首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Four extruded diets differing in protein/fat concentrations, 378/389 g kg?1, 425/346 g kg?1, 480/308 g kg?1 and 524/256 g kg?1 were tested in a digestibility trial and a growth study. Apparent digestibility of protein and fat were not significantly different among the diets when tested in 1-kg Atlantic salmon, Salmo salar L., in sea water. The diets represented a range of digestible protein to digestible energy ratios (DP/DE ratios) of 14.1, 16.4, 18.8 and 21.9 g MJ?1. The 138-day growth study was performed with triplicate groups of Atlantic salmon of 1.0 and 2.5 kg initial weight. Irrespective of size; growth, feed conversion ratio (FCR), nitrogen and energy retention were poorer in fish fed the diet with DP/DE ratio of 14.1 g MJ?1 compared with the fish fed the other diets. A DP/DE ratio of 16.4 g MJ?1 was sufficient to produce maximum growth for the large fish, while the DP/DE ratio of 18.8 g MJ?1 produced the highest growth in the small fish. In the large fish, the lowest FCR was obtained on a DP/DE ratio of 16.4 g MJ?1, while there was no clear difference in FCR within the small fish when diets of DP/DE ratios of 16.4–21.9 g MJ?1 were fed. The carcass-to-body ratio in the small fish decreased with decreasing DP/DE ratios. The fish fed the diet of 21.9 g MJ?1 had significantly lower fat and dry matter and higher protein content than fish of similar size fed the other diets. Increased dietary lipid content seemed to improve astaxanthin deposition in the small fish, while the large fish showed no significant differences in astaxanthin deposition due to dietary treatment. This study indicates that a DP/DE ratio of 14.1 g MJ?1 in high-energy diets for Atlantic salmon in sea water is below the optimal DP/DE ratio for growth and feed utilization, and that the optimal DP/DE ratio decreases with increasing fish weight. DP/DE ratios around 19 g MJ?1 for fish weighing 1 to 2.5 kg, and 16–17 g MJ?1 for fish weighing 2.5 to 5 kg, are suggested to be optimal.  相似文献   

2.
Six isonitrogenous (320 g kg?1) and isolipidic (60 g kg?1) diets were formulated with graded levels (0, 5, 10 and 15 g kg?1) of dicalcium phosphate (DCP) and fungal phytase (750 and 1500 FTU kg?1 diet). Tra catfish (Pangasianodon hypophthalmus), 9.6 g, were fed the diets for 12 weeks. Each experimental diet was fed to eight replicates of fish to apparent satiation. At the end of the trial, fish fed the diets containing 15 g kg?1 DCP, 750 and 1500 FTU kg?1 phytase had higher growth performances, protein efficiency ratio and phosphorus retention than those fed the control diet, 5 g kg?1 DCP and 10 g kg?1 DCP diets (P < 0.05). Whole body ash and phosphorus concentration of fish fed the 10 g kg?1 DCP and 15 g kg?1 DCP diets were significantly higher than those of fish fed the control diet. Higher apparent digestibility coefficient of phosphorus was observed in fish fed the phytase supplemented diets. The present results indicate that supplementation of phytase at 750 FTU kg?1 and 1500 FTU kg?1 improves growth performances, feed and phosphorus utilization. The supplementation can completely replace dicalcium phosphate or other phosphorus sources in tra catfish feed and reduce the phosphorus discharge into environment.  相似文献   

