首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bottom trawl fisheries have significant effects on benthic habitats and communities, and these effects have been studied intensively in the last decades. Most of these studies have related the changes in benthic community composition to direct effect of trawl gears on benthos, through imposed mortality. This line of argumentation ignores the fact that benthic organisms themselves form a complex food web and that bottom trawling may trigger secondary effects through this food web. We studied the potential consequences of such food web effects using a model of benthic predators, filter feeders, deposit feeders and fish. Our analysis shows how inclusion of ecological interactions complicates the relationship between bottom trawling intensity and the state of the benthic community and causes a non‐linear and non‐monotonic response of the benthic community to trawling. This shows that indirect food web effects can fundamentally alter the response of a benthic ecosystem to bottom trawling, compared to the direct effects of mortality. In light of our results, we argue that indicators of fishing impact on benthos need to account for positive as well as negative effects of bottom trawling, in order to accurately quantify the impact. Our findings highlight that understanding the food web ecology of the benthic ecosystem is crucial for understanding and predicting the effects of trawling on the seafloor. Work that promotes such understanding of the food web ecology seems a more productive research strategy than conducting ever more empirical trawling effect measurements.  相似文献   

2.
3.
Ecosystem‐based fisheries management calls for the consideration of the indirect and cumulative effects of fishing, in addition to estimating direct fishing mortality. Here, we quantify such effects of fishing fleets, and their interactions, using a spatially explicit Atlantis simulation model of the food web and fisheries in the California Current. Simulations testing the effects of single fleets suggested that bottom trawl, fixed gear, and hake (Merluccius productus) trawl primarily have direct impacts on their target and bycatch species. Few indirect effects from these three fleets extended through predator–prey links to other parts of the food web. In contrast, effects of the purse seine fleet extended beyond the three groups it harvested, strongly altering the abundance of predators, planktonic prey, and benthos. In terms of nine ecosystem attributes, our experiments involving single fleets identified six fleets that caused the bulk of negative impacts. Specific fleets impacted different aspects of the ecosystem, for instance with groundfish gears causing reductions in piscivore abundance, and hake trawl and purse seine increasing krill through reducing abundance of planktivores. In terms of interactions among fleets' effects, the vast majority of effects were simply additive – the combined effect of two fleets was simply the sum of the individual fleets' effects. The analyses offer one way to sharpen the focus of ecosystem‐based fisheries management in the California Current, emphasizing impacts and interactions of particular stressors.  相似文献   

4.
Climate‐induced nonlinearity in biological variability and non‐stationary relationships with physical drivers are crucial to understand responses of marine organisms to climate variability. These phenomena have raised concerns in the northeastern North Pacific, but are out of the spotlight in the northwestern North Pacific in spite of potential implications for this productive system under increased climate variability. Pelagic communities in the Kuroshio ecosystem have both ecological and economic importance. However, patterns of climate‐induced nonlinearity in pelagic communities are not well understood, and existence of non‐stationarity in their relationships with physical drivers remains obscure. Here, we compile large numbers of climatic, oceanic and biological long‐term time‐series data and employ diverse statistical techniques to reveal such climate‐induced nonlinearity and non‐stationarity. Results show that pelagic communities in the Tsushima and Pacific areas (major areas in the Kuroshio ecosystem) had regime shifts in the late 1990s and late 1980s, respectively. Winter sea surface temperatures in the Kuroshio Current path and in the eastern part of East China Sea, which are respectively affected by the Kuroshio Current and Siberian High, correlate with dominant variability patterns in their pelagic communities. Furthermore, non‐stationarity was identified with threshold years in the 1990s in the Tsushima area and in the 1980s in the Pacific area as a possible result of the declined variances in the Siberian High and Aleutian Low, respectively. Our findings provide insights on spatial differentiation of climate‐induced nonlinearity and non‐stationarity, which are valuable for the management of pelagic communities in the northwestern North Pacific under changing climatic conditions.  相似文献   

