首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 871 毫秒
1.
Studies were conducted with Atlantic cod, Gadus morhua (L.), to determine the apparent digestibility coefficients (ADCs) of protein and energy and the digestible energy (DE) content in feed ingredients widely available in Canada. We also tested the assumption of “independency” used in digestibility studies. The feed ingredients included two fish meals (herring, anchovy), three crustacean by-product meals (whole krill, crab, shrimp), two animal by-product meals (poultry by-product, hydrolyzed feather), six oilseed meals (soybean, soy protein concentrate, soy protein isolate, canola, canola protein concentrate, flaxseed), two pulse meals (white lupin, pea protein concentrate) and two cereal grain meals (corn gluten, wheat gluten). Protein ADCs were high for wheat gluten meal (99.9%), soy protein concentrate (98.6%), soy protein isolate (97.4%), whole krill meal (96.3%), herring meal (93.3%), soybean meal (92.3%), anchovy meal (92.2%), pea protein concentrate (89.8%), white lupin meal (89.7%), crab meal (89.4%), canola protein concentrate (88.8%) and corn gluten meal (86.3%); mid-range for poultry by-product meal (80.2%) and canola meal (76.0%); and low for shrimp meal (66.7%), hydrolyzed feather meal (62.4%) and flaxseed meal (50.2-55.0%). Energy ADC was high for whole krill meal (96.3%), wheat gluten meal (95.4%), soy protein concentrate (94.9%), herring meal (92.8%), soy protein isolate (92.1%), soybean meal (88.1%) and anchovy meal (86.4%); mid-range for canola protein concentrate (83.3%), corn gluten meal (82.7%), crab meal (82.4%), pea protein concentrate (76.7%) and white lupin meal (75.3%); and low for poultry by-product meal (71.0%), canola meal (60.6%), hydrolyzed feather meal (58.9%), shrimp meal (41.4%) and flaxseed meal (21.2-37.4%). From the protein ADC data, results clearly showed that the basal diet and test feed ingredients were digested independently of one another in nearly all cases, the only exceptions being for those diets containing test ingredients of very high (> 99%, wheat gluten) or very low (< 67%, hydrolyzed feather and flaxseed) protein ADCs. In the case of DE, the basal diet and test feed ingredients were digested independently in all test diets without exception.  相似文献   

2.
The present study investigated the effect of various alternative diet ingredients partially replacing fishmeal (FM) on digestive and metabolic parameters in Atlantic salmon (Salmo salar L.) post-smolts (initial body mass 305 ± 69 g) following 12 weeks of feeding. Experimental diets containing 20 % extracted sunflower (ESF), pea protein concentrate (PPC), soy protein concentrate (SPC), feather meal (FeM) and poultry by-product (PBY) were compared to a reference diet containing FM as the main protein source. For the different intestinal compartments trypsin, lipase, bile salts, dry matter and chyme-associated leucine aminopeptidase (LAP) were measured from the content and LAP was measured in the tissue. Selected metabolites were measured in plasma samples. In general, use of plant proteins resulted in low C-LAP activity, low plasma cholesterol and high plasma magnesium. The plasma levels of cholesterol and Mg reflecting were most likely reflections of the composition of the diet, while the LAP activity in chyme may indicate lower epithelial cell turnover. Other responses varied depending on the plant protein source. Results from the animal protein substitution also varied both between diets and compartments; however, both materials increased lipase activity in DI. FeM resulted in a significant increase in both total and specific LAP activities suggesting an attempt to increase the digestive capacity in response to low digestibility of the diet while PBY showed very little difference from the FM-fed control fish. The present trial indicates that 20 % PPC, SPC and PBY can partially replace FM in diets for Atlantic salmon. The qualities of ESF and FeM used in this trial show little promise as FM replacement at 20 % inclusion level.  相似文献   

