首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
蕉岭长潭省级自然保护区表土有机碳的研究   总被引:1,自引:2,他引:1  
基于UTM公里网格方法划分的66个网格的土壤剖面数据,分析了蕉岭长潭自然保护区5种典型植被类型(马尾松林、杉木林、针阔混交林、阔叶混交林和竹林)的表层土壤(0~20 cm)有机碳含量、密度、储量的分布特征与影响因子。结果表明:(1)表土有机碳含量SOC分布在12.61~66.19 g·kg^-1之间,平均值为30.87±1.30 g·kg^-1,大小顺序为竹林〉阔叶混交林〉针阔混交林〉杉木林〉马尾松林,多重比较显示竹林(37.63 g·kg^-1)显著高于马尾松林(18.52 g·kg^-1),马尾松林仅为竹林的49.21%。(2)表土有机碳密度SOCD在3.27~15.69 kg·m^-2间,平均值为8.22±0.39 kg·m^-2,大小排序为阔叶混交林〉竹林〉针阔混交林〉杉木林〉马尾松林,阔叶混交林(10.15 kg·m^-2)和竹林(9.96 kg·m^-2)的SOCD值显著高于马尾松林(4.82 kg·m^-2)(p=0.005,p=0.036),马尾松林仅是阔叶混交林的47.49%。(3)蕉岭长潭保护区表土层有机碳储量为402 100 t,占总面积54.54%的针阔混交林贡献最大,其次为阔叶混交林、杉木林、竹林和马尾松林。(4)表土有机碳含量与土壤全氮、速效钾含量显著正相关,相关系数分别为0.40和0.31;与石砾含量极显著负相关,相关系数达到-0.76。与林下植物分布有密切联系,有机碳含量〈20 g·kg^-1的指示种有6种,包括千年桐、黄毛楤木、米碎花、谷木冬青、长叶冻绿和乌韭,有机碳含量〉40 g·kg^-1的指示种有光叶海桐和土茯苓,有机碳含量在20~40 g·kg^-1间还未发现指示种。  相似文献   

2.
通过对西江流域肇庆三叉顶市区自然保护区典型样地调查,对比分析了林地(针阔混交林、竹林、马尾松林)、农用地(果园、稻田、旱地)与邻近荒地的0~20cm土壤有机碳含量和密度特征及其影响因子。结果表明:(1)有机碳含量大小顺序为林地(20.71±5.24 g kg-1 )> 农用地 (13.50±6.05 g kg-1 ) >荒地(12.87±4.20g kg-1 )。林地比农用地、荒地表土有机碳含量分别高出34.81%和37.86%。林地表土有机碳含量极显著高于农用地和荒地,而农用地和荒地间则无显著差异。表土有机碳密度差异极显著,有机碳密度大小顺序为林地(3.09±0.88 kg m-2)>荒地(2.99±0.93 kg m-2)>农用地(2.28±1.01 kg m-2)。(2)针阔混交林、竹林、马尾松叶林3种林分类型的表土有机碳含量、密度的大小顺序均为针阔混交林>竹林>马尾松林;在有机碳含量方面,针阔混交林与马尾松林有显著差异;3种林分中,针阔混交林、竹林均与荒地有显著差异,而马尾松林与荒地则无显著差异。在有机碳密度方面,针阔混交林)>竹林>马尾松林,针阔混交林与马尾松林有显著差异。(3)3种农用地有机碳含量大小顺序为果园)>稻田>旱地,果园与旱地之间有显著差异,旱地有机碳含量比果园低58.09%,旱地与水稻田之间无显著差异,3者与荒地均无显著差异。有机碳密度顺序有所变化,大小顺序为果园>旱地 >稻田,3者之间均无显著差异,但旱地、水稻田均与荒地有显著差异。(4)土壤氮水平、电导率对林地、农用地土壤碳固定有正效应,而容重则有负效应;而受施肥和耕作等因素影响,农用地的表土有机碳含量还与石砾含量显著负相关;荒地的土壤有机碳含量则仅与容重显著负相关。  相似文献   