5.
Information on prey availability, diets, and trophic levels of fish predators and their prey provides a link between physical and biological changes in the ecosystem and subsequent productivity (growth and survival) of fish populations. In this study two long‐term data sets on summer diets of steelhead (Oncorhynchus mykiss) in international waters of the central North Pacific Ocean (CNP; 1991–2009) and Gulf of Alaska (GOA; 1993–2002) were evaluated to identify potential drivers of steelhead productivity in the North Pacific. Stable isotopes of steelhead muscle tissue were assessed to corroborate the results of stomach content analysis. We found the composition of steelhead diets varied by ocean age group, region, and year. In both the GOA and CNP, gonatid squid (Berryteuthis anonychus) were the most influential component of steelhead diets, leading to higher prey energy densities and stomach fullness. Stomach contents during an exceptionally warm year in the GOA and CNP (1997) were characterized by high diversity of prey with low energy density, few squid, and a large amount of potentially toxic debris (e.g., plastic). Indicators of good diets (high proportions of squid and high prey energy density) were negatively correlated with abundance of wild populations of eastern Kamchatka pink salmon (O. gorbuscha) in the CNP. In conclusion, interannual variations in climate, abundance of squid, and density‐dependent interactions with highly‐abundant stocks of pink salmon were identified as potential key drivers of steelhead productivity in these ecosystems. Additional research in genetic stock identification is needed to link these potential drivers of productivity to individual populations.  相似文献   

6.
Stock‐based and ecosystem‐based indicators are used to provide a new diagnosis of the fishing impact and environmental status of European seas. In the seven European marine ecosystems covering the Baltic and the North‐east Atlantic, (i) trends in landings since 1950 were examined; (ii) syntheses of the status and trends in fish stocks were consolidated at the ecosystem level; and (iii) trends in ecosystem indicators based on landings and surveys were analysed. We show that yields began to decrease everywhere (except in the Baltic) from the mid‐1970s, as a result of the over‐exploitation of some major stocks. Fishermen adapted by increasing fishing effort and exploiting a wider part of the ecosystems. This was insufficient to compensate for the decrease in abundance of many stocks, and total landings have halved over the last 30 years. The highest fishing impact took place in the late 1990s, with a clear decrease in stock‐based and ecosystem indicators. In particular, trophic‐based indicators exhibited a continuous decreasing trend in almost all ecosystems. Over the past decade, a decrease in fishing pressure has been observed, the mean fishing mortality rate of assessed stocks being almost halved in all the considered ecosystems, but no clear recovery in the biomass and ecosystem indicators is yet apparent. In addition, the mean recruitment index was shown to decrease by around 50% in all ecosystems (except the Baltic). We conclude that building this kind of diagnosis is a key step on the path to implementing an ecosystem approach to fisheries management.  相似文献   

7.
The western and central Pacific Ocean supports the world's largest tuna fisheries. Since the 1990s, the purse‐seine fishery has increasingly fished in association with fish aggregating devices (FADs), which has increased catches of juvenile bigeye and yellowfin tunas and vulnerable bycatch species (e.g., sharks). This has raised concerns regarding the sustainability of these species’ populations and the supporting ecosystem, but may provide improved food security of Pacific Island nations through utilisation of FAD‐associated byproduct species (e.g., wahoo). An ecosystem model of the western Pacific Warm Pool Province was used to explore the potential ecological impacts of varying FAD fishing effort (±50% or 100%) over 30 years. The ecosystem has undergone a significant change in structure since 1980 from heavy exploitation of top predators (e.g., tunas) and “fishing up the food web” of high‐trophic‐level non‐target species. The ecosystem appeared resistant to simulated fishing perturbations, with only modest changes (<10%) in the biomass of most groups, although some less productive shark bycatch species decreased by up to 43%, which had a subsequent positive effect on several byproduct species, the prey of sharks. Reduction of FAD effort by at least 50% was predicted to increase the biomass of tuna species and sharks and return the ecosystem structure to a pre‐industrial‐fishing state within 10 years. Spatial disaggregation of the model and integration of economic information are recommended to better capture ecological and economic changes that may result from fishing and/or climate impacts and to develop appropriate management measures in response.  相似文献   