3.
The ability of frogs to digest dietary nutrients changes with growth, with the animals becoming more or less demanding. The objective of this study was to determine the apparent digestibility coefficients of protein, energy and ether extract of 14 ingredients used in bullfrog diets (spray‐dried blood meal, hydrolysed feather meal, poultry by‐product meal, red blood cell concentrate, tilapia by‐product meal, sardine fishmeal, salmon fishmeal, meat and bone meal, corn gluten meal, soybean meal, corn, wheat bran, soy protein concentrate and soybean oil). A total of 2,325 bullfrogs (Lithobates catesbeianus) in different phases of development were used: early phase (mean weight of 30–50 g), growth phase (80–110 g) and finishing phase (150–200 g). Faeces were collected using the method of dissection. Marked differences in digestibility of the ingredients were observed between the different phases of frog development. Among the ingredients studied, salmon fishmeal and corn gluten meal showed good utilization of the protein (78.9% and 86.7%, respectively) and energy fraction (89.4% and 83.3%, respectively). The salmon fishmeal, poultry by‐product meal, sardine fishmeal, soy protein concentrate, wheat bran and soybean oil exhibited good ether extract utilization (81.2%–92.8%), recommending their use in bullfrog diets.  相似文献   

4.
Duplicate groups of Atlantic salmon (Salmo salar L.), kept in seawater, were fed fish meal‐based cold‐pelleted diets. Diets with non‐starch polysaccharides (NSP), either cellulose, purified soybean NSP or extruded purified soybean NSP at a dietary level of 100 g kg?1, were compared with a diet without supplemental NSP and a diet with soybean meal in a 28‐day feeding trial. Isolation and characterizations were limited to culturable bacteria and population levels of aerobic and facultative aerobic heterotrophic autochthonous (adherent) and allochthonous (transient) bacteria present in the mid and distal intestines of Atlantic salmon fed the five different diets estimated using traditional bacteriological techniques. The presence of an autochthonous microbiota was demonstrated using transmission electron microscopy. No significant effects of diet composition were observed on total population levels of culturable bacteria present in the digestive tract, but the study showed that the composition of the gut microbiota (autochthonous or allochthonous) was sensitive to dietary changes. A total of 752 culturable isolates from the intestines were characterized by biochemical and physiological properties. Of these, 188 isolates were further characterized by partial sequencing the 16S rRNA genes. Among these, 146 isolates belonged to 31 phylotypes that were >94% identical to previously described species. However, 42 isolates showed similarity <94% to species available at the National Center of Biotechnology Information. Several of the phylotypes identified in the present study have not been reported previously in the gastrointestinal (GI) tract of fish, including the Gram‐negative bacteria Gelidibacter salicanalis, Pseudoalteromonas elyakovii, Psychrobacter aquimaris, Psychrobacter cibarius, Psychrobacter fozii, Psychrobacter maritimus, Psychrobacter okhotskensis and Psychrobacter psychrophilus. Among the Gram‐positive bacteria identified were Arthrobacter bergeri, Arthrobacter psychrolactophilus, Arthrobacter rhombi, Bacillus pumilus, Bacillus subtilis, Exiguobacterium spp., Microbacterium oxydans, Planococcus maritimus, Sporosarcina ginsengisoli and several bacteria that have been described as unculturable previously. In addition, we identified Carnobacterium inhibens, a lactic acid bacterium that is not frequently isolated from the GI tract of fish. Psychrobacter cibarius was the dominant bacterial species and was isolated from the digestive tract of all fish investigated.  相似文献   

5.
In the present study the impact on autochthonous (adherent) bacteria in proximal intestine (PI) and distal intestine (DI) of Atlantic cod ( Gadus morhua L.) was evaluated following feeding of a control diet and a diet supplemented with 5% chitin. The autochthonous gut bacteria were investigated using denaturing gradient gel electrophoresis (DGGE). Analysis of the microbiota associated with PI and DI of Atlantic cod indicate that dietary chitin modulate the intestinal bacterial community. For example, band 25 ( Escherichia coli–like), band 14 ( Anaerorhabdus furcosa–like) and band 29 (uncultured bacterium–like) in PI were depressed by dietary chitin (P < 0.05). The number of bands (23.7 ± 5.4) in DI of fish fed chitin was marginally higher than the control fish (16.7 ± 2.1) (P = 0.065), and the relative abundances of band 6 (swine faecal bacterium–like) were marginally stimulated by dietary chitin (P = 0.095). Furthermore, the present study reports several novel sequences not previously reported in the gastrointestinal tract of Atlantic cod. Whether the dietary effect of chitin on gut bacterial community has any positive effect of fish health merits further investigations.  相似文献   

