首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Investigation of factors affecting leaching patterns under tilled and no-till soils are important for successful modelling of solute leaching. There can be various other factors that may offset an anticipated tillage effect on solute leaching. A study was conducted in a Donnelly silty loam (fine-loamy, mixed frigid Typic Cryoboralf) at Dawson Creek, British Columbia, Canada, to investigate how a reactive chemical (FD&C blue#1 dye) and a conservative tracer (bromide, Br) would leach in a no-till (NT) soil compared to a tilled (T), when high volume of water are provided discretely, at short time intervals. Three plots of 1.5 m × 1.5 m were prepared in each NT and T soil for flood irrigation. The chemicals were applied by spray using a knapsack sprayer. Soil cores were extracted from a maximum depth of 1.25 m using a truck mounted hydraulic soil sampler at 5, 19, and 55 days (S1, S2, and S3, respectively) after irrigating different amounts of water. These soil cores, sub-sampled at different depths, were analysed for water content, Br and dye concentrations. The analyses indicated that Br and dye moved in distinctive patterns in the two tillage systems. After irrigating with a total of 240 mm of ponded water in three applications over a period of 10 days, the centre of mass of the travel depth profiles for Br was 0.15 m in the NT and 0.26 m in the T plots; for the dye, 0.27 m in the NT and 0.17 m in the T plots. At soil core sampling times S1, S2, and S3, the average mass recovered for Br was 82%, 39%, and 27% in the NT and 78%, 50%, and 45% in the T plots. For the dye, mass recovery rates of 78%, 58%, and 22% were observed in the NT and 92%, 79% and 25% in the T plots. The increasing mass loss of Br observed with increasing net water inputs in the two tillage systems was more likely due to a lateral loss with water than due to a leaching below sampling depth. The increasing mass loss of dye over time in the two tillage systems was more likely due to a high rate of degradation than to a loss through a lateral or vertical flow.  相似文献   

2.
Micro and macroporosity, pore shape and size distribution, aggregate stability, saturated hydraulic conductivity and crop yield were analysed in alluvial silty loam (Fluventic Eutrochrept) and clay soils (Vertic Eutrochrept) following long-term minimum and conventional tillage. The soil structure attributes were evaluated by characterizing porosity by means of image analysis of soil thin sections prepared from undisturbed soil samples.

The interaggregate microporosity, measured by mercury intrusion porosimetry, increased in the minimally tilled soils, with a particular increase in the storage pores (0.5–50 μm). The amount of elongated transmission pores (50–500 μm) also increased in the minimally tilled soils. The resulting soil structure was more open and more homogeneous, thus allowing better water movement, as confirmed by the greater hydraulic conductivity of the minimally tilled soils. The aggregate stability was less in the conventionally tilled soils and this resulted in a greater tendency to form surface crusts and compacted structure, compared with the minimally tilled soils. The latter tillage practice seemed to maintain, in the long-term, better soil structure conditions and, therefore, maintain favourable conditions for plant growth. In the silt loam, the crop yield did not differ significantly between the two tillage systems, while in the clay soil it decreased in the minimum tilled soil because of problems of seed bed preparation at the higher surface layer water content.  相似文献   


3.
In developing management practices to reduce chemical leaching below the root zone, tillage and irrigation management are important considerations. Two studies were performed to evaluate the movement of bromide in tilled and non-tilled soils under sprinkler versus flood irrigation. In each study, bromide was applied either with an irrigation or presprayed to the soil surface followed by periodic soil sampling to monitor the bromide movement. Tillage was observed to reduce the mean depth of chemical penetration under both irrigation treatments and reduce the spatial variation of bromide concentration under flood irrigation. For example, after 30 days of periodic flood irrigation, 25% of the applied bromide remained in the upper 0.2 m of a tilled soil while in the companion non-tilled soil virtually no bromide remained above this depth. The most rapid bromide movement was observed in non-tilled, flood irrigated soil, particularly when the solute was added with the irrigation. We speculate that the tillage effect of reduced leaching results from the alteration of pore continuity and creation of diffusional sinks and not increased evaporative water loss in the tilled soil. The Root Zone Water Quality Model was calibrated using site-specific hydraulic property measurements and used to predict the solute movement. The model predictions were fairly accurate for the sprinkler irrigated soil but less satisfactory for the flood irrigation studies. In comparing the effect on chemical leaching of the treatments imposed, we found that tillage and the timing of the chemical application had greater impact on reducing leaching than did the method of irrigation.  相似文献   