8.
The demographic structure of populations is affected by life history strategies and how these interact with natural and anthropogenic factors such as exploitation, climate change, and biotic interactions. Previous work suggests that the mean size and age of some North American populations of Chinook salmon (Oncorhynchus tshawytscha, Salmonidae) are declining. These trends are of concern because Chinook salmon are highly valued commercially for their exceptional size and because the loss of the largest and oldest individuals may lead to reduced population productivity. Using long‐term data from wild and hatchery populations, we quantified changes in the demographic structure of Chinook salmon populations over the past four decades across the Northeast Pacific Ocean, from California through western Alaska. Our results show that wild and hatchery fish are becoming smaller and younger throughout most of the Pacific coast. Proportions of older age classes have decreased over time in most regions. Simultaneously, the length‐at‐age of older fish has declined while the length‐at‐age of younger fish has typically increased. However, negative size trends of older ages were weak or non‐existent at the southern end of the range. While it remains to be explored whether these trends are caused by changes in climate, fishing practices or species interactions such as predation, our qualitative review of the potential causes of demographic change suggests that selective removal of large fish has likely contributed to the apparent widespread declines in average body sizes.  相似文献   

9.
The fishing industry of the western and central regions of the coastal Gulf of Alaska (CGoA) directly employs over 17,000 people and processes fish with a wholesale value of US$618 million annually. Pacific halibut (Hippoglossus stenolepis) are a valued groundfish species because of the high quality of their flesh. In contrast, arrowtooth flounder (Atheresthes stomias) are much more abundant but of low value because their flesh degrades upon heating. Both are high trophic level predators but play different roles in the ecosystem because of differences in abundance and diet. Using an end‐to‐end ecosystem model, we evaluate the impact of alternate levels of fishing effort and large‐scale changes in oceanographic conditions upon both species, the ecosystem, and the fishing economy. Reduction of longline efforts to reduce Pacific halibut mortality led to reduction in total value of all CGoA landings but increase in value landed by sport fisheries, trawl fleets, and fish pot vessels as they exploit a greater share of available halibut, sablefish, and Pacific cod. Increased trawl effort to raise arrowtooth flounder mortality led to increase in total value of all landings but large reductions in value landed by longline, jig, fish pot, and sport fleets with greater competition for available Pacific cod, halibut, and sablefish. Oceanographic conditions that enhance pelagic food chains at the expense of benthic food chains negatively impact groundfish in general, though Pacific halibut and arrowtooth flounder are resilient to these effects because of the high importance of pelagic fish in their diets.  相似文献   

10.
Hundred-year decline of North Atlantic predatory fishes   总被引:23,自引:1,他引:23  
We estimate the biomass of high‐trophic level fishes in the North Atlantic at a spatial scale of 0.5° latitude by 0.5° longitude based on 23 spatialized ecosystem models, each constructed to represent a given year or short period from 1880 to 1998. We extract over 7800 data points that describe the abundance of high‐trophic level fishes as a function of year, primary production, depth, temperature, latitude, ice cover and catch composition. We then use a multiple linear regression to predict the spatial abundance for all North Atlantic spatial cells for 1900 and for each year from 1950 to 1999. The results indicate that the biomass of high‐trophic level fishes has declined by two‐thirds during the last 50‐year period, and with a factor of nine over the century. Catches of high‐trophic level fishes increased from 2.4 to 4.7 million tonnes annually in the late 1960s, and subsequently declined to below 2 million tonnes annually in the late 1990s. The fishing intensity for high‐trophic level fishes tripled during the first half of the time period and remained high during the last half of the time period. Comparing the fishing intensity to similar measures from 35 assessments of high‐trophic level fish populations from the North Atlantic, we conclude that the trends in the two data series are similar. Our results raise serious concern for the future of the North Atlantic as a diverse, healthy ecosystem; we may soon be left with only low‐trophic level species in the sea.  相似文献   

11.
Fishery management measures to reduce interactions between fisheries and endangered or threatened species have typically relied on static time‐area closures. While these efforts have reduced interactions, they can be costly and inefficient for managing highly migratory species such as sea turtles. The NOAA TurtleWatch product was created in 2006 as a tool to reduce the rates of interactions of loggerhead sea turtles with shallow‐set longline gear deployed by the Hawaii‐based pelagic longline fishery targeting swordfish. TurtleWatch provides information on loggerhead habitat and can be used by managers and industry to make dynamic management decisions to potentially reduce incidentally capturing turtles during fishing operations. TurtleWatch is expanded here to include information on endangered leatherback turtles to help reduce incidental capture rates in the central North Pacific. Fishery‐dependent data were combined with fishing effort, bycatch and satellite tracking data of leatherbacks to characterize sea surface temperature (SST) relationships that identify habitat or interaction ‘hotspots’. Analysis of SST identified two zones, centered at 17.2° and 22.9°C, occupied by leatherbacks on fishing grounds of the Hawaii‐based swordfish fishery. This new information was used to expand the TurtleWatch product to provide managers and industry near real‐time habitat information for both loggerheads and leatherbacks. The updated TurtleWatch product provides a tool for dynamic management of the Hawaii‐based shallow‐set fishery to aid in the bycatch reduction of both species. Updating the management strategy to dynamically adapt to shifts in multi‐species habitat use through time is a step towards an ecosystem‐based approach to fisheries management in pelagic ecosystems.  相似文献   