6.
Alternative protein sources for aquafeeds need to be indentified in order to increase the efficiency of production. Many studies have examined terrestrial plant meals/protein concentrates as alternatives. Recently the focus has turned to aquatic protists and plants as well as by‐products from other industries, such as breweries. Atlantic salmon, Salmo salar, and Arctic charr, Salvelinus alpinus, were fed diets containing canola meal, soybean meal, corn gluten meal, soy protein concentrate, barley protein concentrate, and solar dried algae included at 30% of the test diet. Barley protein concentrate had the highest apparent protein digestibility values for both species (96.3% for Atlantic salmon and 85.1% for Arctic charr), followed by corn gluten meal. Algae had the highest organic matter digestibility value for arctic charr (80.1%) while corn gluten meal had the highest organic matter digestibility value for Atlantic salmon (88.4%). Algae had a high energy apparent digestibility coefficient (82.4 salmon, 82.7 charr) along with corn gluten meal (78.5 salmon, 82.7 charr) for both species. In general, Atlantic salmon had higher apparent digestibility coefficients compared to Arctic charr for most of the tested ingredients. Both corn gluten and barley protein concentrate appear good candidates as alternative protein sources with both species.  相似文献   

7.
Atlantic salmon (Salmo salar L.) were fed fishmeal protein for 46 days, and 500 g kg−1 of fishmeal protein substituted with meal from Northern krill (Meganyctiphanes norvegica). No differences were observed in weight gain, length gain, feed conversion or specific growth rate between the groups that could be attributed to dietary manipulation. The adherent microbiota in the hindgut of the two rearing groups were further investigated. By substituting fishmeal with krillmeal, the total viable counts of aerobic and facultative aerobic bacteria colonizing the hindgut of Atlantic salmon increased from 8.5 × 104 to 2.2 × 106. Furthermore, dietary krillmeal affected the adherent hindgut microbiota. The Gram‐positive bacteria Carnobacteria piscicola, Microbacterium oxydans, Microbacterium luteolum and Staphylococcus equorum spp. linens and the Gram‐negatives Psychrobacter spp. and Psychrobacter glacincola were not isolated from hindgut of fish fed the krill diet. On the other hand, Pseudomonas fulgida, Pseudomonas reactans and Stenotrophomonas maltophila were not isolated from the control group fed fishmeal. Acinetobacter lwoffi, which is not normally found in the fish gut, was isolated from both feeding groups. Transmission electron microscopy showed bacteria‐like profiles between the hindgut microvilli in both feeding groups indicating autochthonous microbiota. When fish were fed the krill diet, hindgut enterocytes were replete with numerous irregular vacuoles. These vacuoles were not observed in fish fed the fishmeal protein.  相似文献   

8.
The effects on Atlantic salmon (Salmo salar L.) metabolic health of including modern processed land animal by‐products (LAP) to a plant‐ and marine‐based diet (50% marine and 50% plant ingredients) were investigated. Three experimental diets were made with systematic replacements of both marine and plant ingredients with LAP as a source of protein (poultry meal and porcine blood meal) and fat (poultry oil) to fit a two‐way factorial design. A 16‐week feeding trial was performed with postsmolts in seawater (initial weight 372 g). The diet with both protein and lipids from LAP reduced liver triacylglycerols more than fourfold compared to the diet without LAP. This was confirmed by histological examinations showing reduced fatty degeneration in the liver of fish fed the high LAP diet. No severe negative effects on gut or tissue health were seen by histological examinations or by measuring genetic markers with qPCR, although a trend in the histological results indicated an improved gut health by including LAP in the diets. Clinical analyses of plasma and lipoprotein fractions showed no differences between dietary groups.  相似文献   

