首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An 8‐week growth experiment was conducted to quantify the appropriate dietary vitamin C requirement of juvenile Chinese sucker (Myxocyprinus asiaticus). Triplicate groups of 30 experimental fish [initial body weight: (7.1 ± 0.3) g] were cultured in 500 L aquaria and fed with semi‐purified diets containing six levels [10.1 (unsupplemented diet), 37.4, 64.9, 125.2, 244.2 and 482.0 mg kg?1 diet, respectively] of vitamin C (supplied as L‐ascorbyl‐2‐polyphosphate). Results showed that weight gain of Chinese sucker was significantly increased with increasing dietary vitamin C levels, but there was no significant difference of weight gain among fish fed the diets containing more than 125.2 mg kg?1 vitamin C. As dietary vitamin C increased, the liver vitamin C content of fish showed the increasing trend firstly and then stabled, while the muscle vitamin C content significantly increased without reaching a constant level. Lower liver malondialdehyde content was observed in 125.2, 244.2 and 482.0 mg kg?1 vitamin C groups, and higher antioxidant capacity and superoxide dismutase activities were observed in supplemented groups when compared to the unsupplemented group. Liver aspartate aminotransferase and alkaline phosphatase activities were also significant affected by dietary vitamin C. Ash content of fish fed the diet with 244.2 or 482.0 mg kg?1 vitamin C was significantly higher than that of fish fed the other diets. However, dietary vitamin C had no significant effects on whole‐body crude protein, lipid and moisture contents. The vitamin C requirement of juvenile Chinese sucker was estimated to be 84.6 and 126.1 mg kg?1 based on weight gain and liver vitamin C concentration respectively.  相似文献   

2.
An 11‐week growth trial was conducted to determine dietary myo‐inositol (MI) requirement for juvenile gibel carp (Carassius auratus gibelio). Myo‐inositol was supplemented to the basal diet to formulate six purified diets containing 1, 56, 107, 146, 194 and 247 mg MI kg?1 diet, respectively. Each diet was fed to triplicate groups of juvenile gibel carp (initial body weight 3.38 ± 0.27 g, mean ± SD) in a flow‐through system. The diets were randomly assigned to different fish tanks. Fish fed ≥ 107 mg MI kg?1 diet had significantly higher weight gain (WG), feed efficiency (FE) and protein efficiency ratio than those fed 1 mg MI kg?1 diet. Fish fed ≥ 56 mg MI kg?1 diet had higher feeding rate and survival compared with fish fed 1 mg MI kg?1 diet. Dietary supplemental inositol did not affect fish liver inositol concentration. Fish fed ≥ 56 mg MI kg?1 diet had higher body dry matter, crude protein and gross energy and lower hepatosomatic index than fish fed 1 mg MI kg?1 diet. Dietary inositol supplementation decreased fish body ash. Quadratic regression of weight gain indicated that the myo‐inositol requirement to maximum growth for juvenile gibel carp was 165.3 mg MI kg?1 diet.  相似文献   

3.
A 9‐week feeding experiment was conducted to determine the effect of dietary biotin levels on growth performance and non‐specific immune response of large yellow croaker. Fish (6.16 ± 0.09 g) were fed twice daily to apparent satiation with diets containing 0.00 (as the basal diet), 0.01, 0.05, 0.25, 1.24 and 6.22 mg biotin kg?1 diet. Results showed that fish fed the basal diet had the lowest survival rate, and fish fed 0.05 mg kg?1 dietary biotin achieved significantly higher final weight and weight gain. Dietary biotin levels had no significant influence on carcass crude lipid, moisture and ash content, but significantly influenced the carcass crude protein. Liver biotin concentration significantly increased with the supplementation of biotin, but no tissue saturation was found within the supplementation scope of biotin. Broken‐line regression analysis of weight gain showed that juvenile large yellow croaker requires a minimum dietary biotin of 0.039 mg kg?1 for maximal growth. The analyses of serum parameters showed that the moderate‐ (0.05 mg kg?1) and high‐dose (6.22 mg kg?1) dietary biotin significantly improved both lysozyme and alternative complement pathway activities, indicating dietary biotin within a certain range could improve the non‐specific immune response of large yellow croaker.  相似文献   