4.
Soil tillage can have a significant effect on soil porosity and water infiltration. This study reports field measurements of near saturated hydraulic conductivity in an undisturbed soil under two tillage treatments, conventional tillage (CT) and minimum tillage (MT). The objective was to determine effective macro and mesoporosities, porosity dynamics during the irrigation season, and their contribution to water flow. Field observations were performed during the 1998 maize (Zea mays L.) cropping season in an Eutric Fluvisol with a silty loam texture, located in the Sorraia River Watershed in the south of Portugal. Infiltration measurements were done with a tension infiltrometer. At each location an infiltration sequence was performed corresponding to water tensions (φ) of 0, 3, 6 and 15 cm. Five sets of infiltration measurements were taken in both treatments in the top soil layer between May and September. One set of measurements was done at the depth of 30 cm at the bottom of the plowed layer in the CT plot. After 5 years of continuous tillage treatments the results show that regardless of the tillage treatment, saturated conductivity values K(φ0) were several times larger than near saturation conductivity K(φ3). This indicates that subsurface networks of water conducting soil pores can exist in both CT and MT maize production systems. In CT, the moldboard plow created macro and mesoporosity in the top soil layer while breaking pore continuity at 30 cm depth. This porosity was partially disrupted by the first irrigation, resulting in a significant decrease of 45% in the macropore contribution to flow. Later in the season, the irrigation effect was overlaid by the root development effect creating new channels or continuity between existing pores. In MT macroporosity contribution to flow did not show significant differences in time, representing 85% of the total flow. In both the treatments, macropores were the main contributing pores to the total flow, in spite of the very low macroporosity volumes.  相似文献   

5.
不同土壤水吸力与耕作方式对土壤压缩—回弹特性的影响   总被引:2,自引:0,他引:2  
[目的]合理耕作方式是缓解土壤压实、提升土壤生产能力的有效措施,而土壤水分是影响土壤机械物理性能的重要因素,直接影响土壤耕作质量.通过研究不同土壤水吸力和耕作方式下土壤压缩曲线及模型拟合效果,分析土壤回弹—再压缩曲线变化及机械力学参数(预固结压力、压缩指数和回弹指数)差异,以期为农田土壤耕作和培肥提供科学依据.[方法]...  相似文献   

6.
The alteration of mechanical soil properties by a single stress application exceeding all previously applied stresses is analyzed for a conventionally tilled and a conservational managed (since 1992) Stagnic Luvisol. Despite the more pronounced compactness of the plough layer under conventional management, it turned out to be less rigid compared to the “relictic” plough layer under conservation management. We assume that wheeling with a sugar beet harvester (rear wheel 140 kPa, front wheel 110 kPa, total mass 37 Mg) resulted in a break up of the plough pan. This was most obvious in the conventionally tilled soil whereas under conservation tillage, the plough pan seemed to resist the induced forces. Our results suggest that a break up of the compact plough layer and the subsequent re‐arrangement of newly formed fragments results in a smaller mechanical stability of the deformed soil. Soil structural changes within the plough pan are also indicated by the alteration of the anisotropy of cohesion and precompression stress, respectively. Altered mechanical properties induced by heavy soil loading affects the soil response to subsequent loading events, which could be shown by finite‐element simulations of stress‐strain properties. The simulations showed that a decrease in soil stiffness reduces the stress attenuation within the plough pan causing compressive and shear stresses to be transmitted into deeper soil levels, while at the same time shear strain increased.  相似文献   