9.
We evaluated the effect of a diet containing insect meal and insect oil on nutrient utilization, tissue fatty acid profile and lipid metabolism of freshwater Atlantic salmon (Salmo salar). Insect meal and insect oil from black soldier fly larvae (Hermetia illucens, L.; BSF), naturally high in lauric acid (12:0), were used to produce five experimental diets for an eight‐week feeding trial. 85% of the dietary protein was replaced by insect meal and/or all the vegetable oil was replaced by one of two types of insect oil. A typical industrial diet, with protein from fishmeal and soy protein concentrate (50:50) and lipids from fish oil and vegetable oil (33:66), was fed to a control group. The dietary BSF larvae did not modify feed intake or whole body lipid content. Despite the high content of saturated fatty acids in the insect‐based diets, the apparent digestibility coefficients of all fatty acids were high. There was a decrease in liver triacylglycerols of salmon fed the insect‐based diets compared to the fish fed the control diet. This is likely due to the rapid oxidation and low deposition of the medium‐chain fatty acid lauric acid.  相似文献   

10.
The allochthonous microbiota in the proximal and distal intestine was investigated in three groups of Atlantic salmon (Salmo salar L.) fed a commercial diet and intraperitoneally injected with (a) phosphate‐buffered saline (control), (b) lipopolysaccharide (LPS) from the fish pathogenic bacteria, Aeromonas salmonicida ssp. salmonicida, and (c) laminaran [β‐(1,3)‐d ‐glucan]. Denaturing gradient gel electrophoresis (DGGE) of the hyper variable V3 region was used to present the microbiota in different experimental groups. Sequencing and phylogenetic analysis of excised DGGE bands suggested that an intraperitoneal injection of LPS from A. salmonicida affects the allochthonous gut bacteria of Atlantic salmon to some extent, as Aeromonas enteropelogenes, Aeromonas veroni, Psychrobacter, Lactobacillus letvazi, Lactobacillus satsumensis, Pantoea, swine manure bacterium and several uncultured bacteria were unique for this group. On the other hand, the bacterial diversity of the allochthonous microbiota did not seem to be affected by injection of β‐(1,3)‐d ‐glucan. Sequences of this experimental group were most closely related to A. enteropelogenes, uncultured Escherichia and Lactobacillus aviarius ssp. aviarius.  相似文献   

11.
This study evaluated liver and gut alterations of gilthead sea bream, Sparus aurata L., fed diets in which fish meal was substituted by a mixture (M) of pea protein concentrate (PPC) and rice protein concentrate (RPC). Histological studies were conducted to evaluate the possible changes produced by four experimental isolipidic (18%) and isoproteic (48%CP) diets with 30%, 60% and 90% of fish meal substitution by a pea and rice mixture and compared with a control diet (0%). The results obtained in the present histological study showed significant changes especially in the case of the 90% substitution in parameters such as thickness of the layers, goblet cells and villi measurements. Structural integrity of the gut would not be significantly affected by a diet of up to 60% substitution. The alterations observed in the liver could not only be attributed to diet but also to possible individual variations.  相似文献   

12.
Three studies were conducted with juvenile cobia, Rachycentron canadum: (Study 1) a 10‐week feeding trial within floating net cages to test the nutritional efficacy of different dietary feeding regimes (trash‐fish control diet, a semimoist diet, an in‐house dry formulated diet, and a commercial cobia feed); (Study 2) a 10‐week feeding trial within an indoor water‐recirculating tank‐based system to test the nutritional efficiency of different potential dietary fishmeal replacers (poultry byproduct meal, soy protein concentrate, feather meal), a diet without taurine supplementation, and a commercial cobia feed; and (Study 3) estimation of the essential amino acid (EAA) requirements of cobia based on EAA whole‐body composition in fast‐growing cobia fed a trash‐fish‐based diet. Fish performance in terms of growth and feed efficiency was the greatest within the outdoor net‐cage feeding trial, with fish fed the control trash‐fish‐based diet exhibiting the best performance. Although fish growth was poorer within the indoor feeding trials, fish performance was similar for most diets, with apparent crude protein digestibility coefficients of over 75% being obtained in all experimental diets in both feeding trials. The estimated EAA requirements of cobia obtained during this study were similar to those reported for other similar marine carnivorous fish species.  相似文献   