3.
A net pen experiment was carried out to examine the effect of dietary protein level on the potential of land animal protein ingredients as fish meal substitutes in practical diets for cuneate drum Nibea miichthioides. Two isocaloric basal (control) diets were formulated to contain 400 g kg?1 herring meal but two different digestible protein (DP) levels (400 versus 350 g kg?1). At each DP level, dietary fish meal level was reduced from 400 to 280, 200, 80 and 0 g kg?1 by incorporating a blend that comprised of 600 g kg?1 poultry by‐products meal (PBM), 200 g kg?1 meat and bone meal (MBM), 100 g kg?1 feather meal (FEM) and 100 g kg?1 blood meal (BLM). Cuneate drum fingerling (initial weight 42 g fish?1) were fed the test diets for 8 weeks. Fish fed the test diets exhibited similar feed intake. Final body weight, feed conversion ratio and nitrogen retention efficiency was not significantly different between fish fed the basal diets containing 350 and 400 g kg?1 DP. Weight gain decreased linearly with the reduction of dietary fish meal level at the 350 g kg?1 DP level, but did not decrease with the reduction of dietary fish meal level at the 400 g kg?1 DP level. Results of the present study suggest that fish meal in cuneate drum diets can be completely replaced with the blend of PBM, MBM, FEM and BLM at the 400 g kg?1 DP level, based on a mechanism that excessive dietary protein compensate lower contents of bio‐available essential amino acid in the land animal protein ingredients relative to fish meal.  相似文献   

4.
A feeding trial was conducted to evaluate the efficacy of replacing fish meal (FM) with blood meal (BM), poultry by‐product meal (PBM), meat and bone meal (MBM) and shrimp head meal (SHM), rapeseed meal (RM) and peanut meal (PM) on a digestible basis of crude protein and lysine and methionine in five practical diets for the Pacific white shrimp at the FM levels of 300, 250, 200, 150 and 100 g kg?1 under laboratory conditions. Each of the five experimental diets was hand‐fed to four replicate tanks of shrimp with an average weight of 0.33 ± 0.03 g to satiation at each meal. The shrimp were fed three times a day over a six‐week period. The per cent weight gain of initial body weight (WG%) was significantly lower in shrimp fed 100 g kg?1 FM diet, but the value for hepatosomatic index (HSI) and the level of blood urea nitrogen (BUN) tended to be higher in shrimp fed 100 g kg?1 FM diet than those in shrimp fed other diets. The lowest value for feeding rate (FR) occurred for shrimp fed the basal diet and was significantly lower than that in shrimp fed the FM diets at 100–150 g kg?1. Shrimp fed diets containing 200 g kg?1 or lower FM had significantly lower feed utilization than those fed the 250 g kg?1 FM diet and the basal diet. The protein efficiency ratio (PER) in the shrimp fed the basal diet was significantly higher than in the other FM diets. Decreasing the FM replacement level significantly reduced nutrient digestibility except in the cases of ash and gross energy, but it did not affect the survival, condition factor (CF), body composition, digestive enzyme activity or plasma transaminase activity. The results of the study indicate that feeding a diet formulated on a digestible basis and involving FM replacement with other protein sources at a greater replacement proportion will not produce a level of shrimp growth equal to that achieved by feeding the basal diet.  相似文献   

5.
A growth trial was conducted to examine the effect of dietary digestible energy (DE) content on methionine (Met) utilization and requirement in juvenile Nile tilapia (Oreochromis niloticus). Ten iso‐nitrogenous (288 g kg?1 protein) practical diets, with two DE levels (10.9 MJ kg?1; 12.4 MJ kg?1) and five methionine supplementation levels (0, 1, 2, 4 and 6 g kg?1), were hand‐fed twice daily to triplicate groups of Nile tilapia (initial body weight 8.95 ± 0.06 g) for 8 weeks. Weight gain (WG) and specific growth rate (SGR) increased significantly with increasing dietary methionine concentration at the same DE content (< 0.001). At the same dietary methionine level, WG and SGR of fish fed high‐DE diets were significantly higher than that of fish fed low‐DE diets (= 0.0001), although no interaction was found between dietary DE and methionine supplementation. Based on quadratic regression analysis between dietary methionine concentration and weight gain, optimal methionine requirement for maximum growth, expressed as g Met required kg?1 diet (low‐ versus high‐DE diets), increased as diet DE concentration increased (7.34 versus 9.90 g kg?1 diet, respectively; with cysteine 4.70 g kg?1 diet). The results indicated that diet DE content affects methionine utilization and requirement in juvenile Nile tilapia, fish fed high‐DE diets required more methionine for maximum growth.  相似文献   