7.
This study was conducted to investigate the effects of soil structure on bromide (Br) transport through three soils with granular, prismatic, and single-grain structures. The breakthrough curve (BTC) of the single-grain structure was sigmoidal, symmetrical and similar to a piston flow, showing the dominance of mass flow. In contrast, the BTCs of the granular and prismatic structures were initially steep, becoming more gradual at high pore volumes (PVs). The stable structure and preferential pathways caused the early breakthrough of Br in the leachate of these columns. The convection–dispersion equation (CDE), mobile–immobile water (MIM), and dual-permeability (DP) models were fitted to observed data using the program HYDRUS-1D. The equilibrium transport model (CDE) was not as successful as non-equilibrium (MIM and DP) models in describing the Br transport in prismatic and granular soil columns, although it was able to describe the Br transport in single-grain column well. Overall, the results demonstrated the importance of soil structure in pollutant transport through soils.  相似文献   

8.
Average in-field water application efficiency in furrow-irrigated cotton (Gossypium hirsutum L.) in Australia is less than optimal, and The underlying reasons may include surface sealing, exposure of sodic soil by laser levelling, and soil compaction due to wheel-trafficking. The objective of this study was to quantify the effects of reducing traffic and tillage intensity on furrow soil properties in an irrigated Vertisol. Soil was sampled during the growing seasons of 2001–02, 2003–04 and 2005–06 from the surface 50-mm of adjacent wheel-tracked and non-wheel-tracked furrows in an experiment in north-western New South Wales, Australia. The treatments were: cotton sown either after conventional tillage (disc-ploughing and incorporating cotton stalks to 0.2 m, chisel ploughing to 0.3 m followed by bed construction) or on “permanent beds” (slashing cotton plants after harvest, followed by root cutting and bed renovation with a disc-hiller). Irrigation water was alkaline but had low salinity and sodium adsorption ratio. Soil properties measured were pH, EC1:5, geometric mean diameter (GMD) and specific volume (SV) of dry soil aggregates, exchangeable cations and plastic limit. Permanent bed systems had generally lower pH and higher SOC than conventionally tilled furrows, although differences were small. Soil pH and SOC averaged over the three growing seasons was 6.9 and 0.89 g/100 g, respectively, in permanent bed furrows, and 7.1 and 0.84 g/100 g, respectively, in conventionally tilled furrows. Compared to non-wheel-tracked furrows, plastic limit was lower (0.24 vs. 0.25 g/g), and EC1:5 (0.24 vs. 0.20 dS/m) and GMD (2.6 vs. 2.1 mm) higher in wheel-tracked furrows. Intra-seasonal changes in soil properties of furrows were also small, and are unlikely to significantly affect any hydrological processes. Inter-seasonal differences were, however, significant, and could affect hydrological processes in this soil.  相似文献   

