首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carnosine occurs naturally in meat and meat products in significant quantity, and it possesses strong antioxidant activity that inhibits lipid oxidation and enhances shelf life. In this study, the effects of carnosine on thermal flavor generation were investigated using the model system of cysteine and ribose, which was heated to the roasting temperature of 180 degrees C for 2 h at pH 5 and pH 8.5. The results indicated that carnosine affected volatile formation in a complex manner. Volatiles identified from the liquid phase of the reaction systems of ribose and cysteine showed that the sulfur-containing compounds such as thiophenes, thiazoles, and polysulfides were the most abundant compounds. The addition of carnosine into the reaction mixtures in general caused a reduction in contents of thiophenes and some important meaty flavor compounds such as 2-methyl-3-furanthiol, 2-furfurylthiol, and their associated dimers. On the other hand, it facilitated the generation of several important nitrogen-containing volatiles such as pyrazine, methylpyrazine, 2,6-dimethylpyrazine, and other alkyl pyrazines and thiazoles, which are known to elicit roasty and nutty flavor notes. The results suggested that carnosine acts as a nitrogenous source to facilitate the formation of nitrogen-containing compounds, possibly by degradation to form ammonia.  相似文献   

2.
Acrylamide levels in cooked/processed food can be reduced by treatment with citric acid or glycine. In a potato model system cooked at 180 degrees C for 10-60 min, these treatments affected the volatile profiles. Strecker aldehydes and alkylpyrazines, key flavor compounds of cooked potato, were monitored. Citric acid limited the generation of volatiles, particularly the alkylpyrazines. Glycine increased the total volatile yield by promoting the formation of certain alkylpyrazines, namely, 2,3-dimethylpyrazine, trimethylpyrazine, 2-ethyl-3,5-dimethylpyrazine, tetramethylpyrazine, and 2,5-diethyl-3-methylpyrazine. However, the formation of other pyrazines and Strecker aldehydes was suppressed. It was proposed that the opposing effects of these treatments on total volatile yield may be used to best advantage by employing a combined treatment at lower concentrations, especially as both treatments were found to have an additive effect in reducing acrylamide. This would minimize the impact on flavor but still achieve the desired reduction in acrylamide levels.  相似文献   

3.
Thermal reactions of cysteine/furfural and cysteine/ribose mixtures were studied in model systems to gain more insight into the influence of structured fluids such as L(2) microemulsions and cubic phases on the generation of aroma compounds. Formation of 2-furfurylthiol from cysteine/furfural was particularly efficient in L(2) microemulsions and cubic phases compared to aqueous systems. The reaction led to the formation of two new sulfur compounds, which were identified as 2-(2-furyl)thiazolidine and, tentatively, N-(2-mercaptovinyl)-2-(2-furyl)thiazolidine. Similarly, generation of 2-furfurylthiol and 2-methyl-3-furanthiol from cysteine/ribose mixtures was strongly enhanced in structured fluids. The cubic phase was shown to be even more efficient in flavor generation than the L(2) microemulsion. It was denoted "cubic catalyst" or "cubic selective microreactor". The obtained results are interpreted in terms of a surface and curvature control of the reactions defined by the structural properties of the formed surfactant associates.  相似文献   

4.
The flavor stability of an aqueous solution of a savory model process flavoring based on ribose and cysteine was investigated during accelerated storage at 50 degrees C. Of the three sulfur-containing flavor-impact components investigated, 2-methyl-3-furanthiol was found to be the least stable (59% decrease/24 h), and it was followed by 2-furfurylthiol (28% decrease/24 h), 2-mercapto-3-butanone (14% decrease/24 h), and 2,5-dimethyl-4-hydroxy-3(2H)-furanone (max. 10% decrease/24 h). Both cysteine and ribose were found to affect the stability of various flavor compounds. A mechanism for the instability of 2-methyl-3-furanthiol is proposed, and was confirmed by H-D exchange experiments.  相似文献   