13.
Reductions in flesh contaminant concentrations were evaluated in a 36‐week feeding trial examining several dietary techniques. Atlantic salmon were fed one of seven dietary treatments for 24 weeks. These diets included a fishmeal, fish oil control diet, an industry control diet, three diets that examined a 75% replacement level of anchovy oil (AO) with flaxseed oil, canola oil and poultry fat, and two diets formulated to be low in contaminants formulated with canola oil, activated carbon‐treated anchovy oil and canola protein concentrate or soy protein concentrate. Following this initial 24‐week feeding interval, a 12‐week finishing diet was utilized to restore the levels of omega‐3 highly unsaturated fatty acids (n‐3 HUFAs). The salmon had marked reductions in their flesh concentrations of total polychlorinated biphenyls (PCBs), dioxin‐like PCBs and total toxic equivalents by the end of the grow‐out phase, but also exhibited significant depressions in their flesh concentrations of n‐3 HUFAs relative to 100AO‐fed fish. The 12‐week finishing diet period was effective in partially re‐instating omega‐3 levels to those present in the flesh lipids of fish fed 100AO while concurrently maintaining lower flesh contaminant concentrations.  相似文献   

14.
Fish hydrolysate was evaluated as feed ingredient in high plant protein diets in an 89 days feed experiment with Atlantic cod (Gadus morhua). The fish hydrolysate was size fractionated by ultra- and nano-filtration and the various fractions were tested specifically as feed ingredients to trace any effect observed with the hydrolysate. All diets contained 68% of total protein as plant protein, added as a mixture of corn gluten, full-fat soy bean meal, soy protein concentrate and extracted soy bean meal. The diets were equal in protein, lipid and energy. The control diet contained 21.8% fish meal. Fish hydrolysate was tested in another diet where one third of the fish meal protein was exchanged with the fish hydrolysate. Retentate after ultra-filtration of fish hydrolysate and retentate and permeate after nano-filtration were used in three separate diets at dietary inclusion levels corresponding to the absolute dry matter level of the fractions in the hydrolysate. The cod tripled in weight during the experimental period. No significant differences were observed for growth or feed intake for any groups. The diets containing retentate from ultra- and nano-filtration showed lower feed efficiency than the control diet with fish meal or the diet containing fish hydrolysate or permeate after nano-filtration. In conclusion the results show that fish hydrolysate may successfully be used as a protein source in high plant protein diets for Atlantic cod in exchange of fish meal. Removal of small molecules from the fish hydrolysate by filtration reveals poorer feed utilization indicating that this marine fraction of small compounds is important for optimal growth of Atlantic cod. This may be important in the discussion of increased dietary utilization of plant protein sources in feed for fish.  相似文献   