4.
A 9‐week feeding trial was conducted to determine the optimal dietary vitamin C requirement and its effects on serum enzymes activities and bacterial resistance in the juvenile yellow drum Nibea albiflora (initial weight 33.2 ± 0.10 g). Six practical diets were formulated containing vitamin C 2.1, 45.3, 89.6, 132.4, 178.6 and 547.1 mg kg?1 diet supplied as l ‐ascorbyl‐2‐monophosphate. The fish fed 547.1 mg kg?1 diet showed a significantly higher survival than that fed 2.1 mg kg?1 diet. The weight gains and specific growth rate of the fish fed 2.1 mg kg?1 diet were significantly lower than those of the fish fed 89.6–547.1 mg kg?1 diets. The liver vitamin C concentration firstly increased with increasing dietary vitamin C supply from 2.1 to 178.6 mg kg?1 diet and then stabilized. The serum superoxide dismutase activities of the fish fed 547.1 mg kg?1 diet were significantly lower than those of the fish fed 2.1–89.6 mg kg?1 diet. The fish fed 2.1 mg kg?1 diet had a significantly higher alkaline phosphatase activity than those in the other groups except the 45.3 mg kg?1 group. Fish that received diets containing vitamin C at 547.1 mg kg?1 had significantly higher nitro blue tetrazolium and lysozyme activity, and fish that received diets containing vitamin C at 45.3–547.1 mg kg?1 exhibited resistance against Vibrio alginolyticus infection. The dietary vitamin C requirement of the juvenile yellow drum was established based on broken‐line model of weight gain to be 142.2 mg l ‐ascorbyl‐2‐monophosphate kg?1 diet.  相似文献   

5.
A total of 1400 juvenile Jian carp (Cyprinus carpio var. Jian) (7.72 ± 0.02 g) were fed seven purified diets containing 0.010 (basal diet), 0.028, 0.054, 0.151, 0.330, 1.540 and 2.680 mg biotin kg?1 for 63 days to investigate the effects of biotin on growth, body composition, intestinal enzyme activities and microbiota. Specific growth rate (SGR), feed intake, feed efficiency and protein retention value were the highest when dietary biotin level was 0.151 mg kg?1 diet. Crude protein, lipid and ash content of fish carcass improved with increasing dietary biotin levels up to 0.054, 0.151 and 0.028 mg kg?1 diet, respectively (P < 0.05). Intestinal folds height, trypsin, chymotrypsin, lipase, amylase, alkaline phosphatase, Na+, K+‐ATPase, γ‐glutamyl transpeptidase and creatinekinase activities increased with dietary biotin levels up to 0.151–0.330 mg kg?1 diet (P < 0.05). Intestinal Aeromonas and Escherichia coli significantly decreased with increasing dietary biotin up to 0.151 mg kg?1 diet, while Lactobacillus and Bacillus significantly increased with dietary biotin levels up to 0.054 and 0.151 mg kg?1 diet, respectively. In conclusion, biotin could improve digestive and absorptive ability of fish, and the dietary biotin requirement for SGR of juvenile Jian carp (7.72–32.67 g) was 0.15 mg kg?1 diet.  相似文献   

