首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
王志远  李金库  李昀  王灵钰  齐鑫  李吉方  温海深 《水产学报》2023,47(8):089104-089104
为探究ncc、nkcc基因在花鲈渗透调节中发挥的作用,实验通过全基因组鉴定、多重序列比对、系统进化树构建以及蛋白结构预测对花鲈ncc进行了鉴定及序列分析,利用实时荧光定量PCR (qRT-PCR)检测ncc和nkcc在海水、淡水花鲈鳃组织中的表达水平,利用原位杂交技术确定ncc2和nkcc1a在海水及淡水花鲈鳃中的表达位置。结果显示,从花鲈中鉴定出2个ncc基因,即ncc1和ncc2,其编码序列(CDS)长度分别为2 691和3 120bp,编码896和1 039个氨基酸,在进化上具有保守性。ncc2在淡水花鲈鳃组织中的表达量显著高于海水,而nkcc1a在海水花鲈鳃组织中的表达量显著高于淡水,ncc1、nkcc1b、nkcc2在海淡水中的表达量则无显著差异。淡水适应过程中花鲈鳃组织中的ncc2的表达量逐渐上调,而nkcc1a的表达量逐渐下调;海水适应过程则呈现相反的表达趋势。此外,原位杂交结果显示,ncc2和nkcc1a基因分别位于淡水与海水中鳃组织的相邻鳃小片间的鳃丝上皮。以上结果表明,ncc2和nkcc1a基因分别编码淡水及海水花鲈鳃中重要的Na+及Cl  相似文献   

2.
The capacity of cortisol, ovine growth hormone (oGH), recombinant bovine insulin-like growth factor I (rbIGF-I) and 3,3,5-triiodo-l-thyronine (T3) to increase hypoosmoregulatory capacity in the euryhaline teleost Fundulus heteroclitus was examined. Fish acclimated to brackish water (BW, 10 ppt salinity) were injected with a single dose of hormone suspended in oil and transferred to seawater (SW, 35 ppt salinity) 10 days post-injection. Fish were sampled 24 h after transfer and plasma osmolality and gill Na+, K+-ATPase activity were examined. Transfer from BW to SW induced significantly increased plasma osmolality but not gill Na+, K+-ATPase activity. Cortisol (50 g g–1 body weight) improved the ability to maintain plasma osmolality and to increase gill Na+, K+-ATPase activity. oGH (5 g g–1 body weight) also increased hypoosmoregulatory ability and gill Na+, K+-ATPase activity. A cooperation between oGH and cortisol was observed in increasing hypoosmoregulatory ability but not in increasing gill Na+, K+-ATPase activity. rbIGF-I (0.5 g g–1 body weight) alone was without effect in increasing salinity tolerance or gill Na+, K+-ATPase activity. rbIGF-I and oGH showed a positive interaction in increasing salinity tolerance, but not gill Na+, K+-ATPase activity. Treatment with T3 (5 g g–1 body weight) alone did not increase salinity tolerance or gill Na+, K+-ATPase activity, and there was no consistent significant interaction between cortisol and T3 or between GH and T3. The results confirm the classical role of cortisol as a seawater-adapting hormone and indicate an interaction between cortisol and the GH/IGF-I axis during seawater acclimation of Fundulus heteroclitus.  相似文献   

3.
4.
Whole animal transepithelial potentials (TEP) of yearling coho salmon (Oncorhynchus kisutch) in fresh water and after transfer to seawater were recorded throughout parr-smolt transformation (smoltification) from February to August 1984, along with plasma Na+ and Cl concentrations and osmolality. Based on plasma ion regulation in seawater, the yearling coho in this study completed smoltification and attained sea-water adaptability in April. TEP in freshwater fish decreased (became inside-negative) after smoltification, and the TEP increased significantly (P < 0.01) after seawater transfer. When fish were transferred into seawater, thyroxine increased TEP of the transferred smolts by approximately 30% over the control level (P < 0.01) in April, but this did not occur when freshwater postsmolts were transferred in July and August. Hypophysectomy increased TEP (P < 0.01) in fresh water; it did not affect the TEP of the fish after seawater transfer. Ovine prolactin (3 g/g body weight) implanted into seawater-adapted fish caused a reduction in TEP (P < 0.01) when fish were exposed to fresh water. Whole-animal TEP appears to provide a valuable index of the completion of smoltification (April–May) and a useful tool for investigating the endocrine control of salmonid osmoregulation.  相似文献   