3.
通过对广东省蕉岭长潭省级自然保护区针阔混交林、马尾松林、杉木林、毛竹林、阔叶混交林等5种不同森林类型土壤理化性质状况的比较,研究了不同森林类型对土壤肥力状况的影响。结果表明:(1)广东省蕉岭长潭省级自然保护区表层表土呈酸性,石砾含量、土壤容重、总孔隙度、毛管孔隙度和非毛管孔隙度分别为4.0%、1.11 g/cm3、58.01%、37.73%和20.28%;自然含水量、最大持水量、最小持水量分别为296.02,442.95,321.38 g/kg;土壤阳离子交换量为5.99~8.20 cmol(+)/kg,电导率为57.87~97.44,全氮、碱解氮、全磷、速效磷和速效钾分别为1.88 g/kg、105.20 mg/kg、0.19 g/kg、2.22 mg/kg和130.53 mg/kg。(2)土壤孔隙度、土壤自然含水量、最小持水量、阳离子交换量、电导率、全磷、速效磷在不同林分类型间差异不显著,但土壤容重、石砾含量、最大持水量、土壤pH值、全氮、碱解氮、速效钾在不同林分类型间差异显著。马尾松林的石砾含量与针阔混交林、毛竹林、阔叶混交林有显著差异(p=0.003,p=0.009,p=0.01),全氮与针阔混交林差异显著(p=0.025),碱解氮与针阔混交林差异显著(p=0.028),速效钾与阔叶混交林差异显著(p=0.012);毛竹林pH值和杉木林、针阔混交林和阔叶混交林差异显著(p=0.026,p=0.030,p=0.035)。(3)从土壤理化性状来看,阔叶混交林、毛竹林的土壤质量和肥力要比马尾松林和杉木林好。  相似文献   

4.
通过对广东省蕉岭长潭省级自然保护区针阔混交林、马尾松林、杉木林、毛竹林、阔叶混交林等5种不同森林类型土壤理化性质状况的比较,研究了不同森林类型对土壤肥力状况的影响。结果表明:(1)广东省蕉岭长潭省级自然保护区表层表土呈酸性,石砾含量、土壤容重、总孔隙度、毛管孔隙度和非毛管孔隙度分别为4.0%、1.11 g/cm3、58.01%、37.73%和20.28%;自然含水量、最大持水量、最小持水量分别为296.02,442.95,321.38 g/kg;土壤阳离子交换量为5.99-8.20 cmol(+)/kg,电导率为57.87-97.44,全氮、碱解氮、全磷、速效磷和速效钾分别为1.88 g/kg、105.20 mg/kg、0.19 g/kg、2.22 mg/kg和130.53 mg/kg。(2)土壤孔隙度、土壤自然含水量、最小持水量、阳离子交换量、电导率、全磷、速效磷在不同林分类型间差异不显著,但土壤容重、石砾含量、最大持水量、土壤pH值、全氮、碱解氮、速效钾在不同林分类型间差异显著。马尾松林的石砾含量与针阔混交林、毛竹林、阔叶混交林有显著差异(p=0.003,p=0.009,p=0.01),全氮与针阔混交林差异显著(p=0.025),碱解氮与针阔混交林差异显著(p=0.028),速效钾与阔叶混交林差异显著(p=0.012);毛竹林pH值和杉木林、针阔混交林和阔叶混交林差异显著(p=0.026,p=0.030,p=0.035)。(3)从土壤理化性状来看,阔叶混交林、毛竹林的土壤质量和肥力要比马尾松林和杉木林好。  相似文献   

5.
不同土地利用形式下表土有机碳含量和密度特征的研究   总被引:1,自引:0,他引:1  
通过对西江流域肇庆市三叉顶自然保护区典型样地调查,对比分析了林地(针阔混交林、竹林、马尾松林)、农用地(果园、稻田、旱地)与邻近荒地的0~20em土壤有机碳含量和密度特征及其影响因子。结果表明:(1)有机碳含量大小顺序为林地(20.71±5.24g·kg^-1)〉农用地(13.50±6.05g·kg^-1)〉荒地(12.87±4.20g·kg^-1)。林地比农用地、荒地表土有机碳含量分别高出53.35%和60.83%。林地表土有机碳含量极显著高于农用地和荒地,而农用地和荒地间则无显著差异。表土有机碳密度差异极显著,有机碳密度大小顺序为林地(3.09±0.88kg·m^-2)〉荒地(2.99±0.93kg·m^-2)〉农用地(2.28±1.01k·m^-2)。(2)针阔混交林、竹林、马尾松叶林3种林分类型的表土有机碳含量、密度的大小顺序均为针阔混交林〉竹林〉马尾松林;在有机碳含量方面,针阔混交林与马尾松林有显著差异;针阔混交林、竹林均与荒地有显著差异,而马尾松林与荒地则无显著差异。在有机碳密度方面,针阔混交林与马尾松林有显著差异。(3)3种农用地有机碳含量大小顺序为果园〉稻田〉旱地,果园与旱地之间有显著差异,旱地有机碳含量比果园低41.91%,旱地与水稻田之间无显著差异,三者与荒地均无显著差异。有机碳密度顺序有所变化,大小顺序为果园〉旱地〉稻田,三者之间均无显著差异,但旱地、水稻田均与荒地有显著差异。(4)土壤氮水平、电导率对林地、农用地土壤碳固定有正效应,而容重则有负效应;而受施肥和耕作等因素影响,农用地的表土有机碳含量还与石砾含量显著负相关;荒地的土壤有机碳含量则仅与容重显著负相关。  相似文献   