6.
An 11‐week feeding trial was conducted to evaluate the effect of dietary methionine on the growth, antioxidant status, innate immune response and disease resistance to Aeromonas hydrophila of juvenile yellow catfish. Six isonitrogenous and isolipidic practical diets were formulated to contain different graded methionine levels ranging from 6.1 to 16.4 g kg?1 of dry weight. The results indicated that growth performance and feed utilization were significantly influenced by the dietary methionine levels; fish fed the diet containing 6.1 g kg?1 methionine level had lower specific growth rate, percentage weight gain (PWG), feed efficiency and protein efficiency ratio than those fed the other diets (P < 0.05). Fish fed the diet containing 16.4 g kg?1 methionine level had lowest protein contents in whole body and muscle among all treatments. Triacylglycerols, cholesterol, aspartate aminotransferase, alanine aminotransferase and haemoglobin (Hb) in plasma or whole blood were significantly affected by dietary methionine levels. Fish fed the diet containing 6.1 g kg?1 methionine level had higher superoxide dismutase, glutathione peroxidase activities and malondialdehyde values than those fed other diets. Fish fed diets containing 9.7 and 11.8 g kg?1 methionine levels had higher lysozyme activity, total immune globulin, phagocytic activity and respiratory burst than those fed other diets. The lowest survival after A. hydrophila challenge was observed in fish fed a diet containing 6.1 g kg?1 methionine. Quadratic regression analysis of PWG against dietary methionine levels indicated that the optimal dietary methionine requirement for the maximum growth of juvenile yellow catfish was estimated to be 11.5 g kg?1 of the diet in the presence of 4.0 g kg?1 cystine (corresponding to 23.5 g kg?1 of dietary protein on a dry weight basis).  相似文献   

7.
A 17‐week feeding trial was carried out to evaluate the effects of dietary L‐carnitine level in beluga, Huso huso. A total of fish averaging 1247 ± 15.6 g (mean ± SD) were randomly distributed into 18 fibreglass tanks, and each tank holding 10 fish was then randomly assigned to one of three replicates of six diets with 50, 150, 350, 650, 950 and 1250 mg L‐carnitine kg?1 diet. At the end of 17 weeks of feeding trial, average weight gain (WG), feed efficiency (FE), protein efficiency ratio (PER) and condition factor (CF) of fish fed 350 mg kg?1 diet were significantly (P < 0.05) higher than those of fish fed 50, 150, 950 and 1250 mg kg?1 diets. WG, FE, PER and CF of beluga fed 650 mg kg?1 diet were also significantly higher than those of fish fed 50, 950 and 1250 mg kg?1 diets. Whole body and muscle protein were significantly improved by the elevation of dietary L‐carnitine level up to 350 mg kg?1. Liver superoxide dismutase and glutathione peroxidase activities of fish fed 350 and 650 mg kg?1 diets were significantly higher than those of fish fed 50, 950 and 1250 mg kg?1 diets. The dietary L‐carnitine level of 350–650 mg kg?1 diet could improve growth performance, feed utilization, protein‐sparing effects of lipid, antioxidant defence system and reproductive success. Polynomial regression of WG suggested that the optimum dietary L‐carnitine level was 480 mg kg?1 diet. Therefore, these results may indicate that the optimum dietary L‐carnitine could be higher than 350 but <650 mg kg?1 diet in beluga reared in intensive culture conditions.  相似文献   

8.
An 8‐week feeding trial was conducted to establish the dietary vitamin E requirement of juvenile cobia. The basal diet was supplemented with 10, 20, 30, 40, 60, 120 mg vitamin E kg?1 as all‐rac‐α‐tocopheryl acetate. The results indicated that fish fed the diets supplemented vitamin E had significantly higher specific growth rate, protein efficiency ratio, feed efficiency and survival rate than those fed the basal diet. It was further observed that vitamin E concentrations in liver increased significantly when the dietary vitamin E level increased from 13.2 to 124 mg kg?1. Fish fed the basal diet had significantly higher thiobarbituric acid‐reactive substances concentrations in liver than those fed the diets supplemented vitamin E. Fish fed the diets supplemented with 45.7 and 61.2 mg kg?1 vitamin E had significantly higher red blood cell and haemoglobin than those fed the basal diet, while fish fed the diets supplemented with 61.2 and 124 mg kg?1 vitamin E had higher immunoglobulin concentration than those fish fed the basal diet. Lysozyme and superoxide dismutase were significantly influenced by the dietary vitamin E level. The dietary vitamin E requirement of juvenile cobia was established based on second‐order polynomial regression of weight gain and lysozyme to be 78 or 111 mg all‐rac‐α‐tocopheryl acetate kg?1 diet, respectively.  相似文献   