5.
The aim of this work was to determine the effects of supplemental dietary sodium chloride on salt water acclimation of tilapia Oreochromis niloticus. Fish were fed a basal diet supplemented with NaCl (8%) during three weeks in fresh water (FW) and then transferred to salt water (SW) at 15 and 20. Changes in plasma osmolality, chloride ion concentration (Cl), plasma level of cortisol and gill Na+, K+-ATPase activity were measured at 6, 12, 24, 48, 72 and 168 h after transfer to 15SW, while the higher strength SW group (20) was only monitored up to 24 h. Morphological changes in the gill mitochondria-rich (MR) cells were examined in relation to environmental salinity. The changes associated with dietary NaCl were sporadic and of small magnitude. The plasma osmolality and Cl increased immediately after transfer up to 12–24 h, but fish fed dietary salt (S) showed lower values than the control group (C). The S group showed higher plasma levels of cortisol than the control, which maintained its initial levels during the experiment. Gill Na+, K+-ATPase activity of the S group began to increase in the first hours after transfer, reaching maximum at 12 h and returned to basal level at 24 h, while the control group maintained basal levels. The differences between gill Na+, K+-ATPase activity of S and C fish were significant (p < 0.05) at 12 h. Transmission electron microscopy (TEM) revealed that MR cells in SW show more mitochondria and a more developed tubular system arising from the basolateral membrane. The MR cells of both groups frequently formed a multicellular complex in SW, consisting of a main MR and one or more accessory cells. Such complexes are rarely observed in FW. Some MR cells of fish fed supplemented dietary salt displayed convex apical membrane in FW.  相似文献   

6.
The effects of ovine prolactin (oPRL) on osmoregulatory ability (electrolyte balance, plasma osmolality and activity of gill chloride cells and gill Na+/K+‐ATPase) and stress responses (plasma cortisol, glucose, aspartate aminotransferase: AST and alanine aminotransferase: ALT) were investigated in black porgy transferred to freshwater (FW). Fish in seawater (SW) were injected twice at a 24 h interval with oPRL (at 1, 3, or 5 μg g–1 body weight) or vehicle (0.9% NaCl) and then transferred to FW. They were sampled 3 days after the transfer. With oPRL at 5 μg g–1, levels of plasma Na+ and Cl? and osmolality were significantly higher than in saline‐treated fish, whereas gill CCs number and Na+/K+‐ATPase activity were lower. Also, the 5 μg g–1oPRL treatment led to significantly lower plasma cortisol levels than did saline treatment. However, there were no significant differences in plasma AST and ALT between groups. These results support the positive osmoregulatory role of PRL in black porgy during FW adaptation.  相似文献   

7.
The effects of trout recombinant growth hormone (rtGH) treatment (0.25 g g–1 by intraperitoneal implant) on plasma ionic regulation, extracellular acid-base status and respiration were investigated in freshwater rainbow trout and during a 4-day period after direct transfer into seawater (35 g 1–1).In freshwater, rtGH treatment resulted in a significant increase in gill (Na+, K+) ATPase activity and in standard metabolism (MO2). The latter would mainly result from a higher rate of protein synthesis. Direct transfer from freshwater to seawater induced a decrease in arterial blood pH, far more pronounced in controls than in treated fish. This effect could be regarded in both groups mainly as a metabolic acidosis resulting from extracellular ion composition changes (i.e., an increase higher in chloride than in sodium, more marked in controls than in treated fish). As the rise in PaCO2, in spite of an increase in ventilatory activity, is more significant in controls than in treated fish, it can be assumed that rtGH treatment lightened the decrease in the gas diffusing capacity of gills induced by transfer to seawater. The initial increase in MO2 in both controls and treated fish could be the consequence of an increase in energetic cost of ventilation and osmoregulation. Then, in treated fish, the persistent high level of M may indicate a stimulation of intermediary metabolism by rtGH. In addition, the absence in treated fish of an increase in plasma lactate concentration, as observed in controls, would indicate that rtGH attenuated the decrease in O2 affinity of haemoglobin foreseeable from the metabolic acidosis.This article is dedicated to Professor Claude Peyraud, whose recent death has deeply saddened us. We respectfully pay a tribute to his memory.  相似文献   