5.
This paper compares the volatile constituents of model systems containing the important meat aroma precursors cysteine and ribose, with and without either methyl linoleate, an n-6 fatty acid, or methyl alpha-linolenate, an n-3 acid, both of which are present in meat. Many of the volatile compounds formed from the reaction between cysteine and ribose were not formed, or formed in lower amounts, when lipid was present. This may be due to the reaction between hydrogen sulfide, formed from the breakdown of cysteine, and lipid degradation products. In addition, cysteine and ribose modified lipid oxidation pathways, so that alcohols and alkylfurans were formed rather than saturated and unsaturated aldehydes. Several volatile compounds, which have been found at elevated levels in cooked meat from animals fed supplements high in n-3 acids, were formed when methyl alpha-linolenate reacted with cysteine and ribose. The possible effects of increasing the n-3 content of meat upon flavor formation during cooking are discussed.  相似文献   

6.
Mixtures of cysteine, reducing sugar (xylose or glucose), and starch were extrusion cooked using feed pH values of 5.5, 6.5, and 7.5 and target die temperatures of 120, 150, and 180 degrees C. Volatile compounds were isolated by headspace trapping onto Tenax and analyzed by gas chromatography--mass spectrometry. Eighty and 38 compounds, respectively, were identified from extrudates prepared using glucose and xylose. Amounts of most compounds increased with temperature and pH. Aliphatic sulfur compounds, thiophenes, pyrazines, and thiazoles were the most abundant chemical classes for the glucose samples, whereas for xylose extrudates highest levels were obtained for non-sulfur-containing furans, thiophenes, sulfur-containing furans, and pyrazines. 2-Furanmethanethiol and 2-methyl-3-furanthiol were present in extrudates prepared using both sugars, but levels were higher in xylose samples. The profiles of reaction products were different from those obtained from aqueous or reduced-moisture systems based on cysteine and either glucose or ribose.  相似文献   

7.
The thermal reaction between cysteine and furfural was investigated at 65 degrees C in five-component food grade oil/water (O/W) microemulsions of R-(+)-limonene/ethanol, EtOH/water/propylene glycol, PG/Tween 60 as apart of a systematic study on the generation of aroma compounds by utilizing structured W/O and O/W fluids. The furfural-cysteine reaction led to the formation of unique aroma compounds such as 2-furfurylthiol (FFT), 2-(2-furanyl)thiazolidine (main reaction product), 2-(2-furanyl)thiazoline, and N-(2-mercaptovinyl)-2-(2-furanyl)thiazolidine. These products were determined and characterized by GC-MS. Enhancement in flavor formation is termed "microemulsion catalysis". The chemical reaction occurs preferably at the interfacial film, and therefore a pseudophase model was assumed to explain the enhanced flavor formation. The product internal composition is dictated by process conditions such as temperature, time, pH, and mainly the nature of the interface. Increasing water/PG ratio leads to a dramatic increase in the initial reaction rate (V(0)). V(0) increased linearly as a function of the aqueous phase content, which could be due to the increase in the interfacial concentration of furfural. Microemulsions offer a new reaction medium to produce selective aroma compounds and to optimize their formation.  相似文献   

8.
董烨  张益奇  张晓頔  胡学佳  戴志远 《核农学报》2022,36(11):2199-2209
为进一步利用鱼类加工副产物,采用微波技术预处理鳙鱼皮,碱性蛋白酶酶解制备鳙鱼皮水解物(FSH),将其与葡萄糖、木糖和核糖进行美拉德反应,评价美拉德反应产物的抗氧化活性和挥发性风味物质。结果表明,美拉德反应显著提高了鳙鱼皮水解物的抗氧化活性,核糖美拉德反应产物的抗氧化活性最高,在135℃、35 min条件下,核糖美拉德反应产物的总氧化活性为2 156 μmol·L-1 FeSO4,DPPH自由基清除能力达到96.53%,超氧阴离子自由基清除能力达到88.08%。采用固相微萃取-气相色谱-质谱联用(SPME-GC-MS)分析美拉德反应产物的挥发性风味物质发现,呈肉香味的吡嗪、呋喃类杂环化合物相对含量增加,从而改善了鳙鱼皮水解物的风味。本研究结果为制备食品天然抗氧化剂提供了理论依据,为鱼类加工副产物高值化开发与利用提供了参考。  相似文献   