6.
采用重铬酸钾容量法测定广东省桉树林、马尾松林、杉木林、阔叶混交林、针阔混交林5种主要林分下的土壤A层有机碳密度。结果表明:5种林分土壤A层有机碳密度在2.38—122.85t/hm2,有机碳密度排列为阔叶混交林〉针阔混交林〉桉树林〉杉木林〉马尾松林;并对土壤A层有机碳密度的主要影响因素进行分析,为评价不同林分类型的碳汇功能提供参考。  相似文献   

7.
中国亚热带5种林分凋落物层植硅体碳的封存特性   总被引:1,自引:0,他引:1  
【目的】森林生态系统的植硅体碳是一种长期(数千年)封存的土壤有机碳,对全球固碳有重要意义。本研究旨在估测中国亚热带森林凋落物层的植硅体碳贮量。【方法】以中国亚热带5种常见林分类型(毛竹林、杉木林、马尾松林、阔叶林和针阔混交林)的凋落物为研究对象,收集地表凋落物并采集0~10 cm 土层土样,用微波消解法提取凋落物及土壤中的植硅体,并测定植硅体中的碳含量。【结果】不同森林凋落物 SiO2含量表现为毛竹林(152.50 g·kg -1)>阔叶林(13.96 g·kg -1)>针阔混交林(12.55 g·kg -1)>杉木林(7.62 g·kg -1)>马尾松林(6.59 g·kg -1);凋落物植硅体含量表现为毛竹林(180.20 g·kg -1)>阔叶林(14.67 g·kg -1)>针阔混交林(11.49 g·kg -1)>马尾松林(11.36 g·kg -1)>杉木林(5.58 g·kg -1);凋落物中植硅体碳含量表现为毛竹林(4.34 g·kg -1)>阔叶林(1.07 g·kg -1)>针阔混交林(1.04 g·kg -1)>马尾松林(0.67 g·kg -1)>杉木林(0.50 g·kg -1);凋落物现存生物量表现为阔叶林(3.20 kg·m -2)>马尾松林(2.51 kg·m -2)>针阔混交林(2.38 kg·m -2)>杉木林(1.88 kg·m -2)>毛竹林(1.45 kg·m -2); 5种林分凋落物中的 SiO2含量与植硅体含量极显著正相关(R2=0.9405,P <0.01);植硅体含量与植硅体碳含量(R2=0.9500,P <0.01)以及植硅体碳中有机碳含量与凋落物中植硅体碳含量(R2=0.7018,P<0.01)均极显著相关;毛竹林、杉木林、马尾松林、阔叶林和针阔混交林凋落物层中的植硅体碳贮量分别为0.231,0.034,0.062,0.125和0.090 tCO2·hm -2;毛竹林、杉木林、马尾松林、阔叶林和针阔混交林 0~10 cm 土层的植硅体碳贮量分别为0.492,0.217,0.352,0.362和0.448 tCO2·hm -2。【结论】5种林分均能通过凋落物植硅体将植硅体碳封存到土壤中;毛竹林凋落物中植硅体碳含量、凋落物和土壤的植硅体碳贮量在5种林分中都表现为最高;若以中国亚热带毛竹林年凋落物量3.6 t·hm -2 a -1计算,毛竹林凋落物的植硅体碳封存速率为0.057 tCO2·hm -2 a -1。本研究得到的中国亚热带中 5种林分凋落物的植硅体碳贮量数据为进一步评价中国亚热带森林生态系统植硅体碳封存潜力提供科学依据。  相似文献   