8.
The effect of cortisol on osmoregulatory parameters was studied in rainbow trout, (Salmo gairdneri), kept in freshwater (FW) and/or transferred to seawater (SW). Repeated injections of 20 μg cortisol/g fish stimulated gill and gut Na+/K+-ATPase activity and reduced plasma Na+ and Cl levels after 2 weeks of treatment in FW-adapted fish. Cortisol doses of 0.05 and 1.0 μg/g were without effect. Repeated injections of 10 μg cortisol/g stimulated gill Na+/K+-ATPase activity and reduced plasma Na+ and Cl levels in fish in FW, and significantly improved ion regulation after their transfer to 28SW. Higher doses of cortisol (10 and 20 μg/g) induced hyperglycemia, whereas low doses (0.05 and 1.0 μg/g were without effect or induced hypoglycemia. Plasma glucose levels decreased in cortisol-treated fish transferred to SW, whereas transient hyperglycemia was seen in the control fish.  相似文献   

9.
Red drum (Sciaenops ocellatus) is a euryhaline fish commonly found in the Gulf of Mexico and along the Atlantic coast of North America. Because of high commercial demand and its euryhaline characteristics, aquaculture of this species has diversified from marine to low-salinity aquaculture systems. In recent years, interest in the feasibility of producing red drum in inland freshwater systems has grown and this prompted us to investigate its osmoregulatory capacity after rearing for 8 months in a freshwater aquaculture system. We compared the activities of several genes and enzymes involved in the osmoregulatory process in freshwater-acclimatized (FW) and seawater (SW) red drum. The gene expression profiles were variable: the expression of genes encoding Na+/K+-ATPase (NKA) and the cystic fibrosis transmembrane regulator (CFTR) was slightly higher in SW than FW fish, while phosphoenolpyruvate carboxykinase (PEPCK) and the glucocorticoid receptor messenger RNA (mRNA) levels were higher in FW red drum. The total plasma K concentration was 60.3% lower, and gill NKA activity was 63.5% lower in FW than in SW fish. PEPCK activity was twofold higher in FW than in SW red drum. Similarly, liver glycogen was 60% higher in FW fish. In summary, both gene expression and the enzyme activity data support the phenotypic plasticity of red drum and suggest that the limited capacity for ion homeostasis observed, in particular the low plasma K concentration, was due to the composition of freshwater and does not necessarily reflect a physiological inability to osmoregulate.  相似文献   

10.
Primary cultures of gill cells from freshwater and seawater-adapted trout were compared. These cultures, developed from an explant technique, exhibited a similar growth. Ultrastructural comparison between cultured and in situ cells showed that most of the cells in primary culture resembled the so called 'pavement' cells, whereas chloride cells were not observed in the cultured epithelium. Several other cells types, representing a minority of cells in primary culture, were observed (mucous cells, vesicolar cells, cells with large dense granules and cells containing lysosomes). Morphological observations of cultured pavement cells from freshwater and seawater trout gills were similar, although the density of cellular organelles in cells was less under freshwater conditions. In addition to the morphological comparison, the regulation of intracellular pH in cultured cells from freshwater and seawater gills was examined. Resting pHi was not different for freshwater or seawater gill cells. A sodium-dependent and amiloride-sensitive mechanism was found in cultured cells. Under the experimental conditions used here, this mechanism was most likely a Na+/H+ antiporter in pavement cells from freshwater and seawater-adapted trout. The comparison of pHi recovery after acidification of cells from freshwater and seawater gills showed that the activity or the number of antiporters was higher for cells from seawater trout gill.  相似文献   