9.
Tillage management can affect crop growth by altering the pore size distribution, pore geometry and hydraulic properties of soil. In the present communication, the effect of different tillage management viz., conventional tillage (CT), minimum tillage (MT) and zero-tillage (ZT) and different crop rotations viz. [(soybean–wheat (S–W), soybean–lentil (S–L) and soybean–pea (S–P)] on pore size distribution and soil hydraulic conductivities [saturated hydraulic conductivity (Ksat) and unsaturated hydraulic conductivity {k(h)}] of a sandy clay loam soil was studied after 4 years prior to the experiment. Soil cores were collected after 4 year of the experiment at an interval of 75 mm up to 300 mm soil depth for measuring soil bulk density, soil water retention constant (b), pore size distribution, Ksat and k(h). Nine pressure levels (from 2 to 1500 kPa) were used to calculate pore size distribution and k(h). It was observed that b values at all the studied soil depths were higher under ZT than those observed under CT irrespective of the crop rotations. The values of soil bulk density observed under ZT were higher in 0–75 mm soil depth in all the crop rotations. But, among the crop rotations, soils under S–P and S–L rotations showed relatively lower bulk density values than S–W rotation. Average values of the volume fraction of total porosity with pores <7.5 μm in diameter (effective pores for retaining plant available water) were 0.557, 0.636 and 0.628 m3 m−3 under CT, MT and ZT; and 0.592, 0.610 and 0.626 m3 m−3 under S–W, S–L and S–P, respectively. In contrast, the average values of the volume fraction of total porosity with pores >150 μm in diameter (pores draining freely with gravity) were 0.124, 0.096 and 0.095 m3 m−3 under CT, MT and ZT; and 0.110, 0.104 and 0.101 m3 m−3 under S–W, S–L and S–P, respectively. Saturated hydraulic conductivity values in all the studied soil depths were significantly greater under ZT than those under CT (range from 300 to 344 mm day−1). The observed k(h) values at 0–75 mm soil depth under ZT were significantly higher than those computed under CT at all the suction levels, except at −10, −100 and −400 kPa suction. Among the crop rotations, S–P rotation recorded significantly higher k(h) values than those under S–W and S–L rotations up to −40 kPa suction. The interaction effects of tillage and crop rotations affecting the k(h) values were found significant at all the soil water suctions. Both S–L and S–P rotations resulted in better soil water retention and transmission properties under ZT.  相似文献   

10.
Anthropogenic conversion of primary forest to pasture for cattle production is still frequent in the Amazon Basin. Practices adopted by ranchers to restore productivity to degraded pasture have the potential to alter soil N availability and N gas losses from soils. We examined short-term (35 days) effects of tillage prior to pasture re-establishment on soil N availability, CO2, NO and N2O fluxes and microbial biomass C and N under degraded pasture at Nova Vida ranch, Rondônia, Brazilian Amazon. We collected soil samples and measured gas fluxes in tilled and control (non tilled pasture) 12 times at equally spaced intervals during October 2001 to quantify the effect of tillage. Maximum soil NH4+ and NO3 pools were 13.2 and 6.3 kg N ha−1 respectively after tillage compared to 0.24 and 6.3 kg N ha−1 in the control. Carbon dioxide flux ranged from 118 to 181 mg C–CO2 m2 h−1 in the control (non-tilled) and from 110 to 235 mg C–CO2 m2 h−1 when tilled. Microbial biomass C varied from 365 to 461 μg g−1 in the control and from 248 to 535 μg g−1 when tilled. The values for N2O fluxes ranged from 1.22 to 96.9 μg N m−2 h−1 in the tilled plots with a maximum 3 days after the second tilling. Variability in NO flux in the control and when tilled was consistent with previous measures of NO emissions from pasture at Nova Vida. When tilled, the NO/N2O ratio remained <1 after the first tilling suggesting that denitrification dominated N cycling. The effects of tilling on microbial parameters were less clear, except for a decrease in qCO2 and an increase in microbial biomass C/N immediately after tilling. Our results suggest that restoration of degraded pastures with tillage will lead to less C matter, at least initially. Further long-term research is needed.  相似文献   

11.
The effects of three cotton-based cropping systems on soil properties, black root rot severity, and growth of cotton in a Vertisol were evaluated after a series of floods in eastern Australia. The experimental treatments, which had been imposed since 1985, were conventionally and minimum-tilled continuous cotton, and minimum-tilled cotton–wheat rotation. Frequent rainfall and flooding during the winter of 1998 resulted in near saturated soil at spring sowing in October. Although conventional tillage operations were completed before flooding, minimum tillage operations were not possible due to excessive moisture and cotton was sown onto the old beds with no-tillage. Soil specific volume (electrical conductivity of a 1:5 soil:water suspension) EC1:5, exchangeable Na content, pH and organic C were determined for the top 0.6 m of the profile in summer 1998 and again in 1999. Organic C in the surface 0.10 m was also evaluated during 1998–2000. Black root rot severity and mycorrhizal fungal colonisation were evaluated at 6 weeks after sowing. Tissue nutrient concentrations were measured in mature cotton plants. Cotton lint yield and fibre quality were evaluated after picking and ginning.