8.
对广东省蕉岭长潭自然保护区的阔叶混交林、马尾松林、杉木林、毛竹林、针阔混交林等五种典型林分的土壤水分物理性质进行了研究,结果表明:(1)五种林分类型土壤自然含水量、毛管持水量、最小持水量的排序为毛竹林〉针阔混交林〉马尾松林〉杉木林〉阔叶混交林;非毛管孔隙度和非毛管持水量的排序为针阔混交林〉阔叶混交林〉杉木林〉马尾松林〉毛竹林。(2)五种林分的非毛管孔隙度;阔叶混交林、杉木林、针阔混交林的总孔隙度;阔叶混交林的毛管持水量、最大持水量、最小持水量、非毛管持水量;针阔混交林的自然含水量、毛管持水量、最大持水量、最小持水量、非毛管持水量都是随着土层深度的增加而减少。阔叶混交林、毛竹林、杉木林、针阔混交林的土壤容重是随土层深度的增加而增加。(3)同一土层不同林分间的容重、孔隙度、自然含水量、最大持水量、毛管持水量、非毛管持水量和最小持水量都没有显著差异,而同一林分的物理性质和持水特性在不同土层之间存在显著差异。  相似文献   

9.
基于森林火灾风险普查标准地调查与森林资源一张图数据,对闽北杉木林、马尾松林与阔叶混交林等3种典型森林类型的乔木层、灌草层和枯落物层碳储量进行研究。结果表明:(1)3种典型森林类型间碳储量差异较大,表现为阔叶混交林(97.23 t/hm^(2))>马尾松林(81.82 t/hm^(2))>杉木林(70.95 t/hm^(2)),各组分碳储量表现为乔木层(42.62~109.98 t/hm^(2))>枯落物层(1.86~2.96 t/hm^(2))>灌草层(0.51~2.06 t/hm^(2));(2)碳储量均随郁闭度提高而增加,其中杉木林、马尾松林、阔叶混交林高郁闭度比中低郁闭度林分碳储量分别提高10.2%、22.4%和15.1%;(3)碳储量随龄组上升而明显增加,其中杉木林、马尾松林、阔叶混交林从幼龄林到成过熟林碳储量分别增加了25.7%、77.7%和34.6%。可见,闽北地区3种典型森林类型森林质量总体较高,固碳能力较强,是福建省重要的森林碳库。  相似文献   

10.
中亚热带常绿阔叶林不同演替阶段木质残体碳密度特征   总被引:1,自引:0,他引:1  
为了更好地了解常绿阔叶林恢复演替过程中木质残体(WD)碳储量的变化特征,对鹰嘴界马尾松林、针阔混交林、常绿阔叶林进行了调查取样,结果表明:鹰嘴界常绿阔叶林演替阶段各林分中木质残体的现存量较低,在1.26~8.82 Mg/hm2之间,大小顺序为马尾松林针阔混交林常绿阔叶林,随演替进程呈逐渐增加趋势;演替阶段粗木质残体(CWD)碳含量因树种及其分解等级而异,随着CWD分解等级的提高,其碳含量逐渐降低;马尾松林、针阔混交林和常绿阔叶林的木质残体碳密度分别为0.62,1.75,3.78 Mg/hm2,分别相当于各林分乔木层碳密度的0.73%、1.83%和2.92%。  相似文献   

11.
不同森林植被下土壤微生物量碳和易氧化态碳的比较   总被引:40,自引:2,他引:38       下载免费PDF全文
土壤碳库平衡是土壤肥力保持的重要内容[1].不同森林类型,由于其凋落物数量、类组及分解行为不同,因而形成的土壤碳库大小与特征将存在较大差别.常绿阔叶林、马尾松(Pinus massoniana Lamp.)林、杉木(Cunninghamia lanceolata (Lamb.)Hook.)林和毛竹(Phyllostachys edulis(Carr.)H.de Lehaie)林是我国亚热带最主要的4种森林类型.  相似文献   

12.
The effect of six plantation species in comparison to natural forest (NF) on soil organic carbon (SOC) and total nitrogen (TN) stocks, depth-wise distribution, biomass carbon (C), and N was investigated on plantations and cultivated lands on an Andic paleudalf soil in Southern Ethiopia. The SOC, N, and bulk density were determined from samples taken in 4 replicates from 10-, 20-, 40-, 60-, and 100-cm depth under each site. Similarly, the biomass C and N of the plantation species and understory vegetation were also determined. The SOC and N were concentrated in the 0- to 10-cm depth and decreased progressively to the 1-m depth. Next to the NF, Juniperous procera accrued higher SOC and N in all depths than the corresponding plantations. No evidence of significant difference on SOC and N distribution among plantations was observed below the 10-cm depth with minor exceptions. The plantations accrue from 133.62 to 213.73 Mg ha–1 or 59.1 to 94.5% SOC, 230.4 to 497.3 Mg ha–1 or 6.9 to 14.9% TBC and 420.37 to 672.80 Mg ha–1 or 12.5 to 20% total C-pool of that under the NF. The N stock under Juniperous procera was the highest, while the lowest was under Eucalyptus globulus and Cupressus lusitanica. We suggest that SOC and N sequestration can be enhanced through mixed cropping and because the performance of the native species Juniperous procera is encouraging, it should be planted to restock its habitat.  相似文献   