6.
The present study investigated the optimum dietary protein level for the maturation of adult Pangasianodon hypophthalmus broodstock. Four isocaloric diets containing 250, 300, 350 and 400 g kg?1 of protein levels were prepared and presented to triplicate groups of fish. The fish (mean weight 770 ± 17.23 g and 712 ± 23.42 g for females and males respectively) were stocked in outdoor canvas tanks (4 m × 1 m × 1 m) at a stocking density of 20 fish/tank with a male: female ratio of 1:4. The fish were fed the test diets to satiation twice daily for 6 months. Gonadosomatic index (GSI) and fecundity were similar among fish fed dietary protein levels, higher than those fed on the 250 g kg?1. Final weight, weight gain, oocyte weight were significantly highest (< 0.05) for the fish fed 350 and 400 g kg?1 dietary protein treatments. Only the 350 g kg?1 dietary protein treatment resulted in significantly best ovipositor diameter and % ripe egg. Amino acid levels were highest in the muscle followed by the oocyte and liver of fish fed 350 and 400 g kg?1 dietary protein levels. The present results suggested that a dietary protein level of 350 g kg?1 can be recommended for the development of P. hypophthalmus broodstock.  相似文献   

7.
The effect of DP/DE ratio in diets for rainbow trout, Oncorhynchus mykiss (Walbaum), was investigated. To evaluate growth and body composition, groups of trout were fed three experimental diets with a constant level of gross energy (25.4 ± 0.12 MJ kg?1 dry matter (DM)) and different digestible protein/digestible energy (DP/DE) ratios (diet A, 16. 35; diet B, 17.21; dietC, 18.23 g Mr?1). Fat, protein and energy digestibility coefficients were not affected by the DP/DE ratio of the diets. Growth and feed utilization improved markedly as dietary DP/DE ratio increased (P < .01). The efficiency of fat, protein and energy utilization tended to increase with increasing DP/DE ratio of the diets. Nitrogen discharge in effluent water per kg of weight gain was not affected by dietary treatments (mean values for: diet A, 29.9; diet B, 29.8; diet C, 29.1 g N kg?1 weight gain) while phosphorus discharge in effluent water fell using diets with a higher DP/DE ratio (mean values for: diet A, 7.3; diet B, 6.7; diet C, 5.9 g P kg?1 weight gain).  相似文献   

8.
Effects of varying dietary digestible protein (DP) and digestible energy (DE) on protein retention efficiency (PRE), weight gain, protein deposition and carcass composition for silver perch (Bidyanus bidyanus, Mitchell) were studied. Using digestibility data for silver perch, we formulated three series of diets with different DE contents (13, 15 or 17 MJ DE kg?1). For each series, a ‘summit’ diet containing an excess of protein for silver perch (based on previous research) and a ‘diluent’ diet with only 10–13% DP were formulated. By blending the summit and diluent diets together in different ratios, five diets with different DP contents were produced for each DE series. A commercial diet was also included to give 16 experimental diets in total. Eight juvenile fish (mean initial weight 1.2 g) were stocked into each of 64 × 70‐L acrylic aquaria and then each of the 16 diets was randomly allocated to four replicate aquaria. Tanks were supplied with partially recirculated water (75%) at 25–27°C. Fish were fed restrictively, twice per day, based initially on 3.5% body weight day?1 with 40% of the ration given at 08:30 hours and 60% given at 15:00 hours for 59 days. Quadratic functions were fitted to each energy series to describe the relationship between DP content of diets and PRE (the asymptote of these functions were used to predict maximum PRE). For low DE (13 MJ kg?1), mid‐DE (15 MJ kg?1) and high DE (17 MJ kg?1), the dietary DP contents to give maximum PRE were 24.7%, 26.1% and 30.1% respectively. Carcass fat decreased with increasing DP and increasing DP:DE ratio. Varying the dietary protein and DE also influenced other indices of fish performance. ‘Optimum’ dietary protein therefore depends on several factors. For fish fed, restrictively, the protein content needed to maximize PRE is lower than the content needed to maximize weight gain or minimize carcass fat. For fish fed to satiation, the lowest protein content for maximum weight gain is lower than for fish fed restrictively.  相似文献   