In comparison with either minimum- or conventionally tilled continuous cotton, minimum-tilled cotton–wheat rotation had the lowest exchangeable Na content and severity of bacterial black root rot, best surface structure and the highest crop growth, nutrient uptake and lint yields. Subsoil structure was the best with conventionally tilled continuous cotton. The 1998 floods appear to have decreased exchangeable Na and increased soil pH in all treatments. Surface organic C also decreased between 1998 and 2000. Soil structural damage was minimised by avoiding tillage and trafficking in wet conditions. Compared with 1998, average yield decreases in 1999 were of the order of 43%. Cotton lint fibre quality was also poorer in 1999.  相似文献   


12.
Soil structure and the effect of management practices   总被引:7,自引:0,他引:7  
To evaluate the impact of management practices on the soil environment, it is necessary to quantify the modifications to the soil structure. Soil structure conditions were evaluated by characterizing porosity using a combination of mercury intrusion porosimetry, image analysis and micromorphological observations. Saturated hydraulic conductivity and aggregate stability were also analysed.

In soils tilled by alternative tillage systems, like ripper subsoiling, the macroporosity was generally higher and homogeneously distributed through the profile while the conventional tillage systems, like the mouldboard ploughing, showed a significant reduction of porosity both in the surface layer (0–100 mm) and at the lower cultivation depth (400–500 mm). The higher macroporosity in soils under alternative tillage systems was due to a larger number of elongated transmission pores. Also, the microporosity within the aggregates, measured by mercury intrusion porosimetry, increased in the soil tilled by ripper subsoiling and disc harrow (minimum tillage). The resulting soil structure was more open and more homogeneous, thus allowing better water movement, as confirmed by the higher hydraulic conductivity in the soil tilled by ripper subsoiling. Aggregates were less stable in ploughed soils and this resulted in a more pronounced tendency to form surface crust compared with soils under minimum tillage and ripper subsoiling.

The application of compost and manure improved the soil porosity and the soil aggregation. A better aggregation indicated that the addition of organic materials plays an important role in preventing soil crust formation.

These results confirm that it is possible to adopt alternative tillage systems to prevent soil physical degradation and that the application of organic materials is essential to improve the soil structure quality.  相似文献   


13.
The vulnerability of groundwater from chemical leaching through soil is a concern at some locations. Because measurements are laborious, time‐consuming, and expensive, simulation models are frequently used to assess leaching risks. But the significance of simulated solute movement through a layered soil is questionable if vertical homogeneity of physical soil properties has been assumed. In the present study, a semi‐analytical model for solute leaching in soils is presented. The model is relatively simple, but it does account for soil layers having different physical properties. The model includes the mobile‐immobile model (MIM) to describe one‐dimensional (1‐D) nonequilibrium, transient solute transport under steady‐state flow conditions. The MIM is rewritten as a second‐order differential equation and solved by a numerical scheme. Differing from fully analytical or fully numerical solutions, the new approach solves the differential equation numerically with respect to time and analytically with respect to distance. Numerical experiments for a single layered soil profile show that the semi‐analytical solution (SA‐MIM) is numerically stable for a wide range of parameter values. The accuracy of SA‐MIM predictions is comparable to that of analytical solutions. Numerical experiments for a multilayered profile indicate that the model correctly predicts effluent curves from finite layered soil profiles under steady‐state flow conditions. The SA‐MIM simulations with typical parameter values suggest that neglecting vertical heterogeneity of flow paths in a layered soil can lead to inaccurate prediction of soil‐solute leaching. The quality of predictions is generally improved if parameter estimates for the different soil layers are considered. However, the mobile‐immobile‐parameter estimates obtained in a number of previous studies may not be transferable to a field situation that is characterized by a slow and steady flow of water. Further field experiments to determine mobile‐immobile parameters under such conditions are desirable.  相似文献   