9.
A 63‐day growth trial was undertaken to estimate the effects of supplemented lysine and methionine with different dietary protein levels on growth performance and feed utilization in Grass Carp (Ctenopharyngodon idella). Six plant‐based practical diets were prepared, and 32CP, 30CP and 28CP diets were formulated to contain 320 g kg?1, 300 g kg?1 and 280 g kg?1 crude protein without lysine and methionine supplementation. In the supplementary group, lysine and methionine were added to formulate 32AA, 30AA and 28AA diets with 320 g kg?1, 300 g kg?1 and 280 g kg?1 dietary crude protein, respectively, according to the whole body amino acid composition of Grass Carp. In the groups without lysine and methionine supplementation, weight gain (WG, %) and specific growth rate (SGR, % day?1) of the fish fed 32CP diet were significantly higher than that of fish fed 30CP and 28CP diets, but no significant differences were found between 30CP‐ and 28CP‐diet treatments. WG and SGR of the fish fed 32AA and 30AA diets were significantly higher than that of fish fed 28AA diets, and the performance of grass carp was also significantly improved when fed diets with lysine and methionine supplementation (P < 0.05), and the interaction between dietary protein level and amino acid supplementation was noted between WG and SGR (P < 0.05). Feed intake (FI) was significantly increased with the increase in dietary protein level and the supplementation of lysine and methionine (P < 0.05), but feed conversion ratio (FCR) showed a significant decreasing trend (P < 0.05). Two days after total ammonia nitrogen (TAN) concentration test, the values of TAN discharged by the fish 8 h after feeding were 207.1, 187.5, 170.6, 157.3, 141.3 and 128.9 mg kg?1 body weight for fish fed 32CP, 32AA, 30CP, 30AA, 28CP and 28AA diets, respectively. TAN excretion by grass carp was reduced in plant‐based practical diets with the increase in dietary protein level and the supplementation of lysine and methionine (P < 0.05). The results indicated that lysine and methionine supplementation to the plant protein sources‐based practical diets can improve growth performance and feed utilization of grass carp, and the dietary crude protein can be reduced from 320 g kg?1 to 300 g kg?1 through balancing amino acids profile. The positive effect was not observed at 280 g kg?1 crude protein level.  相似文献   

10.
A feeding trial was conducted to determine the adequate dietary ascorbic acid (AsA) levels and the effects on growth, meat quality and antioxidant status of sea cucumber (10.04 ± 0.06 g), Apostichopus japonicus. l ‐ascorbyl‐2‐polyphosphate (35% AsA equivalent) was supplemented separately to the basal diet to obtain five AsA levels, 0, 598, 1473, 4676 and 14340 mg kg?1 diet respectively. After 60‐day feeding trial, the sea cucumbers fed diets containing 598 and 1473 mg AsA kg?1 showed significantly higher (< 0.05) body weight gain and specific growth rate values than the sea cucumbers fed control diets. The sea cucumbers fed diets containing 1473 and 4676 mg AsA kg?1 showed significantly higher (< 0.05) hydroxyproline contents than those of the sea cucumbers fed diets containing 0 and 598 mg AsA kg?1. Antioxidant enzymes such as total antioxidant capacity, superoxide dismutase and glutathione peroxidase showed increasing trends with the increasing dietary AsA levels, but no significant differences (> 0.05) were observed when the sea cucumbers fed diets with high dietary AsA levels. The content of malondialdehyde had the opposite trend of antioxidant enzymes. In conclusion, the adequate dietary AsA level focusing on growth performance of sea cucumber is between 598 and 1473 mg kg?1 diet. Furthermore, high level of dietary AsA (between 598 and 4676 mg kg?1 diet) improved meat quality and antioxidant status.  相似文献   