9.
In experiment 1, juvenile sea urchins (n = 80, 0.088 ± 0.001 g wet weight and 5.72 ± 0.04 mm diameter) were held individually and fed ad libitum one of three semi‐purified formulated diets (n = 16 individuals treatment?1). In the diets, protein was held constant (310 g kg?1 dry, as fed) and carbohydrate level varied (190, 260, or 380 g kg?1 dry, as fed). Wet weights were measured every 2 weeks. Total wet weight gain was inversely proportional to dietary carbohydrate level and energy content of the respective diet. In experiment 2, sea urchins (5.60 ± 0.48 g wet weight, n = 40) fed 190 g kg?1 carbohydrate consumed significantly more dry feed than those fed 260 g kg?1, but not more than those fed 380 g kg?1 carbohydrate. Based on differential feed intake rates, sea urchins that consumed more feed also consumed higher levels of protein and had the highest weight gain. Consequently, protein content and/or protein: energy ratio may be important in determining feed utilization and growth among sea urchins in this study. The average digestible energy intake was approximately 70 kcal kg?1 body weight day?1, suggesting daily caloric intake of juvenile Lytechinus variegatus is lower than in shrimp and fish.  相似文献   

10.
A 17‐week feeding trial was carried out to evaluate the effects of dietary L‐carnitine level in beluga, Huso huso. A total of fish averaging 1247 ± 15.6 g (mean ± SD) were randomly distributed into 18 fibreglass tanks, and each tank holding 10 fish was then randomly assigned to one of three replicates of six diets with 50, 150, 350, 650, 950 and 1250 mg L‐carnitine kg?1 diet. At the end of 17 weeks of feeding trial, average weight gain (WG), feed efficiency (FE), protein efficiency ratio (PER) and condition factor (CF) of fish fed 350 mg kg?1 diet were significantly (P < 0.05) higher than those of fish fed 50, 150, 950 and 1250 mg kg?1 diets. WG, FE, PER and CF of beluga fed 650 mg kg?1 diet were also significantly higher than those of fish fed 50, 950 and 1250 mg kg?1 diets. Whole body and muscle protein were significantly improved by the elevation of dietary L‐carnitine level up to 350 mg kg?1. Liver superoxide dismutase and glutathione peroxidase activities of fish fed 350 and 650 mg kg?1 diets were significantly higher than those of fish fed 50, 950 and 1250 mg kg?1 diets. The dietary L‐carnitine level of 350–650 mg kg?1 diet could improve growth performance, feed utilization, protein‐sparing effects of lipid, antioxidant defence system and reproductive success. Polynomial regression of WG suggested that the optimum dietary L‐carnitine level was 480 mg kg?1 diet. Therefore, these results may indicate that the optimum dietary L‐carnitine could be higher than 350 but <650 mg kg?1 diet in beluga reared in intensive culture conditions.  相似文献   

11.
Effect of various dietary protein levels on growth and nutrient utilization were studied in fringe‐lipped carp, Labeo fimbriatus fingerlings for 60 days. Five practical diets containing graded protein levels of 200, 250, 300, 350 and 400 g kg?1 with respective digestible protein (DP) contents of 192.4, 244.5, 291.6, 339.4 and 391.4 g kg?1 were evaluated as five treatments, T1, T2, T3, T4 and T5, respectively, in triplicate. Each experimental tank (80‐L) contained eight fingerlings (4.9 ± 0.1 g) and was subjected to continuous aeration and 25% water replenishment daily. The fish were fed two times daily at 8:00 and 14:00 h to satiation. Significantly higher (< 0.05) absolute growth and thermal growth coefficient, and lower feed conversion ratios (FCR) were observed in T2–T4 than T1 and T5. Protein efficiency ratio (PER) and protein productive values (PPV) were highest in T2 and lowest in T5. Significantly higher (< 0.05) apparent protein digestibility was perceptible in T2–T4. While specific amylase activity declined linearly with increasing DP : DE, the protease, trypsin, aspartate aminotransferase and alanine aminotransferase established polynomial relationship. Based on live weight gain, PER and PPV fitted to quadratic model optimum DP levels were estimated as 301.4, 260.0 and 273.0 g kg?1, respectively.  相似文献   

