首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 441 毫秒
1.
Momordica charantia L. plants systemically infected with Cucumber mosaic virus (CMV) were found in Oita Prefecture. The virus isolated from the host plant was characterized by biological, serological, and molecular biological methods. The purified virus was used to mechanically inoculate the host and produced green mottle, green mosaic, and/or chlorotic spots in the noninoculated upper leaves of the host. The virus was identified as an isolate of CMV containing genomic RNA3 derived from subgroup IA by several lines of evidence based on electron microscopy, serological detection, host range, symptoms, and the entire nucleotide sequence of RNA3.  相似文献   

2.
We previously reported that a strain of Cucumber mosaic virus (Pepo CMV) invaded the shoot apical meristem (SAM, tunica corpus) of tobacco plants at 6–8 days postinoculation (dpi), contrary to earlier observations. To identify a viral factor determining the ability to invade the SAM, we inoculated plants with two other CMV strains, MY17 and Y, and tested the three strains in this study. Immunohistochemical microscopy revealed that MY17 CMV invaded the SAM at 7 dpi, the same as Pepo CMV, but Y CMV did not, even at 21 dpi. Using RNA pseudorecombinants between Pepo and Y CMV, we found that Pepo RNA 2 affected the rate of SAM invasion, and Pepo RNA 3 was required for successful SAM invasion. Inoculation with RNA 1 and RNA 2 from Y CMV and RNA 3 containing the chimeric coat protein (CP) gene between Pepo and Y CMV or a Y RNA 3 point mutant containing a Ser-to-Pro substitution at position 129 in CP (Y129P) revealed that amino acid 129 of CP is the determinant for successful SAM invasion. The rate of SAM invasion of the pseudorecombinants and Y129P was consistent with the efficiency of cell-to-cell movement in the inoculated leaves, implying that SAM invasion by CMV strains may be due to efficient cell-to-cell movement.  相似文献   

3.
Alstroemeria plants were surveyed for viruses in Japan from 2002 to 2004. Seventy-two Alstroemeria plants were collected from Aichi, Nagano, and Hokkaido prefectures and 54.2% were infected with some species of virus. The predominant virus was Alstroemeria mosaic virus, followed by Tomato spotted wilt virus, Youcai mosaic virus (YoMV), Cucumber mosaic virus (CMV), Alstroemeria virus X and Broad bean wilt virus-2 (BBWV-2). On the basis of nucleotide sequence of the coat protein genes, all four CMV isolates belong to subgroup IA. CMV isolates induced mosaic and/or necrosis on Alstroemeria. YoMV and BBWV-2 were newly identified by traits such as host range, particle morphology, and nucleotide sequence as viruses infecting Alstroemeria. A BBWV-2 isolate also induced mosaic symptoms on Alstroemeria seedlings.  相似文献   

4.
5.
Plants naturally infected with Cucumber mosaic virus (CMV) were collected and analyzed by electrophoresis of the replicative form of dsRNA and by Northern blot hybridization using CMV RNA-specific probes. Some of the CMV-infected plants, especially winter crops, contained two kinds of RNA 1 segments or RNA 2 segments (or both), suggesting that mixed infections of CMV occurred naturally. Single-aphid-transmitted isolates (SATIs) from the field isolate containing two RNA 1 segments were grouped into three types by the electrophoretic mobility of RNA 1 (i.e., those containing one slow segment, those containing one fast segment, and those containing both). Furthermore, SATIs and single-lesion isolates, generated from the plants inoculated with a mixture of two CMV isolates that could be differentiated by their electrophoretic dsRNA profiles, were analyzed by dsRNA, indicating that nonparental progenies were observed. These results suggested that genetic reassortment of CMV RNA may occur in nature and that this is an important mechanism in CMV evolution.  相似文献   

6.
Cucumber mosaic virus (CMV) was isolated from a mosaic diseased plant of Eucharis grandiflora. The virus caused mosaic symptoms on leaves and slight distortion of flower petals in E. grandiflora by either mechanical or aphid inoculation. The virus was identified as a strain of CMV subgroup I from its biological and serological characteristics.  相似文献   

7.
Distribution of Cucumber mosaic virus (CMV) in shoot meristem tissue of CMV-inoculated tobacco was successively analyzed with immunohistochemical microscopy and in situ hybridization. CMV signals were detected in the tissue at 7 days postinoculation (dpi), but then they decreased and disappeared after 14dpi. Detailed observation confirmed CMV invasion of shoot apical meristem at 6–8dpi. Short interfering RNA corresponding to CMV RNAs was first detected at 7dpi and was detected up to 24dpi. These results suggest that the shoot meristem tissue is infected with CMV but subsequently recovers from the infection by RNA silencing.  相似文献   

