~33.9 kg m-2和11.8~32.8 kg m-2),其中,阴坡以有机碳为主(占总碳密度的82%~99%),而阳坡有机碳和无机碳密度变化均较大(分别占总碳密度的27%~81%和19%~73%)。因此,坡向是影响高寒山区土壤碳垂直分布和组成的重要因素。此外,降雨量和植被类型对地形序列土壤有机碳和无机碳含量的空间变异也具有重要影响:降雨量每增加1 mm,表层(0~20 cm)土壤有机碳含量增加0.4 g kg-1,而淀积层(40~80 cm)土壤无机碳含量下降0.2 g kg-1;植被类型在一定程度上影响了土壤有机碳的富集程度。本研究揭示了青藏高寒山区土壤碳循环及其碳库预测应充分考虑微地形对坡面尺度下土壤碳垂直分布、碳库组成和空间变异的影响。  相似文献   

11.
以黄土丘陵区典型侵蚀沟道为对象,基于沟道剖面有机碳和137Cs数据,采用碳库重分布模型估算了典型沟道侵蚀诱发的CO2通量,并通过检验模型预测效率、解析影响因子,提出了模型校正的思路。结果表明:(1)在长期侵蚀作用下,沟道侵蚀区和沉积区均表现为剧烈的侵蚀效应,侵蚀区侵蚀速率介于30.99~46.44 mm/a,沉积区侵蚀速率介于34.20~37.88 mm/a,沉积区土壤流失速率略小于侵蚀区;(2)碳库重分布模型估算显示,侵蚀区与沉积区均表现为较强烈的碳源效应,侵蚀区CO2通量介于18.41~28.44 g/(m2·a),沉积区CO2通量介于22.19~29.25 g/(m2·a);(3)侵蚀部位、土壤容重、有机碳含量、侵蚀量、沟道平均坡度、植被地上部与地下部生物量共同解释了碳库重分布模型预测效率的变异特征(R2=0.68),其中侵蚀部位、侵蚀量、有机碳含量、土壤容重、植被地下部对预测效率有强驱动效应;(4)引入被忽略的植被新输入有机碳库参数,有望校正碳库重分布模型,提升模型预测效率。该研究结果明确了碳库重分布模型在沟道侵蚀区相比沉积区有更高的CO2通量预测效率,为进一步提高模型的预测精度,可以考虑引入植被输入有机碳库作为校正参数。  相似文献   

12.
Accelerated soil erosion can impact upon agronomic productivity by reducing topsoil depth (TSD), decreasing plant available water capacity and creating nutrient imbalance in soil and within plant. Research information on soil‐specific cause – effect relationship is needed to develop management strategies for restoring productivity of eroded soils. Therefore, two field experiments were established on Alfisols in central Ohio to quantify erosion‐induced changes in soil properties and assess their effects on corn growth and yield. Experiment 1 involved studying the effects of past erosion on soil properties and corn yield on field runoff plots where soil was severely eroded and comparing it with that on adjacent slightly eroded soil. In addition, soil properties and corn grain yield in runoff plots were compared on side‐slopes with that on toe‐slopes or depositional sites. Experiment 2 involved relating corn growth and yield to topsoil depth on a sloping land. With recommended rates of fertilizer application, corn grain yield did not differ among erosional phases. Fertilizer application masked the adverse effects of erosion on corn yield. Corn grain yield on depositional sites was about 50 per cent more than that on side‐slope position. Corn plants on the side‐slope positions exhibited symptoms of nutrient deficiency, and the ear leaves contained significantly lower concentrations of P and Mg and higher concentrations of Mn and K than those grown on depositional sites. Corn grain yield in experiment 2 was positively correlated with the TSD. Soil in the depositional site contained significantly more sand and silt and less clay than that on the side‐slope position. There were also differences in soil properties among erosional phases. The soil organic carbon (SOC) content was 19\7 g kg−1 in slightly eroded compared with 15\1 g kg−1 in severely eroded sites. Aggregate stability and the mean weight diameter (MWD) were also significantly more in slightly eroded than severely eroded soils. Adverse effects of severe erosion on soil quality were related to reduction in soil water retention, and decrease in soil concentration of N and P, and increase in those of K, Ca and Mg. Severe erosion increased leaf nutrient contents of K, Mn and Fe and decreased those of Ca and Mg. Corn grain yield was positively correlated with aggregation, silt and soil N contents. It was also negatively correlated with leaf content of Fe. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