11.
Tilapia has a significant potential for culture in saline environments. There is an increasing demand among tilapia producers to develop a tilapia hybrid that can survive well in marine water conditions. This study compared mean weight (MWT), daily growth rate (DGR), specific growth rate (SGR), survival, feed conversion ratio (FCR), condition factor (K), production rate (PR) and rate of skin lesions, and tail and fin rot as well as eye cataract in the Genetically Improved Farmed Tilapia strain (GIFT) of the Nile tilapia, Oreochromis niloticus (NN) and the salt‐tolerant Oreochromis spilurus (SS), and their F1 reciprocal hybrids; O. niloticus ♀ x O. spilurus ♂ (NS) and O. spilurus ♀ x GIFT O. niloticus ♂ (SN) in freshwater (0 g L?1) and seawater (40 g L?1). Fish (3.5 g) were stocked at 150‐fish m?3 and fed with sea bream pellets (47% protein) for 180 days. Results showed that in seawater, the SN hybrid had the highest values for MWT (165.9 g), DGR (0.9 g fish?1 day?1), SGR (2.14% day?1), survival (96.3%), PR (23.9 kg m?3) and best FCR (1.53) followed by the NS hybrid and the NN parent. Both hybrids had significantly lower rates of skin lesions and fin and tail rot than the NN genotype. In freshwater, the NN had the highest values for MWT (255.1 g), DGR (1.40 g fish?1 day?1), SGR (2.38% day?1), K (2.13%) and PR (34.9 kg m?3) followed by the NS and SN hybrids. High estimate of heterosis for MWT (41.3%), DGR (42.5%), SGR (10.7%) and survival (22.1%) was obtained in the hybrids reared in seawater, indicating that a hybrid vigor was produced and the fast growth trait from the GIFT parent was successfully combined with the salinity tolerance trait from the O. spilurus parent. The better growth performance and survival of the SN hybrid in seawater indicate that this hybrid is more suitable for culture in seawater than its reciprocal hybrid.  相似文献   

12.
We have previously reported growth-promoting effects of recombinant bovine growth hormone (rbGH) in Mozambique tilapia, Oreochromis mossambicus, after 4 weekly injections or a single injection of slow-releasing formulation (Posilac®) (Leedom et al. 2002). In order to obtain further understanding of the role of the growth hormone (GH)-insulin-like growth factor-I (IGF-I) axis in growth in the tilapia, the effects of rbGH on plasma and mRNA levels of IGF-I were examined. Plasma IGF-I levels were significantly increased after rbGH and Posilac® injections, and a significant correlation was observed between plasma IGF-I levels, body length and mass in both treatments. IGF-I mRNA levels in the liver and in the skeletal muscle were also significantly increased after rbGH and Posilac® injections, indicating that IGF-I gene expression in these tissues is under control of circulating GH. IGF-I mRNA levels in the gill were not affected by treatment. Liver IGF-I mRNA levels were significantly correlated with body length and with body mass after rbGH and Posilac® injections. These results indicate that the growth-promoting effect of rbGH in this species is mediated to a significant extent via its stimulation of hepatic production of IGF-I and the resulting increase in plasma IGF-I, and also possibly through locally produced IGF-I in the skeletal muscle, acting in a paracrine or autocrine fashion.  相似文献   