9.
The headspace volatiles produced from buffered and unbuffered cysteine model systems, containing inosine 5'-monophosphate, ribose 5-phosphate, or ribose, were examined by GC-MS. Sulfur compounds dominated the volatiles of all systems and included mercaptoketones, furanthiols, and disulfides. The inosine monophosphate systems produced much lower quantities of volatiles than ribose phosphate or ribose systems. In the systems buffered with phosphate or phthalate buffers, both ribose and ribose phosphate systems gave similar quantities of sulfur volatiles. However, in the absence of buffer, the ribose system was relatively unreactive, especially for volatiles formed via the 2,3-enolization route in the Maillard reaction, where 4-hydroxy-5-methyl-3(2H)-furanone is a key intermediate. A number of keto-enol tautomerisms, which are known to be acid-base-catalyzed, occur in the 2,3-enolization route. This may explain the catalysis of the ribose systems by the buffers. In the ribose phosphate systems, however, Maillard mechanisms probably played a less important role, because ribose 5-phosphate readily dephosphorylated to give 4-hydroxy-5-methyl-3(2H)-furanone on heating and thus provided an easier route to aroma compounds than the Maillard reaction.  相似文献   

10.
The cocoa roasting process at different temperatures (at 125 and 135 degrees C for 3 min, plus 44 and 52 min, respectively, heating-up times) was evaluated by measuring the initial and final free amino acids distribution, flavor index, formol number, browning measurement, and alkylpyrazines content in 15 cocoa bean samples of different origins. These samples were also analyzed in manufactured cocoa powder. The effect of alkalinization of cocoa was studied. Results indicated that the final concentration and ratio of tetramethylpyrazine/trimethylpyrazine (TMP/TrMP) increased rapidly at higher roasting temperatures. The samples roasted with alkalies (pH between 7.20 and 7.92), such as sodium carbonate, or potassium plus air injected in the roaster during thermal treatment, exhibited a greater degree of brown color formation, but the amount of alkylpyrazines generated was adversely affected. The analysis of alpha-free amino acids at the end of the roasting process demonstrated the importance of the thermal treatment conditions and the pH values on nibs (cocoa bean cotyledons), liquor, or cocoa. Higher pH values led to a lower concentration of aroma and a higher presence of brown compounds.  相似文献   

11.
The headspace volatiles produced from a phosphate-buffered solution (pH 5) of cysteine and a 1 + 1 mixture of ribose and [(13)C(5)]ribose, heated at 95 degrees C for 4 h, were examined by headspace SPME in combination with GC-MS. MS data indicated that fragmentation of ribose did not play a significant role in the formation of the sulfur aroma compounds 2-methyl-3-furanthiol, 2-furfurylthiol, and 3-mercapto-2-pentanone in which the carbon skeleton of ribose remained intact. The methylfuran moiety of 2-methyl-3-(methylthio)furan originated from ribose, whereas the methylthio carbon atoms came partly from ribose and partly from cysteine. In 3-mercapto-2-butanone one carbon unit was split from the ribose chain. On the other hand, all carbon atoms in 3-thiophenethiol stemmed from cysteine. In another trial cysteine, 4-hydroxy-5-methyl-3(2H)-furanone and [(13)C(5)]ribose were reacted under the same conditions. The resulting 2-methyl-3-furanthiol was mainly (13)C(5)-labeled, suggesting that it stems from ribose and that 4-hydroxy-5-methyl-3(2H)-furanone is unimportant as an intermediate. Whereas 2-mercapto-3-pentanone was found unlabeled and hence originated from 4-hydroxy-5-methyl-3(2H)-furanone, its isomer 3-mercapto-2-pentanone was formed from both 4-hydroxy-5-methyl-3(2H)-furanone and ribose. A new reaction pathway from ribose via its 1,4-dideoxyosone is proposed, which explains both the formation of 2-methyl-3-furanthiol without 4-hydroxy-5-methyl-3(2H)-furanone as an intermediate and a new way to form 3-mercapto-2-pentanone.  相似文献   

12.
Sensory evaluation was used to identify flavor precursors that are critical for flavor development in cooked chicken. Among the potential flavor precursors studied (thiamin, inosine 5'-monophosphate, ribose, ribose-5-phosphate, glucose, and glucose-6-phosphate), ribose appears most important for chicken aroma. An elevated concentration (added or natural) of only 2-4-fold the natural concentration gives an increase in the selected aroma and flavor attributes of cooked chicken meat. Assessment of the volatile odor compounds by gas chromatography-odor assessment and gas chromatography-mass spectrometry showed that ribose increased odors described as "roasted" and "chicken" and that the changes in odor due to additional ribose are probably caused by elevated concentrations of compounds such as 2-furanmethanethiol, 2-methyl-3-furanthiol, and 3-methylthiopropanal.  相似文献   