13.
研究不同温度(10,20和30℃)条件下分别向土壤中添加光皮桦细根(直径<2 mm)与扁穗牛鞭草草根混合物(处理1)、光皮桦细根(处理2)、扁穗牛鞭草草根(处理3)和柳杉细根(处理4)这4种处理对土壤活性有机碳的影响。结果表明:添加细根的种类、培养温度和培养时间均对土壤微生物量碳、水溶性有机碳、易氧化有机碳和总有机碳含量产生影响;120天后各处理的土壤微生物量碳、水溶性有机碳、易氧化有机碳和总有机碳含量都显著大于对照(P<0.05);在60和120天后,处理1的土壤微生物量碳、水溶性有机碳、易氧化有机碳和总有机碳含量都显著大于其他处理(P<0.05);温度对土壤微生物量碳和水溶性有机碳含量的影响表现为30℃>20℃>10℃,对易氧化有机碳和总有机碳含量的影响表现为10℃>20℃>30℃(P<0.05)。  相似文献   

14.
ABSTRACT

The study was carried out (a) to identify the changes in the soil organic carbon (SOC) content during the different phases of slash-and-burn cultivation—i.e., before slash-and-burn (Phase 1), after slash-and-burn (Phase 2), and after harvest (Phase 3); and (b) to determine the status of soil organic carbon content in the primary undisturbed forest (Site 1) and in the secondary forests, where slash-and-burn cultivation was taken up ~25 yr (Site 2), 15 yr (Site 3), and 5 yr back (Site 4). The undisturbed forest holds the largest amount of SOC % (5.25) followed by 25 yr (3.07), 5 yr (2.86), and 15 yr (2.27) fallow. The mean percentages of SOC in the 0- to 15-cm layer fell from 3.07 in Phase 1 to 2.53 and 2.37, respectively, in Phases 2 and 3; in the subsurface 15- to 30-cm layer, they fell from 1.95 to 1.62 and 1.63, respectively. Although, the SOC in Phase 3 still seems sufficient to support another round of cultivation, further studies are needed to examine crop yields in successive cultivation cycles, suitability of other rice varieties, and weed and pest types and rates of invasion. Tribal population dynamics is another major concern, which needs assessment for monitoring future land requirements.  相似文献   

15.
The estimation of the soil organic carbon content (SOC) is one of the important issues in the research of the global carbon cycle. However, there are great differences among different scientists regarding the estimated magnitude of SOC. There are two commonly used methods for the estimation of SOC, with each method having both advantages and disadvantages. One method is the so called direct method, which is based on the samples of measured SOC and maps of soil or vegetation types. The other method is the so called indirect method, which is based on the ecosystem process model of the carbon cycle. The disadvantage of the direct method is that it mainly discloses the difference of the SOC among different soil or vegetation types. It can hardly distinguish the difference of the SOC in the same type of soil or vegetation. The indirect method, a process-based method, is based on the mechanics of carbon transfer in the ecosystem and can potentially improve the spatial resolution of the SOC estimation if the input variables have a high spatial resolution. However, due to the complexity of the process-based model, the model usually simplifies some key model parameters that have spatial heterogeneity with constants. This simplification will produce a great deal of uncertainties in the estimation of the SOC, especially on the spatial precision. In this paper, we combined the process-based model (CASA model) with the measured SOC, in which the remote sensing data (AVHRR NDIV) was incorporated into the model to enhance the spatial resolution. To model the soil base respiration, the Van’t Hoff model was used to combine with the CASA model. The results show that this method could significantly improve the spatial precision (8 km spatial resolution). The results also show that there is a relationship between soil base respiration and the SOC as the influence of environmental factors, i.e., temperature and moisture, had been removed from soil respiration which makes the SOC the most important factor of soil base respiration. The statistical model of soil base respiration and the SOC shows that the determinant coefficient (R 2) is 0.78. As the method in this paper contains advantages from both direct and indirect methods, it could significantly improve the spatial resolution and, at the same time, keep the estimation of SOC well matched with the measured SOC. __________ Translated from Journal of Remote Sensing, 2007, 11(1): 127–136 [译自: 遥感学报]  相似文献   