11.
A growth study was conducted to determine the dietary niacin requirement of the Indian catfish, Heteropneustes fossilis (Bloch), fingerlings (Mean weight 9.41 ± 0.18 g). Semi‐purified diets with five levels (0, 5, 10, 20 and 40 mg kg?1 diet) of supplemental niacin were fed to H. fossilis for 15 weeks. Each diet was fed to three replicate groups of fish. Results indicated that the highest (P < 0.05) weight gain was for the fish fed the diet supplemented with 20 mg niacin kg?1, followed by fish fed the diets with 40, 10 and 5 mg niacin kg?1, and the lowest in fish fed the unsupplemented control diet. Patterns of specific growth rate (SGR) and protein efficiency ratio (PER) were similar to those of the weight gain. Survival of fish fed the control diet and niacin‐supplemented diet was 58% and 91–100% respectively. Niacin deficiency signs such as anaemia, anorexia, lethargy and skin haemorrhage were observed in fish fed the control diet. The haematocrit values (Ht) were higher (P < 0.05) in fish fed the diets supplemented with niacin than in fish fed the control diet. The hepatosomatic indexes (HSI) of fish fed with or without niacin‐supplemented diets were not significantly (P > 0.05) different from each other. Both body protein and lipid content were higher (P < 0.05) in fish fed the diet supplemented with 20 and 40 mg niacin kg?1, respectively, than those fish fed other diets. The niacin content in liver significantly (P < 0.05) reflected the supplementation level in the diet and ranged from 29.11 to 40.31 mg g?1 tissue. The associated liver niacin content for growth was about 47 μg g?1 tissue. Quadratic regression analysis showed that the dietary niacin requirement for maximal growth of H. fossilis under these experimental conditions was about 25 mg kg?1 diet.  相似文献   

12.
Ethoxyquin (EQ) is the most common synthetic antioxidant used for preventing rancidity in fish foodstuffs. However, literature related to the effects of dietary EQ on performance of fish was limited. The present study was conducted to investigate the effects of EQ on performance and EQ residue in muscle of juvenile Japanese seabass Lateolabrax japonicus and to estimate the optimal EQ concentration in the diet. Graded levels [0 (control), 50, 150, 450 and 1350 mg EQ kg?1 diet] of EQ were added to the basal diet, resulting in five dietary treatments in the experiment. Each diet was fed to triplicate groups of seabass (initial body weight 8.01 ± 0.76 g) for 12 weeks in floating sea cages (1.5 × 1.5 × 2.0 m, 30 fish per cage). Survival ranged from 78.9 to 86.7%, and was irrespective of dietary EQ levels. The specific growth rate (SGR) of fish fed diets supplemented with ≤50 mg kg?1 EQ had significantly (< 0.05) higher SGR than fish fed diets supplemented with ≥150 mg kg?1 EQ, the highest SGR was observed in fish fed diet with 50 mg kg?1 EQ supplementation. Feed intake (FI) and feed efficiency (FE) were not significantly (> 0.05) different among dietary treatments. Fish fed diets with 50 and 1350 mg kg?1 EQ had a significant (< 0.05) lower body lipid content than fish in the control group. Muscle EQ level significantly increased when dietary EQ increased. Optimal EQ concentration estimated by polynomial regression based on maximum growth of juvenile Japanese seabass was 13.78 mg kg?1 diet.  相似文献   