13.
Aroma-active compounds from a beeflike process flavor, produced by extrusion of enzyme-hydrolyzed vegetable protein (E-HVP), were analyzed using aroma extract dilution analysis. The number of aroma-active compounds and the aroma intensity were increased by the addition of aroma precursors prior to extrusion. The most intense compound was 2-methyl-3-furanthiol having a cooked rice/vitamin-like/meaty aroma note. Several sulfur-containing furans, such as 2-methyl-3-(methylthio)furan, 2-methyl-3-(methyldithio)furan, and bis(2-methylfuryl)disulfide, were detected with high flavor dilution (FD) factors. Some pyrazines, such as 2-ethyl-3,5-dimethylpyrazine, 2,6-diethylpyrazine, and 3,5-diethyl-2-methylpyrazine, also had high FD factors. It is hypothesized that sulfur-containing amino acids and thiamin were important precursors in aroma formation in process flavor from E-HVP.  相似文献   

14.
Volatiles from roasted byproducts of the poultry-processing industry   总被引:6,自引:0,他引:6  
Volatiles of roasted chicken breast muscle and byproducts, such as backbones, breastbones, spent bones, and skin, were investigated. Total volatile concentrations ranged from 2030 ppb in the roasted backbones to 4049 ppb in the roasted skin. The major classes of volatile compounds detected in roasted samples were aldehydes (648-1532 ppb) and alcohols (336-1006 ppb). Nitrogen- and/or sulfur-containing compounds were also detected in appreciable quantities (161-706 ppb) in all samples. For all samples, hexanal and 2-methyl-2-buten-1-ol were dominant among the aldehydes and alcohols, respectively. Among the nitrogen- and sulfur-containing compounds, Maillard reaction products, such as tetrahydropyridazines, piperidines, and thiazoles, were the major contributors to the total volatile content in all samples. The composition of volatiles observed in roasted byproducts was markedly different from that of the roasted breast muscle. Therefore, the blending of the byproducts in appropriate proportions or blending of volatile flavor extracts from different byproducts may be necessary to obtain an aroma that mimics roasted chicken aroma.  相似文献   

15.
The reaction of 4-hydroxy-5-methyl-3(2H)-furanone (HMF) with cysteine or hydrogen sulfide at pH 6.5 for 60 min at 140 degrees C produced complex mixtures of volatile compounds, the majority of these containing either sulfur or nitrogen. Of the 68 compounds detected, 63 were identified, some tentatively, by GC-MS. Among the identified compounds were thiophenes (10), thiophenones (6), thienothiophenes (5), thiazoles (5), trithiolanes (4), pyrazines (6), and oxazoles (4). More compounds were produced in the reaction of HMF with cysteine (63) than were formed in the reaction with hydrogen sulfide (33). In both systems, thiophenones were major reaction products, accounting for 25-36% of the total volatiles formed. Possible reasons for the differences in the composition of the two systems are discussed. The contributions of these reactions, and their products, to the flavor of heated foods are considered.  相似文献   

16.
Aroma compounds in Chinese "Wuliangye" liquor were identified by gas chromatography-olfactometry (GC-O) after fractionation. A total of 132 odorants were detected by GC-O in Wuliangye liquor on DB-wax and DB-5 columns. Of these, 126 aromas were identified by GC-mass spectrometry (MS). Aroma extract dilution analysis (AEDA) was further employed to identify the most important aroma compounds in "Wuliangye" and "Jiannanchun" liquors. The results showed that esters could be the most important class, especially ethyl esters. Various alcohols, aldehydes, acetals, alkylpyrazines, furan derivatives, lactones, and sulfur-containing and phenolic compounds were also found to be important. On the basis of flavor dilution (FD) values, the most important aroma compounds in Wuliangye and Jiannanchun liquors could be ethyl butanoate, ethyl pentanoate, ethyl hexanoate, ethyl octanoate, butyl hexanoate, ethyl 3-methylbutanoate, hexanoic acid, and 1,1-diethoxy-3-methylbutane (FD > or = 1024). These compounds contributed to fruity, floral, and apple- and pineapple-like aromas with the exception of hexanoic acid, which imparts a sweaty note. Several pyrazines, including 2,5-dimethyl-3-ethylpyrazine, 2-ethyl-6-methylpyrazine, 2,6-dimethylpyrazine, 2,3,5-trimethylpyrazine, and 3,5-dimethyl-2-pentylpyrazine, were identified in these two liquors. Although further quantitative analysis is required, it seems that most of these pyrazine compounds had higher FD values in Wuliangye than in Jiannanchun liquor, thus imparting stronger nutty, baked, and roasted notes in Wuliangye liquor.  相似文献   