8.
为明确我国黄瓜花叶病毒株系分化及系统进化基本情况,从湖南、新疆、青海和海南4省区采集1 367个样品对其进行酶联免疫和RT-PCR检测,并对分离获得的15个黄瓜花叶病毒(Cucumber mosaic virus,CMV)纯化分离物CP、MP、2b核苷酸序列进行相似性和进化树分析及生物学性状比较。结果表明,辣椒、龙葵和黄瓜的CMV阳性检出率较高,分别为54.13%、29.19%和18.46%。进化树分析显示CMV-Q5与CMV亚组II的亲缘性较高;CMV-N7为新发现的重组株系,其CP、2b基因属于CMV亚组IB,MP基因却属于CMV亚组II;其余13个分离物均属于CMV亚组IB。CMV-N7和CMV-Q5在系统寄主心叶烟和枯斑寄主苋色藜上引发的症状相似,但比对照株系CMV-P3613(IB)的发病时间要晚1~2 d,系统花叶较温和,枯斑较小。表明在以上4省区常见农作物上广泛流行的CMV存在分子变异。  相似文献   

9.
Replicase-mediated tobacco plants are highly resistant to the Fny strain of Cucumber mosaic virus (CMV) and closely related subgroup IA strains. Two of these subgroup IA strains, Fny- and M-CMV, were co-inoculated with different resistance breaking cucumoviruses to nontransformed and transformed tobacco plants. RT-PCR analyses of single CMV RNAs were performed to study potential complementation of the subgroup IA strains by the resistance breaking cucumoviruses. After co-inoculation of M-CMV with PII-CMV, RNAs 1, 2 and 3 from M-CMV were detected in systemically infected leaves of control plants, whereas in noninoculated parts of replicase-mediated resistant plants only M-CMV RNAs 1 and 3 were found. Western blot studies confirmed the expression of M-CMV coat protein after co-inoculation with PII-CMV in leaves of transgenic plants. These plants also exhibited M-CMV typical yellow spots. M-CMV/TAV co-inoculated transgenic plants contained only M-CMV RNA 3, but no M-CMV RNAs 1 and 2. No M-CMV typical yellow spots were observed in these plants. Our data suggest different types of complementation of M-CMV in replicase-mediated resistant plants by PII-CMV and TAV in trans potentially leading to new RNA combinations in transformed plants compared to nontransformed plants.  相似文献   

10.
11.
Viruses were isolated from leaves of plants of Aconitum species with symptoms such as mottling and yellowing in Hokkaido and Gunma prefectures in Japan. These viruses were identified as Cucumber mosaic virus (subgroup II) based on particle morphology, host range, aphid transmission, and serology.  相似文献   

12.
13.
Cucumber mosaic virus (CMV) has resulted in much damage to Danshen (Salvia miltiorrhiza Bunge) crops in China. A 5-year survey was conducted in Hebei, Shandong, Sichuan, Shanxi, Henan and Gansu Provinces, all major Danshen-growing areas. A total of 156 Danshen plant samples with CMV symptoms were collected and tested for the presence of CMV by a double-antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) using polyclonal antibodies against CMV and a positive control, according to the supplier’s instructions (Agdia). They were confirmed to be CMV by amplification of complete coat protein gene and analysis of the gene sequence. The results showed that 122 samples were infected by CMV and all of these CMV isolates belonged to subgroup IB. http://www.phytoparasitica.org posting May 19, 2008. Joint first authors.  相似文献   

14.
为明确超敏蛋白对烟草黄瓜花叶病毒(Cucumber mosaic virus,CMV)的诱导抗性及其生长、品质的影响,采用半叶枯斑法和田间试验研究了10%超敏蛋白对枯斑三生烟和普通烟的诱导抗性及促生作用,并分析了对烤烟经济性状和内在质量的影响。结果表明,10%超敏蛋白在活体外对CMV无钝化作用,但预防、治疗效果显著,接种前48 h喷施预防效果达75.70%,接种后24 h喷施治疗效果达65.45%,均显著高于对照;10%超敏蛋白处理后烟草的株高、茎围、最大叶面积均高于其它处理,单位产量比20%吗啉胍·乙铜可湿性粉剂处理增产211.8 kg/hm2,增值3 519.2元/hm2;经10%超敏蛋白处理后的烤烟化学成分均处于优质烟的适宜质量分数范围内。表明超敏蛋白不仅有利于提高烟草抗性和促进烟株生长,且可以明显提高烟叶经济效益和烟叶内在质量。  相似文献   