13.
Triplicate groups of Indian catfish, Heteropneustes fossilis (Bloch), fingerlings (average wet weight 3.55 ± 0.03 g) were fed semi-purified diets containing six levels of biotin (0, 0.086, 0.26, 0.86, 2.5 and 4.3 mg kg−1 diet) for 15 weeks. After 42 days of feeding, fish fed the control (no biotin) diet had developed severe deficiency signs characterized by convulsions, heavy mortality, listlessness, poor feed conversion and feed intake, dark skin colour, tetanus and weight loss. None of these signs was seen in fish fed biotin-supplemented diets. Among all the biotin-supplemented diets, percentage weight gain was significantly highest for fish fed the diet supplemented with 0.26 mg of biotin kg−1 and significantly lowest for fish fed the diet supplemented with 0.086 mg of biotin kg−1. Feed conversion ratio (FCR) and protein efficiency ratio (PER) patterns were similar to that of percentage weight gain. The carcass protein and lipid contents were influenced by the dietary biotin up to fish fed 0.26 mg of biotin kg−1. Significantly higher body biotin content, liver pyruvate carboxylase and acetyl CoA carboxylase activities were observed in fish fed biotin-supplemented diets than in fish fed the control diet. Broken-line analyses showed that the optimum dietary requirement for biotin for maximal weight gain, body biotin content, liver pyruvate carboxylase and acetyl CoA carboxylase activities was about 0.25 mg kg−1. Associated liver pyruvate carboxylase and acetyl CoA carboxylase activities for normal growth ranged from 105 to 120 units mg−1 protein and from 9 to 11 units mg−1 protein respectively.  相似文献   

14.
A feeding experiment was conducted to determine the dietary zinc (Zn) requirement of hybrid tilapia fed on a diet with soya bean meal as the sole protein source. The quantity of phytic acid in the experimental diet was 15.5 g kg?1. Juvenile hybrid tilapia were fed on diets containing 31–227 mg Zn kg?1 in triplicates for 6 weeks. Haematology of the fish was not affected by various dietary Zn levels. Fish fed on a diet containing 31 mg kg?1 endogenous Zn showed the lowest growth rates, feed utilization, and body and plasma Zn levels. Weight gain (WG), plasma Zn level and superoxide dismutase (SOD) activity increased when a higher quantity of dietary Zn of 127 mg kg?1 was administered to the experimental fish. Beyond this level, the values of these parameters were relatively stable. On the other hand, within the dietary Zn range tested, whole‐body Zn and ash increased with higher dietary Zn levels. Analysis using a broken‐line model showed that the dietary Zn requirements of hybrid tilapia fed on soya bean meal‐based diets containing 15.5 g kg?1 endogenous phytic acid were 115, 115 and 105 mg kg?1 based on WG, whole‐body Zn retention and plasma Zn level, respectively.  相似文献   

15.
The study was to evaluate the effects of dietary fish meal (FM) partially replaced by housefly maggot meal (HMM) on growth, fillet composition and physiological responses of juvenile barramundi, Lates calcarifera. HMM at 100, 150, 200 and 300 g kg?1 was supplemented in the basal diet to replace dietary FM protein. Basal diet without HMM supplementation was used as control. Total of five experimental diets were fed to triplicate groups of juvenile barramundi (initial weight: 9.66 ± 0.22 g) in a flow‐through rearing system for 8 weeks. Fish fed all experimental diets showed no effects (> 0.05) on weight gain and whole body protein, lipid and moisture content. Fish fed control diet and 100 g kg?1 HMM diet had the highest (< 0.05) hepatic superoxide dismutase (SOD) activity, followed by 150 g kg?1 HMM group, the lowest in 200 and 200 g kg?1 HMM groups. Hepatic thiobarbituric acid reactive substance (TBARS) value was the highest in fish fed 150–300 g kg?1 HMM diets, followed by 100 g kg?1 HMM group and the lowest in fish fed the control diet. Fish fed the 300 g kg?1 HMM diet had lower plasma lysozyme activity than fish fed other diets. The results indicated that up to 300 g kg?1 HMM can be used to substitute dietary FM protein without negative effect on growth. Although physiological responses were also considered, up to 100 g kg?1 HMM in barramundi diet was recommended.  相似文献   