17.
南京两种菜地土壤氨挥发的研究   总被引:40,自引:3,他引:40       下载免费PDF全文
在南京雨花区武警农场和栖霞区东阳科技站先后进行了秋季小青菜和秋冬季大白菜田间试验,研究菜地土壤施用氮肥后的氨挥发及其影响因素,氨挥发采用密闭室间歇密闭通气法测定。结果表明,小青菜试验地的pH为5 .4 ,施肥后土壤pH值也未高于6 .0 ,故氨挥发损失低(<0 .4 % ) ;而在pH为7.7的大白菜试验地上,控释尿素、低氮和高氮3个处理(施氮量分别为N 180、30 0和6 0 0kghm-2 )氨挥发率分别为0 .97%、12 .1%和17 1%。以上结果表明,土壤pH是影响菜地土壤氨挥发的主要因素,降低氮肥用量能明显减少氨挥发,而施用控释尿素是一种有效控制氨挥发损失的措施。大白菜不同施肥期的结果还表明,施尿素后降雨通过降低表层土壤氮的浓度而影响氨挥发,降雨离施肥期越近,雨量越大,氨挥发越小  相似文献   

18.
Thermal degradation studies of food melanoidins   总被引:1,自引:0,他引:1  
Food melanoidins were isolated from bread crust, coffee, and tomato sauce and their composition was investigated by thermal degradation. Among the generated volatiles, important food flavor compounds were detected: in particular furans, carbonyl compounds, 1,3-dioxolanes, pyrroles, pyrazines, pyridines, thiophenes, and phenols. The results indicated that the isolated melanoidin fractions mainly consisted of compounds formed from carbohydrates and their degradation products. Besides proteins, other food constituents were incorporated in the melanoidin structure as well, such as lipid oxidation products in tomato melanoidins and phenolic compounds in coffee melanoidins. A comparison of the thermal generation of volatiles between these food-derived melanoidins and model melanoidins prepared from a single carbonyl compound and an amino acid showed that the degradation pattern of food melanoidins is quite different from that obtained from a glucose-glycine model system.  相似文献   

19.
Ammonia loss from urea fertilizer is a major concern to farmers all over the world. Various environmental factors such as temperature, soil water content, wind speed, pH, rainfall, relative humidity, cation exchange capacity (CEC), soil organic matter, and others influence ammonia volatilization loss. The objective of this work was to establish a model for estimating ammonia loss utilizing published data. Also, using current day inputs (temperature, wind speed, and known soil pH) estimates could relate risk to producers considering surface applications of urea fertilizer without incorporation. Linear models for soil pH and ammonia loss, ambient temperature and ammonia loss, and wind speed and ammonia loss were determined based on more than 40 published articles. Final estimates of ammonia loss from surface applications of urea employed an additive effects model using inputs for pH, temperature, and wind speed. Web access to this model can be located at www.nue.okstate.edu/ammonia_loss.htm.  相似文献   

20.
Reaction of 4-hydroxy-5-methyl-3(2H)-furanone (HMF) with cysteine or hydrogen sulfide at pH 4.5 for 60 min at 140 degrees C produced complex mixtures of volatile compounds, the majority of which contained sulfur. Sixty-nine compounds were identified, some tentatively, by GC/MS. These included disulfides (26), thiols (7), dithiolanones (6), thiophenones (4), dithianones (3), and thienothiophenes (6). The main non-sulfur compounds were 2, 3-pentanedione, 2,4-pentanedione, and 3,4-hexanedione. Both systems produced approximately the same total quantity of volatile compounds, but the reaction containing cysteine gave the larger number of individual compounds, with thiols quantitatively the dominant components. By comparison, the major products formed in the reaction with hydrogen sulfide were the dithiolanones. Reaction pathways are presented for the major products and, where applicable, possible reasons for the differences in composition of the two systems are discussed. The contribution of these reactions, and their products, to the flavor of roasted foods is considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号