13.
Osmoregulation plays an important role in the migration process of catadromous fish. The osmoregulatory mechanisms of tropical marbled eel (Anguilla marmorata), a typical catadromous fish, did not gain sufficient attention, especially at the molecular level. In order to enrich the protein database of A. marmorata, a proteomic analysis has been carried out by iTRAQ technique. Among 1937 identified proteins in gill of marbled eel, the expression of 1560 proteins (80 %) was quantified. Compared with the protein expression level in the gill of marbled eel in freshwater (salinity of 0 ‰), 336 proteins were up-regulated and 67 proteins were down-regulated in seawater (salinity of 25 ‰); 33 proteins were up-regulated and 32 proteins were down-regulated in brackish water (salinity of 10 ‰). These up-regulated proteins including Na+/K+-ATPase, V-type proton ATPase, sodium–potassium–chloride co-transporter and heat shock protein 90 were enriched in many KEGG-annotated pathways, which are related to different functions of the gill. The up-regulated oxidative phosphorylation and seleno-compound metabolism pathways involve the synthesis and consumption of ATP, which represents extra energy consumption. Another identified pathway is the ribosome pathway in which a large number of up-regulated proteins are involved. It is also more notable that tight junction and cardiac muscle contraction pathways may have correlation with ion transport in gill cells. This is the first report describing the proteome of A. marmorata for acclimating to the change of salinity. These results provide a functional database for migratory fish and point out some possible new interactions on osmoregulation in A. marmorata.  相似文献   

14.
15.
Facilitative glucose transporter 1 (GLUT1) is a transporter protein for glucose transport via the plasma membrane of the cells to provide energy through carbohydrate metabolism. GLUT1 cDNA from Litopenaeus vannamei was obtained and analysed in this study. Full‐length GLUT1 cDNA is 2062 bp long and contained a 1506‐bp ORF encoding a 502 amino acid protein, a 270‐bp 5′UTR and a 284‐bp 3′UTR. When shrimp were under acute low salinity stress, the expression in hepatopancreas, muscle, gill and eyestalk was all up‐regulated at 12 h (P < 0.05) and 96 h (P < 0.05), while the expression in the four tissues was all down‐regulated at 6 h (P < 0.05) and 48 h (P < 0.05) . The expression in the muscle of shrimp at water salinity of 3 was lower than that at water salinity of 30 independent of dietary carbohydrate levels, while expression in hepatopancreas, gill and eyestalk was up‐regulated at 200 and 300 g kg?1 carbohydrate levels. The expression in all tissues fed glucose was up‐regulated when compared to the expression in shrimp held at a water salinity of 30. This study suggests that GLUT1 is a conserved protein in L. vannamei, and changes in expression due to environmental salinity and dietary carbohydrate level and source.  相似文献   

16.
AMP-activated protein kinase (AMPK) is a highly conserved and multi-functional protein kinase that plays important roles in both intracellular energy balance and cellular stress response. In the present study, molecular characterization, tissue distribution and gene expression levels of the AMPK α1 and α2 genes from turbot (Scophthalmus maximus) under salinity stress are described. The complete coding regions of the AMPK α1 and α2 genes were isolated from turbot through degenerate primers in combination with RACE using muscle cDNA. The complete coding regions of AMPK α1 (1722 bp) and α2 (1674 bp) encoded 573 and 557 amino acids peptides, respectively. Multiple alignments, structural analysis and phylogenetic tree construction indicated that S. maximus AMPK α1 and α2 shared a high amino acid identity with other species, especially fish. AMPK α1 and α2 genes could be detected in all tested tissues, indicating that they are constitutively expressed. Salinity challenges significantly altered the gene expression levels of AMPK α1 and α2 mRNA in a salinity- and time-dependent manners in S. maximus gill tissues, suggesting that AMPK α1 and α2 played important roles in mediating the salinity stress in S. maximus. The expression levels of AMPK α1 and α2 mRNA were a positive correlation with gill Na+, K+-ATPase activities. These findings will aid our understanding of the molecular mechanism of juvenile turbot in response to environmental salinity changes.  相似文献   