16.
Threonine is the third‐limiting essential amino acid in diets based on cereal ingredients. A 4‐week trial was conducted to determine the threonine requirement of large Nile tilapia based on fish growth, feed efficiency, body composition, protein and amino acid retention. Six hundred fish (563.3 ± 15.1 g) were distributed into twenty 1.2‐m3 cages. Five diets containing 288 g kg?1 of crude protein, 12.7 MJ kg?1 of digestible energy and 8.9, 10.5, 12.2, 13.7 and 15.4 g kg?1 of threonine were elaborated. Fish were hand‐fed five times a day to extruded diets. Significantly, differences in growth performance and amino acids retention among the treatments were observed. Fish fed 10.5 g kg?1 of threonine showed higher daily weight gain, gutted weight and fillet weight (P < 0.05) compared to fish fed with other experimental diets. Diets containing 8.9–15.4 g kg?1 of threonine did not affect whole body and muscle proximate composition. Based on second‐order regression analysis, the dietary threonine requirement estimated based on final gain, fillet weight and fillet yield was 12, 12.1 and 11.5 g kg?1 diet, respectively. The dietary threonine requirement for maximum fillet yield of Nile tilapia was estimated to be 11.5 g kg?1.  相似文献   

17.
A 60‐day feeding trial was conducted to determine the effects of different dietary vitamin C levels on growth performance, immune response and antioxidant capacity of loach juveniles. Six isonitrogenous (58.6% of crude protein), isoenergetic (17.5 kJ g?1) practical diets supplemented with 0 (VC0), 100 (VC100), 200 (VC200), 500 (VC500), 1000 (VC1000) and 5000 mg kg?1 (VC5000) of VC (35% ascorbic acid equivalent) were fed to fish (mean initial weight 0.11 ± 0.02 g) in triplicate. Results showed that fish fed VC0 diet had significantly lower body weight gain (BWG) and survival rate (SR). However, BWG and SR improved significantly in fish fed VC100 and VC200 diet respectively. Whole body ascorbic acid concentration increased with incremental dietary VC levels from 0 to 100 mg kg?1. The activity of mucus alkaline phophatase was significantly increased by the dietary VC level. Incremental levels of VC significantly reduced activities of glutathione peroxidase (GPx) and catalase. Moreover, fish fed diets containing more than 100 mg kg?1 VC significantly down‐regulated the superoxide dismutase and GPx mRNA expression in liver. Meanwhile, the expressions of liver heat shock protein (HSP70) and nuclear factor‐erythroid 2‐related‐2 (Nrf2) were affected by fish fed diets containing VC from 100 to 5000 mg kg?1. In conclusion, VC requirement of loach juveniles for optimum growth and functionally preventing lipid peroxidation was more than 200 mg kg?1 of diet. Moreover, high dose of VC supplementation did not show any detrimental effects on loach growth performance.  相似文献   

18.
An 8‐week feeding trial was conducted to evaluate two vitamin C derivatives, L‐ascorbyl‐2‐monophosphate‐Mg (C2MP‐Mg) and L‐ascorbyl‐2‐monophosphate‐Na (C2MP‐Na), to satisfy the vitamin C requirement and to test their effects on the immune responses of juvenile grouper, Epinephelus malabaricus. C2MP‐Mg and C2MP‐Na were each supplemented at 20, 50, 80, 150, 250, and 400 mg kg?1 diet in the basal diet providing of 7, 18, 31, 51, 93, 145 mg ascorbic acid (AA) equivalent of C2MP‐Mg kg?1 diet and 4, 10, 17, 31, 47, 77 mg ascorbic acid (AA) equivalent of C2MP‐Na kg?1 diet, respectively. Basal diet without AA supplementation was included as control. Each diet was fed to triplicate groups of grouper (mean initial weight 3.20 ± 0.05 g). Fish fed diets supplemented with either C2MP‐Mg or C2MP‐Na had significantly (P < 0.05) greater weight gain (WG), feed efficiency and survival than those fed the unsupplemented control diet. Liver ascorbate concentrations in fish generally increased as dietary C2MP‐Mg or C2MP‐Na supplementation level increased. Haemolytic complement activity was higher in fish fed diets supplemented with 92 mg AA equivalent of C2MP‐Mg kg?1 or 10–17 mg AA equivalent of C2MP‐Na kg?1 than fish fed the unsupplemented control diet. Lysozyme activity was higher in fish fed ≥51 mg AA equivalent of C2MP‐Mg kg?1 or ≥47 mg AA equivalent of C2MP‐Na kg?1 than fish fed the unsupplemented control diet. Analysis by broken‐line regression of WG indicated that the adequate dietary vitamin C concentration from each vitamin C derivative in growing grouper is 17.9 mg AA equivalent of 2MP‐Mg kg?1 and 8.3 mg AA equivalent of C2MP‐Na kg?1, and it also indicated that C2MP‐Mg is about 46% as effective as C2MP‐Na in meeting the vitamin C requirement of grouper.  相似文献   