12.
The abundance and recruitment of anchovy Engraulis spp. and sardine Sardinops spp. alternate in a synchronized way across the Pacific. Convergent cross mapping (CCM) indicated that climate change drives the alternation of the two species in the California Current System. However, climate indices patterns in the western North Pacific contrast with those in the eastern North Pacific, despite synchronous species alternations occurring. Therefore, it is of great interest to clarify whether climate change, or any other factors, affects the population dynamics of Japanese anchovy and Japanese sardine in the western North Pacific. Using CCM, we tested whether climate change and interspecific interactions affect the population dynamics of these two species. We found that climate change affected recruitment, and we clarified the spatiotemporal pattern of this effect. This result supports the existing hypotheses that population dynamics are regulated by climate change in the western North Pacific. The present study also detected interspecific interactions between sardine and anchovy, which might promote the alternation of the two species, and has not been reported in other regions.  相似文献   

13.
Bottom trawl fishing provides substantial amounts of normally unavailable demersal prey to seabirds (e.g., discards), affecting their life‐history traits and population dynamics, as well as community structure. Within this framework, we studied seabird‐trawling interactions throughout the annual cycle in a poorly studied ecosystem in the Mediterranean, the Balearic archipelago, on a both species‐specific and a community level. Whereas the species‐specific approach showed a significant influence of season (phenology) on shaping seabird’s trawling attendance patterns, the spatio‐temporal coupling of regional community was a result of a complex interaction between fishery‐related variables. The most frequent and abundant species were the yellow‐legged gull Larus michahellis and Cory’s shearwater Calonectris diomedea, the latter attending vessels in higher numbers than expected from local population figures. Conversely, the remaining breeding species occurred in lower numbers than expected according to their local breeding populations, suggesting that discards were of relatively little importance. Discarding activity took place over the entire shelf and continental slope surrounding Mallorca, but especially in the southwest, adjacent to the breeding grounds of approximately 12% of the Balearic total seabird breeding population, including 13% the Balearic shearwater Puffinus mauretanicus world population. Overall discards corresponded to 0.74 of landings (range: 0.09–6.00) and consisted primarily of fish followed by crustaceans and molluscs (approximately 80, 15, and 5%, respectively). Seabird‐trawling interactions should be taken into account in the frame of an ecosystem‐based approach to fisheries management, and particular attention should be devoted to the critically endangered Balearic shearwater.  相似文献   

14.
New Zealand has led the world in restoration of marine fisheries since the introduction of the Quota Management System in 1986, but challenges remain in minimizing the ecosystem‐level effects of industrialized fishing. We analysed existing long‐term fisheries data sets from 1931 to 2015 in New Zealand to resolve trends in important ecological properties of major exploited fish communities. Increases in community dissimilarities of catch composition in 1931 and 1972, followed by increasing total landings, highlight major expansions of fishing grounds and exploited species during these periods. Mirroring global patterns, the remarkable rise in fishing power, demand and generation of new markets in New Zealand have all contributed to this expansion. Marine Trophic Indices (MTIs) of landings have decreased together with total catch after the year 2000, reflecting smaller catches with a higher composition of lower trophic‐level species in recent years. Differences in relative abundance of species estimated between fisheries‐dependent and fisheries‐independent data were observed, where high‐value species displayed better agreement in relative abundance between data sets. Despite being under a Quota Management System, temporal development of MTI values relative to the timing of industrial expansion of fisheries was remarkably similar to those observed in the North Sea and Brazil, with a single expansion and decline. MTI values presented better long‐term stability in the US fisheries analysed. Analysis of long‐term data and the development of well‐resolved ecological baselines will be the first step towards applying EBM to New Zealand fisheries, in keeping with global trends in fisheries management.  相似文献   