14.
Effects of four tillage systems on the albedo of a tropical loamy sand were studied under dry and moist surface conditions. The aim was to determine whether tillage-induced roughness and soil wetness significantly affected soil albedo. Changes in smooth reference surface albedo with respect to four roughness conditions were used to assess tillage effects. Surface albedo (), soil moisture content (θm) and soil surface roughness (δ) were measured. Two types of pyranometers used for albedometers are CM 3 and SP LITE. Mean albedo of a reference smooth surface (<2 mm sieved soil) was 0.16 and 0.20 for CM 3 and SP LITE under moist condition, and 0.29 and 0.28 under dry condition, respectively. Bare-soil shortwave albedo generally increased with an increase in solar zenith angle, whereas albedo decreased with an increase in surface roughness and soil wetness. Linear relationships of albedo with surface roughness and soil moisture content indicated that albedo was more sensitive to surface roughness under dry condition. The goodness-of-fit of a multiple linear regression model combining the effects of roughness and wetness on surface albedo was 0.96 with a standard error of 0.01. This simple model could be used to estimate albedo of bare soil similar to the tropical loamy sand reported in this study. This study provides useful information for modelling tillage effects on the energy budget at the soil surface.  相似文献   

15.
The concern for groundwater pollution by agrichemicals through solute movement within the soil is widespread. Zeolite is a type of soil amendment that is utilized to improve physical properties of soil and ameliorate polluted soil. The high negative charge of the zeolite and its open space structure allows adsorption and access of heavy metals and other cations and anions. The objectives of this research were (i) to determine the effects of different application rates of zeolite (0, 2, 4, and 8 g kg?1) on the immobile water content and mass exchange coefficient in a loam soil and then (ii) to determine the effects of optimum application rate of zeolite on the immobile water content and mass exchange coefficient of sandy loam and clay loam soils in saturated conditions by a mobile and immobile (MIM) model. In a disturbed soil column, a method was proposed for determination of MIM model parameters, that is, immobile water content (θim), mass exchange coefficient (α), and hydrodynamic dispersion coefficient (Dh). Breakthrough curves were obtained for different soil textures with different zeolite applications in three replicates, by miscible displacement of chloride (Cl?1) in disturbed soil column. Cl?1 breakthrough curves were evaluated in terms of the MIM model. The results showed that the pore water velocity calculated based on the total soil volumetric water content (θim+ θm) and real pore water velocity calculated based on the mobile water content (θm) increased in the loam soil with an increase in zeolite application rate, so that, between these different rates of zeolite application, the maximum value of pore water velocity and real pore water velocity occurred at zeolite application rates of 8.6 and 11.5 g kg?1, which are indicated as the optimum application rates. However, the comparison between different soils showed that the zeolite application rate of 8 g kg?1 could increase pore water velocity of sandy loam and loam soils by 31% more than that of clay loam soil. The immobile water content and mass exchange coefficient of loam soil were correlated with the zeolite application rate and reduced with an increase in the rate of applied zeolite. In a comparison between different soils at zeolite application rate of 8 g kg?1, the immobile water contents of the zeolite-treated soil decreased by 57%, 60%, and 39% on sandy loam, loam, and clay loam soils, respectively, compared with the untreated soil. Furthermore, zeolite application could reduce mass exchange coefficient by 9%, 43%, and 21% on sandy loam, loam, and clay loam soils, respectively. A positive linear relationship was found between θim and α. Zeolite application increased real pore water velocity of sandy loam soil by 39% and 46% compared with loam and clay loam soils, respectively. In other studies there was a decrease in ammonium and nitrate leaching due to the zeolite application, and therefore, an increase in real pore water velocity due to zeolite application in sandy loam soil, as compared with the loam and clay loam soils, may not show more rapid movement of solute and agrichemicals to the groundwater.  相似文献   