13.
Soil organic carbon (SOC) in eroded soil can be redistributed from upper slope positions and deposited and sequestered in depressional areas. However, the SOC lost from soil erosion is normally not considered when soil carbon budgets are derived and this could result in an overestimation of SOC loss from the agricultural areas. The impact of soil redistribution on the SOC budget of a sloping landscape in the Black soil region in Northeast China was studied using the presence of the 137Cs tracer which has been deposited since 1954 and the fly‐ash tracer, which was deposited in 1903. Five landscape positions (summit, shoulder‐, back‐, foot‐ and toe‐slope) were selected and included in this study. The depths of 137Cs and fly ash and the SOC content of the deposition layers were used to calculate the change in C content of the soil in the various landscape positions over the last century. We found that the most severe soil erosion occurred in soils in the shoulder‐slope position followed by the back‐slope and the summit positions. Soil deposition occurred in the toe‐slope position followed by the foot‐slope position. A total of 683 kg C was eroded from the summit, shoulder‐ and back‐slopes (in a 1 m wide strip) over the past 100 years and 418 kg C (about 61·2 per cent) was deposited in the low‐lying areas (foot‐ and toe‐slopes). Over half (61·5 per cent) of the deposition (257 kg SOC) occurred over the past 50 years. Most of the previously reported loss of C from the upper slope positions in the Black soils was in fact sequestered in the deposition areas in the landscape. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
Determining how soil erosion affects enzyme activity may enhance our understanding of soil degradation on eroded agricultural landscapes. This study assessed the changes in enzyme activity with slope position and erosion type by selecting water and tillage erosion-dominated slopes and performing analyses using the 137Cs technique. The 137Cs data revealed that soil loss occurred in the upper section of the two eroded slope types, while soil accumulation occurred in the lower section. The invertase activity increased downslope and exhibited a pattern similar to the 137Cs data. The spatial patterns of urease and alkaline phosphatase activities were similar to the 137Cs inventories on the water and tillage erosion-dominated slopes, respectively. On both the eroded slope types, the invertase activity and soil organic carbon content were correlated, but no correlation was observed between the alkaline phosphatase activity and total phosphorus content. Nevertheless, the urease activity was correlated with the total nitrogen content only on the water erosion-dominated slopes. The enzyme activity-to-microbial biomass carbon ratios indicated high activities of invertase and urease but low activity of phosphatase on the water erosion-dominated slopes compared with the tillage erosion-dominated slopes. Both the invertase activity and the invertase activity-to-microbial biomass carbon ratio varied with the slope position. Changes in the urease activity-to-microbial biomass carbon ratio were significantly affected by the erosion type. These suggested that the dynamics of the invertase activity were linked to soil redistribution on the two eroded slope types, whereas the dynamics of the urease and alkaline phosphatase activities were associated with soil redistribution only on the water or tillage erosion-dominated slopes, respectively. The erosion type had an obvious effect on the activities of invertase, urease and alkaline phosphatase. Soil redistribution might influence the involvement of urease in the N cycle and alkaline phosphatase in the P cycle. Thus, enzyme activity-to-microbial biomass ratios may be used to better evaluate microbiological activity in eroded soils.  相似文献   

15.
侵蚀性花岗岩坡地不同地貌部位土壤剖面风化特征研究   总被引:2,自引:0,他引:2  
为揭示发育于侵蚀性风化花岗岩坡地上不同地貌部位土壤剖面的风化发育特征,在浙江省选择了典型的风化花岗岩坡地:浙江省嵊州市水土保持监测站为研究区,在监测站同一坡面不同侵蚀强度的坡顶、坡中、坡底选取3个典型的土壤剖面(140 cm),从下至上等距离(20 cm)采集土壤样品,共采集21个土样。进行了各层土壤基本理化特性和化学全量的分析,并分别计算了3个剖面不同层次的主要化学风化系数及总的风化强度,结果表明:(1)在强烈侵蚀的花岗岩风化残积坡地发育的土壤,总体发育成熟过程较弱,其进一步的发育与典型的地带性土壤的发育有很大的差异,侵蚀过程严重地影响了土壤的进一步成熟,侵蚀强度越大,则土壤发育越差。(2)土壤剖面总的风化强度不大,上下层的递变差异很小,脱硅富铝化过程随着剖面深度的增加风化程度越来越弱。(3)土壤剖面的化学分层不明显,各种风化指标均在60 cm左右形成了一个分界层,其上受水力侵蚀影响明显,其下呈现出的特性以继承残积母质为主。(4)不同地貌部位的风化发育程度排序为:坡底坡中坡顶,其与采样坡面的侵蚀强度排序正好相反。(5)风化程度与有机质和黏粒含量具有较为明显的正比关系,在侵蚀环境下,土壤的物理特性对风化的影响明显,在沉积环境下土壤有机质的影响大于黏粒含量的影响。总之,由于受侵蚀的影响,坡地土壤剖面的淀积层不发育,剖面呈现出的假淀积层不是由淋溶作用形成的,而是具有一定风化程度的风化残积层,结果导致发育于山地丘陵侵蚀性坡地的土壤层次划分不同于常规的土壤层次划分。  相似文献   