19.
A 10‐week feeding trial with four dietary protein levels (400, 450, 500 and 550 g kg?1 crude protein) and two dietary lipid levels (80 and 160 g kg?1 crude lipid) was conducted to assess optimum dietary protein and lipid levels for the growth, feed utilization and body composition of juvenile Manchurian trout (initial weight 11.80 ± 0.15 g). Fish were fed twice daily (08:30 and 16:30 h) to apparent satiation. The results showed that fish fed the diet with 500 g kg?1 protein and 80 g kg?1 lipid had the highest growth and feed efficiency. However, fish fed the diet with 450 g kg?1 protein and 160 g kg?1 lipid showed comparable growth to that of the fish fed diet 5 (500/80) and had higher protein efficiency ratio (PER), nitrogen retention (NR) and energy retention (ER) than other groups (< 0.05). Growth, PER, NR and ER of fish fed the 160 g kg?1 lipid diet was significantly higher (< 0.05) than that of fish fed the 80 g kg?1 lipid diet at 400 and 450 g kg?1 protein diet, whereas these values showed an opposite trend at 500 and 550 g kg?1 protein diet, and the lowest PER, NR and ER was found by fish fed the 400 g kg?1 protein diet with 80 g kg?1 lipid. Fish fed diets with 400 g kg?1 protein had lower feed intake (FI) than that of other groups. Feed intake of fish fed 80 g kg?1 lipid level was significantly lower than that of fish fed 160 g kg?1 lipid diet at 400 g kg?1 protein (< 0.05), while no significant differences were observed at 450, 500 and 550 g kg?1 protein‐based diets. Contrary to moisture content, lipid content of whole body and muscle increased significantly (< 0.05) with increasing lipid levels. The results of this study indicated that the diet containing 450 g kg?1 protein and 160 g kg?1 lipid, with a P/E ratio of 23.68 g protein MJ?1 would be suitable for better growth and feed utilization of juvenile Manchurian trout under the experimental conditions and design level used in this study.  相似文献   

20.
A growth trial was conducted to examine the effect of dietary digestible energy (DE) content on methionine (Met) utilization and requirement in juvenile Nile tilapia (Oreochromis niloticus). Ten iso‐nitrogenous (288 g kg?1 protein) practical diets, with two DE levels (10.9 MJ kg?1; 12.4 MJ kg?1) and five methionine supplementation levels (0, 1, 2, 4 and 6 g kg?1), were hand‐fed twice daily to triplicate groups of Nile tilapia (initial body weight 8.95 ± 0.06 g) for 8 weeks. Weight gain (WG) and specific growth rate (SGR) increased significantly with increasing dietary methionine concentration at the same DE content (< 0.001). At the same dietary methionine level, WG and SGR of fish fed high‐DE diets were significantly higher than that of fish fed low‐DE diets (= 0.0001), although no interaction was found between dietary DE and methionine supplementation. Based on quadratic regression analysis between dietary methionine concentration and weight gain, optimal methionine requirement for maximum growth, expressed as g Met required kg?1 diet (low‐ versus high‐DE diets), increased as diet DE concentration increased (7.34 versus 9.90 g kg?1 diet, respectively; with cysteine 4.70 g kg?1 diet). The results indicated that diet DE content affects methionine utilization and requirement in juvenile Nile tilapia, fish fed high‐DE diets required more methionine for maximum growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号