15.
16.
引起甘蔗花叶病的病原分子生物学进展   总被引:2,自引:1,他引:1  
花叶病是最主要的甘蔗病毒病害之一,在全球种植甘蔗的国家或地区普遍发生,可导致甘蔗产量下降,糖分减少,给甘蔗生产带来严重的经济损失。引起甘蔗花叶病的病毒主要有甘蔗花叶病毒(Sugarcane mosaic virus,SCMV)、高粱花叶病毒(Sorghum mosaic virus,Sr MV)和甘蔗条纹花叶病毒(Sugarcane streak mosaic virus,SCSMV)。本文综述了这3种病毒的生物学特性、鉴定与检测、基因组结构与基因功能、遗传变异与分子进化等方面的研究进展,并讨论了对甘蔗花叶病的生态防控措施。  相似文献   

17.
为探究黄瓜花叶病毒(Cucumber mosaic virus,CMV)、马铃薯Y病毒(Potato virus Y,PVY)混合侵染烟株对烟蚜取食行为的影响,利用刺探电位图谱(electrical penetration graph,EPG)技术记录了烟蚜在健康烟株与CMV、PVY混合侵染后不同发病级别烟株上的取食波形。结果显示:烟蚜在健康烟株上的刺探次数最少,在感病烟株上的C波总持续时间均显著长于健康烟株;第1次到达韧皮部前的刺探次数,健康植株上仅为4.00次,3级感病烟株上的为健康烟株上的2倍;在健康烟株上E2波总持续时间为120.65 min,极显著大于2级和3级感病烟株;刺探过程中,感病烟株上的pd波出现次数均高于健康烟株,且pd波II-1和II-3亚波的持续时间也显著高于健康烟株。研究表明,CMV、PVY混合侵染烟株可降低寄主对烟蚜的适合度,且能促进烟蚜对病毒的传播。  相似文献   

18.
Local symptom expression and systemic movement of Cucumber mosaic virus (CMV) in Tetragonia expansa, Momordica charantia and Physalis floridana were mapped to the amino acid at position 129 of CMV coat protein (CP), using pseudorecombinants, chimeric RNAs, a site-directed mutant of RNA 3 and four strains of CMV : pepo-, SO-, MY17- and Y-CMV. Local and systemic symptoms caused by three strains, pepo-, SO- and MY17-CMV, and those by Y-CMV differed in the three host species. The three strains expressed local chlorotic spots at 24°C and systemic chlorotic spots and ringspots at 36°C, whereas Y-CMV developed local necrotic spots at 24°C but no systemic symptoms at 36°C in T. expansa. In M. charantia the three strains caused systemic chlorotic spots, whereas Y-CMV caused local necrotic spots. The three caused systemic mosaic and Y-CMV systemic necrosis in P. floridana. With pseudorecombinants combined with pepo- and Y-CMV RNAs, CMV RNA 3 was responsible for symptom expression and systemic infection. Inoculation with Y-CMV RNA 1, RNA 2 and chimeric RNA 3s exchanged CP gene fragments between pepo- and Y-CMV showed that NruI-XhoI fragment of CP was essential for symptom expression. Comparative analysis of the NruI-XhoI fragments revealed that only the amino acid at position 129 was common among the three strains but different from that of Y-CMV. Inoculation with a point mutant constructed by substituting one nucleotide resulting in an amino acid change from Ser to Pro at position 129 in Y-CMV CP verified the previous experiments. These results indicate that the amino acid at position 129 of CMV CP is the determinant for local symptom expression and systemic movement in the three host species. CMV CP containing Ser at position 129 may induce resistant responses in these plants. Received 29 June 2001/ Accepted in revised form 28 August 2001  相似文献   

19.
To identify possible sites of viral attenuation, the complete nucleotide sequences of two isolates of Zucchini yellow mosaic virus (ZYMV) were determined; a severe isolate Z5-1 and an attenuated isolate from Z5-1 (designated ZYMV-2002). The viral genome of both isolates consisted of 9593 nucleotides in size and contained an open reading frame encoding a single polyprotein of 3080 amino acids. Comparison of the nucleotide sequences for Z5-1 and ZYMV-2002 revealed 14 nucleotide mutations, resulting in seven amino acid substitutions with four in the HC-Pro region, two in the CI region, and one in the NIb region. These results provide a genetic basis for future manipulation of the ZYMV reverse genetics system. The nucleotide sequence data reported are available in the DDBJ/EMBL/GenBank databases under the accession numbers AB188115 and AB188116  相似文献   

20.
To detect Japanese yam mosaic virus (JYMV) and Yam mild mosaic virus (YMMV) in yam plants in Japan, we developed a duplex RT-PCR assay consisting of a tube-capture procedure followed by one-step RT-PCR with two primer pairs. A 241-bp fragment of the coat protein region of JYMV and a 174-bp fragment of the nuclear inclusion protein b region of YMMV were amplified, thus identifying the two viruses from yam plants cultivated in Yamaguchi Prefecture in 2007. All water yam plants examined were infected with YMMV alone. All the Japanese yam and Chinese yam plants were infected with either JYMV alone or both JYMV and YMMV, suggesting that YMMV and JYMV are prevalent among field-grown yam plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号