16.
南方红壤丘陵区土壤侵蚀-沉积作用对土壤酶活性的影响   总被引:6,自引:0,他引:6  
土壤酶与土壤矿质营养元素循环、能量转移等密切相关。明确土壤酶对土壤侵蚀—沉积作用的响应机制,有助于进一步把握土壤侵蚀在全球碳循环中的作用。通过分析湘中红壤丘陵区松林坡面侵蚀区及沉积区土壤酶活性的变化特征,揭示了酶活性与土壤主要养分因子之间的关系,并在此基础上深入探讨了土壤侵蚀—沉积作用对土壤酶活性的影响。结果表明:沉积区绝大多数土层土壤有机碳(soil organic carbon,SOC)、全氮(total nitrogen,TN)、可溶性有机碳(dissolved organic carbon,DOC)、脲酶、酸性磷酸酶及过氧化氢酶活性均要显著高于侵蚀区。土壤沉积作用明显提高了土壤养分含量及酶活性。其次,侵蚀区与沉积区土壤养分含量及酶活性差异在侵蚀干扰较为严重的表层(0~30 cm)土壤表现较为明显,随着土壤深度的增加差异逐渐减小。侵蚀区与沉积区SOC、TN、DOC及酶活性均随土壤深度的增加呈现总体下降的趋势。相关性分析表明,土壤脲酶、酸性磷酸酶、过氧化氢酶之间及其与SOC、TN、DOC之间均存在极显著正相关关系(p0.01)。此外,偏冗余分析结果进一步表明SOC是解释土壤酶活性动态变化的主要因子,其解释量达7.5%,侵蚀诱导SOC在坡面的再分布是影响土壤酶活性的重要途径之一。  相似文献   

17.
研究土壤侵蚀对有机碳不同组分流失的影响,可为科学评估土壤侵蚀在碳循环中的作用和探明农田有机碳变化机制提供理论依据。该研究以典型黑土区一凸型耕地坡面为研究对象,基于~(137)Cs示踪技术,分析了坡面土壤侵蚀特征及强度分布,定量分析了坡面有机碳组分的变化幅度及侵蚀强度与有机碳组分间的关系。结果表明:研究坡面年均侵蚀速率为3801.71t/(km~2×a),属中度侵蚀,33.33%的采样点为强烈侵蚀,极强烈及剧烈的侵蚀点占比11.11%,主要位于凸型坡中部坡度较陡处,26.67%为沉积点,主要分布在坡脚西侧。自开垦以来坡耕地土壤平均有机碳(Soil Organic Carbon,SOC)含量下降了13.58%,其中矿质有机碳(Mineral-bound Organic Carbon,MOC)和颗粒有机碳(Particulate Organic Carbon,POC)分别下降了7.52%和40.49%;POC中粗颗粒有机碳(Coarse Particulate Organic Carbon,CPOC)下降幅度最大(73.24%),细颗粒有机碳(Fine Particulate Organic Carbon,FPOC)无显著差异。坡面SOC、MOC和FPOC在沉积点均显著大于侵蚀点(P0.01),沉积点和轻度侵蚀点的SOC及MOC含量显著大于轻度以上侵蚀点(P0.01),SOC及组分MOC和FPOC均在中度侵蚀下降幅度最大,之后变化轻微。有机碳组分中MOC和FPOC含量随着土壤侵蚀强度的增大呈下降趋势,CPOC与侵蚀强度无显著相关性且沉积点及不同侵蚀强度之间均无显著差异(P0.05)。结果说明坡耕地中CPOC和MOC减少的驱动机制可能存在差异。  相似文献   

18.
Carbon distribution and losses: erosion and deposition effects   总被引:21,自引:0,他引:21  
Because of concerns about the eventual impact of atmospheric CO2 accumulations, there is growing interest in reducing net CO2 emissions from soil and increasing C storage in soil. This review presents a framework to assess soil erosion and deposition processes on the distribution and loss of C in soils. The physical processes of erosion and deposition affect soil C distribution in two main ways and should be considered when evaluating the impact of agriculture on C storage. First, these processes redistribute considerable amounts of soil C, within a toposequence or a field, or to a distant site. Accurate estimates of soil redistribution in the landscape or field are needed to quantify the relative magnitude of soil lost by erosion and accumulated by deposition. Secondly, erosion and deposition drastically alter the biological process of C mineralization in soil landscapes. Whereas erosion and deposition only redistribute soil and organic C, mineralization results in a net loss of C from the soil system to the atmosphere. Little is known about the magnitude of organic C losses by mineralization and those due to erosion, but the limited data available suggest that mineralization predominates in the first years after the initial cultivation of the soil, and that erosion becomes a major factor in later years. Soils in depositional sites usually contain a larger proportion of the total organic C in labile fractions of soil C because this material can be easily transported. If the accumulation of soil in depositional areas is extensive, the net result of the burial (and subsequent reduction in decomposition) of this active soil organic matter would be increased C storage. Soil erosion is the most widespread form of soil degradation. At regional or global levels its greatest impact on C storage may be in affecting soil productivity. Erosion usually results in decreased primary productivity, which in turn adversely affects C storage in soil because of the reduced quantity of organic C returned to the soil as plant residues. Thus the use of management practices that prevent or reduce soil erosion may be the best strategy to maintain, or possibly increase, the worlds soil C storage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号