15.
北太平洋公海日本鲭资源分布及其渔场环境特征   总被引:1,自引:0,他引:1  
根据2014~2015年两年收集的北太平洋公海围拖网作业的日本鲭(Scomber japonicas,又称鲐鱼)生产月度数据,结合同期卫星遥感反演技术获取的海表温度(SST)、海水叶绿素a(Chl-a)浓度、海流等环境数据,运用渔获量重心法,地统计插值等方法,分析了北太平洋公海鲐鱼的资源分布情况与渔获量重心的时空变化及其与主要环境因子之间的关系。研究表明,鲐鱼渔场季节性差异明显,渔场重心集中分布在39°N~43°N、147°E~154°E范围内。两年渔场重心均呈现先向东北方向移动,自9月开始再向西南方向移动的趋势。GAM模型显示,北太平洋鲐鱼渔场的最适海表温度范围是16~18℃,最适叶绿素a浓度范围是0.3~0.8 mg·m~(-3),空间上集中分布在40°N~41°N、148°E~151°E,海流对鲐鱼渔场形成尤为重要。  相似文献   

16.
Declines of Steller sea lion (Eumetopias jubatus) populations in the Aleutian Islands and Gulf of Alaska could be a consequence of physical oceanographic changes associated with the 1976–77 climate regime shift. Changes in ocean climate are hypothesized to have affected the quantity, quality, and accessibility of prey, which in turn may have affected the rates of birth and death of sea lions. Recent studies of the spatial and temporal variations in the ocean climate system of the North Pacific support this hypothesis. Ocean climate changes appear to have created adaptive opportunities for various species that are preyed upon by Steller sea lions at mid‐trophic levels. The east–west asymmetry of the oceanic response to climate forcing after 1976–77 is consistent with both the temporal aspect (populations decreased after the late 1970s) and the spatial aspect of the decline (western, but not eastern, sea lion populations decreased). These broad‐scale climate variations appear to be modulated by regionally sensitive biogeographic structures along the Aleutian Islands and Gulf of Alaska, which include a transition point from coastal to open‐ocean conditions at Samalga Pass westward along the Aleutian Islands. These transition points delineate distinct clusterings of different combinations of prey species, which are in turn correlated with differential population sizes and trajectories of Steller sea lions. Archaeological records spanning 4000 yr further indicate that sea lion populations have experienced major shifts in abundance in the past. Shifts in ocean climate are the most parsimonious underlying explanation for the broad suite of ecosystem changes that have been observed in the North Pacific Ocean in recent decades.  相似文献   

17.
Fishing affects the seabed habitat worldwide on the continental shelf. These impacts are patchily distributed according to the spatial and temporal variation in fishing effort that results from fishers' behaviour. As a consequence, the frequency and intensity of fishing disturbance varies among different habitat types. Different fishing methodologies vary in the degree to which they affect the seabed. Structurally complex habitats (e.g. seagrass meadows, biogenic reefs) and those that are relatively undisturbed by natural perturbations (e.g. deep‐water mud substrata) are more adversely affected by fishing than unconsolidated sediment habitats that occur in shallow coastal waters. These habitats also have the longest recovery trajectories in terms of the recolonization of the habitat by the associated fauna. Comparative studies of areas of the seabed that have experienced different levels of fishing activity demonstrate that chronic fishing disturbance leads to the removal of high‐biomass species that are composed mostly of emergent seabed organisms. Contrary to the belief of fishers that fishing enhances seabed production and generates food for target fish species, productivity is actually lowered as fishing intensity increases and high‐biomass species are removed from the benthic habitat. These organisms also increase the topographic complexity of the seabed which has been shown to provide shelter for juvenile fishes, reducing their vulnerability to predation. Conversely, scavengers and small‐bodied organisms, such as polychaete worms, dominate heavily fished areas. Major changes in habitat can lead to changes in the composition of the resident fish fauna. Fishing has indirect effects on habitat through the removal of predators that control bio‐engineering organisms such as algal‐grazing urchins. Fishing gear resuspend the upper layers of sedimentary seabed habitats and hence remobilize contaminants and fine particulate matter into the water column. The ecological significance of these fishing effects has not yet been determined but could have implications for eutrophication and biogeochemical cycling. Simulation results suggest that the effects of low levels of trawling disturbance will be similar to those of natural bioturbators. In contrast, high levels of trawling disturbance cause sediment systems to become unstable due to large carbon fluxes between oxic and anoxic carbon compartments. In low energy habitats, intensive trawling disturbance may destabilize benthic system chemical fluxes, which has the potential to propagate more widely through the marine ecosystem. Management regimes that aim to incorporate both fisheries and habitat conservation objectives can be achieved through the appropriate use of a number of approaches, including total and partial exclusion of towed bottom fishing gears, and seasonal and rotational closure techniques. However, the inappropriate use of closed areas may displace fishing activities into habitats that are more vulnerable to disturbance than those currently trawled by fishers. In many cases, the behaviour of fishers constrains the extent of the impact of their fishing activities. Management actions that force them to redistribute their effort may be more damaging in the longer term.  相似文献   