15.
The effects of partial replacement of fish meal (FM) with meal made from northern krill (Thysanoessa inermis), Antarctic krill (Euphausia superba) or Arctic amphipod (Themsto libellula) as protein source in the diets for Atlantic salmon (Salmo salar L.) and Atlantic halibut (Hippoglossus hippoglossus L.) on growth, feed conversion, macro‐nutrient utilization, muscle chemical composition and fish welfare were studied. Six experimental diets were prepared using a low‐temperature FM diet as control. The other diets included northern krill where 20, 40 or 60% of the dietary FM protein was replaced with protein from northern krill, and two diets where the FM protein was replaced with protein from Antarctic krill or Arctic amphipod at 40% protein replacement level. All diets were iso‐nitrogenous and iso‐caloric. Atlantic salmon grew from 410 g to approximately 1500 g during the 160 day experiment, and Atlantic halibut grew from 345 g to 500–600 g during the 150 day experiment. Inclusion of krill in the diets enhanced specific growth rate in salmon, especially during the first 100 days (P < 0.01), and in a dose–response manner in halibut for over the 150 day feeding period (P < 0.05). Feed conversion ratio did not differ between dietary treatments, and no difference was found in dry matter digestibility, protein digestibility and fish muscle composition. Good growth rates, blood parameters within normal ranges and low mortalities in all experimental treatments indicted that fish health was not affected either Atlantic salmon or Atlantic halibut fed the various zooplankton diets.  相似文献   

16.
The objectives of this work were to evaluate how dietary soybean meal (SBM) or a soy meal made by bioprocessing the SBM (BPSBM) to remove anti-nutritional factors affected hydrolytic capacity, amino acid absorption, intestinal morphology, and microflora along the intestinal tract of Atlantic cod at two life stages. Three fish meal based standard cod diets were formulated to contain no soy (FM control), 25% SBM, or 22% BPSBM. Prior to sampling the diets were fed to duplicate groups of 0.5 kg (1-year old) and 1.7 kg (2-year old) cod for a period of 3 months, and the groups reached 0.9 and 2.5 kg, respectively. Digesta was then sampled from different intestinal sections for analyses of trypsin and amylase activity as well as absorption of amino acids, nitrogen, and sulphur. Gastrointestinal sections were sampled for measurements of relative weight (kg− 1 body weight), and tissues from these sections were sampled for analyses of brush border enzyme (alkaline phosphatase (ALP), leucine aminopeptidase (LAP), and maltase) activity and histological examination. Microflora was sampled from both digesta and the intestinal wall. The SBM diet stimulated relative growth of all gastrointestinal sections except the distal intestine in both age classes. Relative growth of the pyloric intestine was also stimulated by BPSBM. The pyloric caeca and the upper mid intestine were found to be the major sites for enzymatic hydrolysis of protein and starch and for amino acid absorption. Dietary SBM and BPSBM did not alter the activity of trypsin and LAP, but the activity of these enzymes in the proximal intestine was affected by age, being higher in 1-year old than in 2-year old cod. The rate of amino acid, nitrogen, and sulphur absorption along the gastrointestinal tract was not affected by SBM, but was slowed by BPSBM. Dietary SBM or BPSBM did not alter the morphology of the intestinal mucosa in any sections of the cod intestine. The distal-most structure of the intestine, a compartment with inlet and outlet (anus) valves, showed very high microbial colonisation in the mucosal brush border. Inclusion of SBM in the diet changed the intestinal microflora, increasing the population level of transient bacteria in the pyloric and mid intestine, but reducing the population level of adherent bacteria throughout the intestine. To conclude, Atlantic cod appeared to have a robust and flexible digestive system able to adjust to high dietary levels of soy protein meals.  相似文献   

17.
Stable isotope analyses were applied to explore the relative dietary nitrogen contributions from fish meal and pea meal (Pisum sativum) to muscle tissue of Pacific white shrimp postlarvae (141 ± 31 mg) fed low protein diets having different proportions of both ingredients as the sole dietary protein sources. A negative control diet was formulated to contain 100% pea meal and six more isoproteic diets to have decreasing levels of pea meal‐derived nitrogen: 95%, 85%, 70%, 55%, 40% and 0% of the initial level. Growth rates were negatively correlated to dietary pea protein inclusion due to progressive essential amino acid deficiencies (sulphur amino acids, threonine, lysine, histidine). The nitrogen turnover rate significantly increased in muscle tissue of shrimps fed diets having high levels of pea meal; however, contrary to observations from a previous study using soy protein, the relative contributions of dietary nitrogen from pea meal to shrimp muscle tissue were equal or higher than expected contributions established by the dietary formulations. Results highlight the effectiveness of stable isotope analysis in assessing the nutritional contributions of alternative ingredients for aquaculture feeds and the potential suitability of pea as a source of protein (provided the diets are nutritionally balanced).  相似文献   