16.
Soil erodibilty during concentrated flow (Kc) and critical flow shear stress (τcr), both reflecting the soil's resistance to erosion by concentrated runoff, are important input parameters in many physically-based soil erosion models. Field data on the spatial and temporal variability of these parameters is limited but crucial for accurate prediction of soil loss by rill or gully erosion. In this study, the temporal variations in Kc and τcr for a winter wheat field on a silt loam soil under three different tillage practices (conventional ploughing, CP; shallow non-inversion tillage, ST; deep non-inversion tillage, DT) in the Belgian Loess Belt were monitored during one growing season. Undisturbed topsoil samples (0.003 m3) were taken every three weeks and subjected to five different flow shear stresses (τ = 4–45 Pa) in a laboratory flume to simulate soil detachment by concentrated flow. To explain the observed variation, relevant soil and environmental parameters were measured at the time of sampling. Results indicated that after two years of conservation tillage, Kc(CP) > Kc(DT) > Kc(ST). Kc values can be up to 10 times smaller for ST compared to CP but differences strongly vary over time, with an increasing difference with decreasing soil moisture content. The beneficial effects of no-tillage are not reflected in τcr. Kc values vary from 0.006 to 0.05 sm−1 for CP and from 0.0008 to 0.01 sm−1 for ST over time. Temporal variations in Kc can be mainly explained by variations in soil moisture content but consolidation effects, root growth, residue decomposition and the presence of microbiotic soil crusts as well play a role. τcr values increase with increasing soil shear strength but Kc seems more appropriate to represent the temporal variability in soil erosion resistance during concentrated flow. The large intra-seasonal variations in Kc, which are shown to be at least equally important as differences between different soil types reported in literature, demonstrate the importance of incorporating temporal variability in soil erosion resistance when modelling soil erosion by concentrated flow.  相似文献   

17.
We studied the combined effects of reduced tillage and animal manure on soil structure and hydraulic conductivity (K) in the 2–10 and 12–20 cm layers in a loamy soil. The study was performed at the end of a 7‐yr field trial and included three tillage treatments (mouldboard ploughing until 25 cm depth: MP, shallow tillage until 12 cm depth: ST, no‐till: NT) and two fertilizer application treatments (mineral or poultry manure). Soil structure was assessed through bulk density (ρb), micromorphological and macropore‐space characteristics. K was measured in situ at ?0.6, ?0.2 and ?0.05 kPa. Untilled layers had a vermicular microstructure resulting from earthworm activity, whereas tilled layers displayed a mixture of crumb and channel microstructures. Untilled layers had the highest ρb and twice as much lower total macroporosity area (pores > 240 μm in equivalent diameter) than tilled layers, reflected by the smallest area of macropores 310–2000 μm in diameter and the smallest area of large complex macropores. K under untilled layers was 12–62% lower than that under tilled layers, but differences were statistically significant only at ?0.05 kPa in the 2–10 cm. No significant interaction between tillage and nutrient application treatments was detected for all properties. Compared with mineral fertilizer, poultry manure resulted in a similar ρb but 20% greater total macroporosity area and 30% higher K at ?0.2 kPa. Overall, the sensitivity of soil structure and K to poultry manure were relatively small compared with tillage. We suggest that cultivation practices other than animal manure application are needed to improve physical properties under reduced tillage.  相似文献   

18.
Dynamics of soil hydraulic properties during fallow as affected by tillage   总被引:2,自引:0,他引:2  
There is limited information on the effects of tillage practices on soil hydraulic properties, especially changes with time. The objective of this study was to evaluate on a long-term field experiment the influence of conventional tillage (CT), reduced tillage (RT) and no-tillage (NT) on the dynamics of soil hydraulic properties over 3 consecutive 16–18 month fallow periods. Surface measurements of soil dry bulk density (ρb), soil hydraulic conductivity (K(ψ)) at −14, −4, −1 and 0 cm pressure heads using a tension disc infiltrometer, and derived hydraulic parameters (pore size, number of pores per unit of area and water-transmission porosity) calculated using the Poiseuille's Law were taken on four different dates over the fallow period, namely, before and immediately after primary tillage, after post-tillage rains and at the end of fallow. Under consolidated structured soil conditions, NT plots presented the most compacted topsoil layer when compared with CT and RT. Soil hydraulic conductivity under NT was, for the entire range of pressure head applied, significantly lower (P < 0.05) than that measured for CT and RT. However, NT showed the largest mean macropore size (0.99, 0.95 and 2.08 mm for CT, RT and NT, respectively; P < 0.05) but the significantly lowest number of water-conducting pores per unit area (74.1, 118.5 and 1.4 macropores per m2 for CT, RT and NT, respectively; P < 0.05). Overall, water flow was mainly regulated by macropores even though they represented a small fraction of total soil porosity. No significant differences in hydraulic properties were found between CT and RT. In the short term, tillage operations significantly increased K (P < 0.05) for the entire range of pressure head applied, which was likely a result of an increase in water-conducting mesopores despite a decrease in estimated mesopore diameter. Soil reconsolidation following post-tillage rains reduced K at a rate that increased with the intensity of the rainfall events.  相似文献   