17.
The osmoregulatory ability of chum salmon (Oncorhynchus keta), reared in fresh water for a prolonged period, was examined by transferring them directly to seawater and then back to fresh water. When fry and juveniles weighing 0.3–125g, reared in fresh water for 1.5–13 months, were transferred directly to seawater, they adjusted their plasma Na+ concentration to the seawater-adapted level within 12–24h. When they were transferred back to fresh water after having been adapted to seawater for 2 weeks, the plasma Na+ level gradually decreased during the first 12–24h, and then increased to reattain the initial freshwater level after 5–7 days. No mortality was observed during the experiment except among the smallest fry weighing about 0.3g after transfer to seawater (2.1%). The maintenance of good osmoregulatory ability of the chum salmon for a prolonged period in fresh water seems to be unique among Pacific salmon, with the possible exception of the pink salmon.Changes in plasma levels of hormones during the transfer experiments were recorded in juveniles reared in fresh water for 13 months. Prolactin levels increased maximally 3 days after transfer from seawater to fresh water, as would be expected from its well-established role in freshwater adaptation in several euryhaline teleosts. In addition, an increase in plasma growth hormone was observed during the first 12h after seawater transfer, along with a tendency towards a decrease during freshwater transfer, suggesting an important role for this hormone in seawater adaptation. There were no consistent changes in plasma levels of thyroxine and cortisol during freshwater to seawater or seawater to freshwater transfer.  相似文献   

18.
为了探讨盐碱胁迫条件下鱼类渗透生理调节机制,以尼罗罗非鱼(Oreochromis niloticus)为实验材料, PCR扩增得到了Na+/HCO3-共转运子(NBCe1)基因cDNA部分序列,比较了单盐(盐度10、盐度15)、单碱(1.5 g/L、3 g/L NaHCO3)、盐碱混合(盐度10,碱度1.5 g/L;盐度15,碱度3 g/L)胁迫后不同时间(0 h、6 h、12 h、24 h、48 h、72 h、96 h)血清渗透压、离子浓度(Na+、K+、Cl-、Ca2+)以及鳃碳酸酐酶(CA)活性、CANBCe1基因mRNA表达变化。结果显示,不同胁迫条件下,血清渗透压、离子浓度、鳃组织CA酶活、CANBCe1基因mRNA表达变化均与胁迫强度呈正相关。随时间推移,血清渗透压、离子浓度呈现先上升后下降的变化趋势,单盐、盐碱混合组血清渗透压值较单碱组高。单盐、单碱、盐碱混合组中, NBCe1基因mRNA在鳃中均呈略微上调,但不显著(P>0.05)。单碱组和盐碱混合组鳃CA活性较单盐组高,低盐碱胁迫(盐度10,碱度1.5 g/L)下CA活性较晚达最高值;不同胁迫条件下, CA基因mRNA表达均表现上调,单碱、盐碱混合组更为显著(P<0.05),推测CA较NBCe1对体内HCO3-转运作用更为显著。研究结果为尼罗罗非鱼盐碱适应生理调节提供了基础资料。  相似文献   

19.
In this study, full-length tilapia transferrin (OnTF) isolated from liver cDNA of Nile tilapia (Oreochromis niloticus) was found to have an open reading frame of 2,091-bp encoding 696 amino acid residues. Two additional amino acids: Gly369 and Gly370 were observed compared with the reported Nile tilapia transferrin protein sequence. Pre-mature protein has a predicted molecular weight of 78.2 kDa, while mature protein is 73.28 kDa in size. Comparative sequence analysis with transferrin from other species revealed two major putative iron-binding domains designated as the N-lobe and the C-lobe in accordance with the transferrin protein characteristics. The predicted tertiary structure of tilapia transferrin confirmed the presence of iron and anion-binding sites on both lobes that are conserved among transferrins from other species. Quantitative real-time PCR analysis showed significantly higher expression of tilapia transferrin gene in liver than in other tissues (p < 0.05). Transferrin expression in tilapia experimentally infected with 106 and 108 colony-forming units mL?1 of Streptococcus agalactiae was significantly upregulated at 24 and 12 h post-infection (hpi), respectively, and decreased afterward. Iron-deficiency in serum of bacterially infected fish was detected at 48 and 24 hpi, respectively. The expression pattern of the transferrin gene and the iron levels of infected tilapia in this study were consistent with the function of transferrin in innate immunity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号