16.
对木荷、尾叶桉、湿地松3种人工l林的土壤碳密度进行研究。结果表明:不同林分的土壤碳密度存在差异,木荷、尾叶桉、湿地松林地1999年的土壤碳密度分别为181.13t/hm^2、34.21t/hm。和100.35t/hm^2,2012年的分别为237.94t/hm^2、92.03t/hm^2和144.39t/hm^2,其大小排序为木荷林地〉湿地松林地〉尾叶桉林地,其中以乡土树种木荷林地的土壤有机碳密度最高。3种林地的土壤有机碳密度均显著增加,其中尾叶桉林地的增幅最大。  相似文献   

17.
为探讨海拔梯度变化对表层土壤(0~20 cm)全量养分的影响,以西藏色季拉山西坡的高山灌丛(AS)、杜鹃林(RF)、急尖长苞冷杉林(AGSF1-6)和林芝云杉林(PLLF)为试验对象,研究了林地土壤有机碳(SOC)、全氮(TN)、微生物生物量碳(MBC)、微生物生物量氮(MBN)、易氧化态碳(ROC)和颗粒有机碳(POC)的变化特征.结果表明:在色季拉山西坡,高海拔植被类型具有较高的土壤活性有机碳含量和分配比例.表层土壤SOC随着海拔的升高而增大.SOC最大的是AS,为77.167 g·kg-1,PLLF最低为22.351 g·kg-1.表层土壤TN随着海拔的升高而增大.TN最大的是AS,为2.430g·kg-1,PLLF最低为0.830 g·kg-1.表层土壤C/N最大者为AGSF4,达到了43.57,最小者是PLLF为26.93.海拔和林分对土壤MBC和MBN含量具有显著的影响.随着海拔高度的降低,POC占TOC含量的比率从44.81%降至19.32%,ROC占TOC含量的比率从41.72%降至7.07%.不同林地POC和ROC含量与SOC含量具有正相关关系.土壤活性有机碳与土壤总有机碳显著相关,土壤易氧化有机碳与颗粒有机碳的相关性也比较显著(p<0.05).  相似文献   

18.
土壤活性有机碳作为森林土壤有机碳的活跃成分,在凋落物分解和土壤碳循环中发挥着重要作用。林火干扰通过改变土壤底物的数量和理化性质进而影响土壤活性有机碳,因而阐明林火干扰对土壤活性有机碳的影响是开展森林碳循环研究的基础。文中以6种土壤活性有机碳为研究对象,分别阐述林火干扰对土壤活性有机碳影响的研究进展。针对目前研究现状及存在问题,认为应进一步深化探究林火干扰后土壤微生物活性变化机制对土壤活性有机碳的影响,揭示土壤碳库平衡的影响机理;加强林火干扰后C-N耦合循环特征的研究;深入研究林火干扰后影响土壤活性有机碳的内在因素和外在因素的相互作用,综合评价林火干扰对土壤活性有机碳的短期与长期影响;加强林火干扰—土壤碳库—全球气候变化的交互关系研究,深入探讨林火干扰与土壤活性有机碳的相互作用关系及影响机理。  相似文献   

19.
This study quantified tree and soil C stocks and their response to different tree species and clay contents in improved fallows in eastern Zambia. From 2002 to 2003, soil, and destructively harvested two-year old tree, samples were analysed for C. There were significant differences (P < 0.05) in aboveground tree C stocks, and in net organic C (NOC) intake rates across coppicing tree species at Msekera and Kalunga. Aboveground C stocks ranged from 2.9 to 9.8 t ha-1, equivalent to NOC intakes of 0.8–4.9 t ha-1 year-1. SOC stocks in non-coppiced fallows at Kalichero and Msekera significantly differed (P < 0.05) across treatments. SOC stocks to 200 cm depth ranged from 64.7 t C ha-1 under non-coppicing fallows at Kalunga to 184.0 t ha-1 in 10-year-old coppicing fallows at Msekera. Therefore, tree and soil C stocks in improved fallows can be increased by planting selected tree species on soils with high clay content.  相似文献   

20.
土壤微生物量碳是土壤碳素转化的重要环节,也是土壤有效碳库的重要组成部分。文章从土壤微生物量碳的影响因素、测定、周转以及土壤微生物量碳与土壤有机碳的关系四个方面综述了土壤微生物生物量碳的研究进展。同时,为今后这方面的研究重点及发展方向提供了参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号