19.
Southeastern USA production is limited in Acrisols (Paleudults and Kandiudults) because they have high strengths and low water holding capacities. Production systems with crop rotations or deep tillage before planting were compared with less intensive management. Production systems included double-crop wheat (Triticum aestivum L.) and soybean (Glycine max L. Merr.) that were drilled in 0.19 m-row widths and grown in 15 m wide, 150 m long plots with soils of varying hardpan depths. Treatments included surface tillage (disked or none), deep tillage (paratilled or none), deep tillage with winter fallow and maize (Zea mays L.) in rotation, and disked/deep tillage with an in-row subsoiler where soybean was planted in conventional 0.76 m-wide rows. Cone indices were measured near the ends of each plot (120 m apart) to assess soil strength differences among soil types and among treatments. Cone indices were 1.50 MPa higher for non-deep tilled treatments than for deep tilled treatments and 0.44 MPa higher in wheel-track mid rows than in non-wheel-track mid rows. Cone indices were also 0.28 MPa higher for soils with shallower Bt horizons. Cone indices were not significantly different for subsoiled treatments and paratilled treatments. Rainfall was erratic throughout the 5-year experiment with dry periods lasting more than 2 weeks at a time and with annual totals ranging from 520 to 1110 mm. Wheat yields were 0.67 Mg ha−1 greater for deep-tilled soils (subsoiled and paratilled) than for non-deep-tilled soils. Soybean yields were 0.36 Mg ha−1 greater for paratilled than for subsoiled or non-deep-tilled treatments partly as a result of the more complete disruption of the paratill and partly because paratilled treatments were managed with narrow rows. Yields did not vary significantly among the soil types despite the fact that they had different cone indices. Tillage was a more dominant factor than soil type. For wheat, lower cone indices from tillage led to higher yields. For soybean, management of uniform loosening from deep tillage and narrow rows led to higher yields.  相似文献   

20.
To further understand the impact of tillage on carbon dioxide (CO2) emission, we compare the performance of two conceptual models that describe CO2 emission after tillage as a function of the non-tilled emission plus a correction resulting from the tillage disturbance. The models assume that C in the readily decomposable organic matter follows a first-order reaction kinetics equation as     and that soil C-CO2 emission is proportional to the C decay rate in soil, where C soil( t ) is the available labile soil C (g m−2) at any time ( t ) and k is the decay constant (time−1). Two possible relationships are derived between non-tilled ( F NT) and tilled ( F T) soil fluxes:     (model 1) and     (model 2), where t is time after tillage. The difference between these two models comes from an assumption related to the k factor of labile C in the tilled plot and its similarity to the k factor of labile C in the non-till plot. Statistical fit of experimental data to conceptual models showed good agreement between predicted and observed CO2 fluxes based on the index of agreement (d-index) and with model efficiency as large as 0.97. Comparisons reveal that model 2, where all C pools are assigned the same k factor, produces a better statistical fit than model 1. The advantage of this modelling approach is that temporal variability of tillage-induced emissions can be described by a simple analytical function that includes the non-tilled emission plus an exponential term, which is dependent upon tillage and environmental conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号