18.
The American sand lance (Ammodytes americanus, Ammodytidae) and the Northern sand lance (A. dubius, Ammodytidae) are small forage fishes that play an important functional role in the Northwest Atlantic Ocean (NWA). The NWA is a highly dynamic ecosystem currently facing increased risks from climate change, fishing and energy development. We need a better understanding of the biology, population dynamics and ecosystem role of Ammodytes to inform relevant management, climate adaptation and conservation efforts. To meet this need, we synthesized available data on the (a) life history, behaviour and distribution; (b) trophic ecology; (c) threats and vulnerabilities; and (d) ecosystem services role of Ammodytes in the NWA. Overall, 72 regional predators including 45 species of fishes, two squids, 16 seabirds and nine marine mammals were found to consume Ammodytes. Priority research needs identified during this effort include basic information on the patterns and drivers in abundance and distribution of Ammodytes, improved assessments of reproductive biology schedules and investigations of regional sensitivity and resilience to climate change, fishing and habitat disturbance. Food web studies are also needed to evaluate trophic linkages and to assess the consequences of inconsistent zooplankton prey and predator fields on energy flow within the NWA ecosystem. Synthesis results represent the first comprehensive assessment of Ammodytes in the NWA and are intended to inform new research and support regional ecosystem‐based management approaches.  相似文献   

19.
The ocean is affected by multiple anthropogenic stressors including climate change, the effects of which are already evident in many ocean ecosystems. The ABACuS v2 end‐to‐end model together with climate projections from the NEMO‐MEDUSA 2.0 model were used to evaluate the effects of fishing, warming and horizontal and vertical mixing on the southern Benguela upwelling system. Of the drivers examined in this study, warming had the greatest effect on species biomass, with mainly negative effects. The magnitude of the impacts of warming intensified from the RCP 2.6 to the 8.5 emission scenario. Fishing negatively affected demersal and large pelagic fish, which in turn resulted in a biomass increase of forage fish due to a decrease in predation pressure. Water mixing was found to have minor indirect effects on zooplankton biomass and fish. The responses of species and species groups to the combined effects of fishing and warming were approximately equally divided between additive, synergistic and antagonistic. Interpretation of our model results suggests that the southern Benguela system is likely to be affected by climate change, including substantial changes in the abundance of some species important to the region's fisheries. Future planning for fisheries needs to take this into account, including through management that strives to maintain the resilience of key species and the system as a whole. In line with previous studies on the southern Benguela, the results reinforce the importance of including consideration of the indirect and combined impacts of climate change and fishing in management and planning.  相似文献   

20.
A qualitative understanding of the long‐term variation in the population dynamics of Yellow Sea (YS) herring is particularly important for clarifying the evolutionary processes and driving mechanisms of the YS large marine ecosystem. Unfortunately, because of a lack of long‐term, continuous, and simultaneous monitoring data, the specific driving processes and mechanisms of climate effects on the population dynamics of YS herring remain largely unknown. In response to this scientific issue, we preliminarily propose the idea of reconstructing long‐term changes in YS herring abundance over the past 590 years (AD 1417–2004) based on historical documents and attempt to explore the impacts of climate on the population. Our results show that YS herring abundance maintained at a relatively high level from AD 1417 to 1870 (during the Little Ice Age); in contrast, the population declined significantly from AD 1870 to 2004 at different rates. In addition, we also found that there were strong relationships between the population abundance of YS herring and the Pacific decadal oscillation (PDO) and drought/flood cycles. We suggest that the fluctuations in YS herring abundance may be influenced by ocean–climatic circulation shifts throughout the North Pacific, especially the PDO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号