18.
The effect of different dietary lipid sources on the athletic health of five groups of Atlantic salmon (Salmo salar) was tested by measuring oxygen consumption rates, prolonged swimming performance, and recovery from exhaustive exercise in a closed circuit respirometer. These groups of fish differed from each other in the source of the supplemental lipid in their diet. The control diet contained 100% anchovy oil, while in the test diets, poultry fat, de-gummed canola oil, or flaxseed oil were used to replace up to 75% fish oil. The composition of the industry diet was a 1:1 blend of anchovy oil and poultry fat, also 50% of the fishmeal protein in this diet was replaced with protein from poultry by-product meal. Despite major differences in dietary lipid and protein composition that altered the lipid composition of the fish, all of our treatment groups performed equally well with respect to their oxygen consumption, swimming performance and recovery ability. Since these swim tests integrated many physiological functions, and collectively represented a sensitive measure of the athletic health of the fish, we concluded that our alternative lipid and protein-based diets represented viable possibilities for salmon farming.  相似文献   

19.
The suitability of land animal by‐products (ABPs) in feed for Atlantic salmon postsmolts (initial weight 372 g) in sea water was studied in a feeding experiment, using poultry by‐product meal (PBM) and porcine blood meal (BM) as protein sources and poultry oil as fat source. Four extruded feeds were tested in a 2 * 2 factorial model, with or without ABP protein sources and with or without poultry oil. The control feed contained a mix of marine and plant ingredients. Initial feed intake was highest in the ABP protein‐based diets, whereas poultry oil had a weak opposite effect. No differences were seen in growth rate or body weight. Addition of PBM and BM led to increased FCR, and lower retention of crude protein and energy. This could be explained by lower digestibility of amino acids and crude protein, and a slightly lower energy level in these diets. Reduced igf1 mRNA levels in liver and muscle were seen in fish fed dietary ABP protein and oil. Despite lower protein digestibility of ABP protein, this study confirms the suitability of ABP protein and lipid in combination with plant ingredients in feed for Atlantic salmon growers.  相似文献   

20.
付闰吉  纪文秀  王岩  谢宁峡 《水产学报》2010,34(10):1525-1533
通过10周网箱养殖实验,评价了不同饲料蛋白水平下点带石斑鱼对1种鸡肉粉、羽毛粉和血粉混合物的利用能力。采用2×4实验设计,设2个饲料蛋白水平(490 g/kg和530 g/kg粗蛋白),每个饲料蛋白水平下设4个鱼粉水平,其中1组饲料中加入500 g/kg鱼粉(对照),另外3组饲料中分别加入139、278、416 g/kg的鸡肉粉、羽毛粉和血粉混合物(鸡肉粉∶羽毛粉∶血粉=65∶20∶15)替代对照饲料中30%、60%、90%的鱼粉。实验鱼初始体重为(33.4±0.1) g。实验期间,除恶劣天气外,每天分两次按饱食量投喂实验鱼。实验结果表明,饲料蛋白水平对摄食量、增重,饲料系数、氮储积效率、能量储积效率和鱼体组成无显著影响;饲料鱼粉含量显著影响增重,饲料系数、氮储积效率和能量储积效率,但对摄食量和鱼体组成无显著影响。在相同饲料蛋白水平下,特定生长率(SGR)随鱼粉含量降低而下降;当鱼粉含量相同时,摄食高蛋白饲料的鱼SGR略高于摄食低蛋白饲料的鱼。本实验结果显示,通过添加鸡肉粉、羽毛粉和血粉混合物可将点带石斑鱼饲料鱼粉含量降低到200 g/kg,在490~530 g/kg范围内提高饲料蛋白水平无助于降低点带石斑鱼饲料鱼粉含量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号