12.
A digestibility and a growth trial were conducted in this study respectively. Firstly, the apparent digestibility coefficients (ADC) of nutrients and energy in meat and bone meal, porcine meal (PM), hydrolysed feather meal, poultry by‐products meal, fishmeal (FM), soybean meal and spray‐dried blood meal were determined. In experiment 2, an 8‐week growth trial was conducted to evaluate the effects of the substitution of FM by PM under the digestible ideal protein concept at two protein levels in the diets of Japanese seabass, Lateolabrax japonicus. A FM‐based control diet (FM diet; FM: 320 g kg?1, crude protein: 434.9 g kg?1, crude lipid: 124.6 g kg?1) and three other diets were formulated to contain 115 g kg?1 PM and only 160 g kg?1 FM. Two diets were formulated on a crude protein basis without (PM diet) or with (PMA diet) essential amino acid (EAA) supplementation respectively. A low‐protein diet was designed (LPMA diet, crude protein: 400.9 g kg?1, crude lipid: 96.3 g kg?1) with the same level of FM and PM but with the same digestible protein/ digestible energy and EAA profile as the FM diet. The results showed that nitrogen and total amino acid digestibility of the tested ingredients were ranged from 85.6% to 95.5% and from 87.6% to 95.5% respectively. Apparent digestibility coefficients of protein for FM and PM were 91.2% and 95.9% respectively. In the growth trial, the weight gain rate and feed conversion ratio of fish fed the PMA diet did not show a significant difference from those of the control group, but were significantly higher than those of the PM and LPMA groups (P<0.05). Growth was related linearly to lysine and methionine intakes. It was shown that PM could be utilized in the Japanese seabass diet up to 115 g kg?1 to replace about 160 g kg?1 of FM protein under an ideal protein profile. Essential amino acid deficiency (diet PM) or a lower protein level despite having an ideal amino acid profile (diet LPMA) could not support the optimal growth of Japanese seabass.  相似文献   

13.
An 8‐week feeding trial was conducted to determine the optimum dietary methionine (Met) requirement of juvenile Pseudobagrus ussuriensis with an initial average weight of 0.60 g reared in indoor flow‐through and aerated aquaria. Six isonitrogenous (430 g kg?1 protein) and isolipidic (50 g kg?1 lipid) test diets were formulated to contain graded levels of crystalline L‐methionine (4.9, 9.0, 11.8, 14.2, 18.1 and 20.8 g kg?1 dry diets, respectively) at a constant dietary cystine level of 2.5 g kg?1 dry diets. Equal amino acid nitrogen was maintained by replacing methionine with non‐essential amino acid mixture. Fish were randomly allotted to 18 aquaria (1.0 × 0.5 × 0.8 m) with 50 fish to each glass aquarium. Fish were fed twice daily (08:00 and 16:00) to apparent satiation. No significant difference was observed in survival of fish (84.67–91.33%). Specific growth rate (SGR), weight gain (WG), feed conversion ratio (FCR), protein productive value (PPV) and protein efficiency ratio (PER) were significantly affected by different dietary methionine levels (< 0.05). WG, SGR PPV and PER increased, while FCR decreased with increasing dietary methionine level from 4.9 to 11.8 g kg?1 (< 0.05). However, with further increase from 11.8 to 20.8 g kg?1, WG, SGR PPV and PER significantly decreased, FCR increased (< 0.05). The whole body and muscle composition were affected by different dietary methionine levels (< 0.05). Condition factor (CF) increased with increasing dietary methionine levels up to 11.8 g kg?1 (< 0.05) and after 11.8 g kg?1 methionine diet, but not significant, declines were observed (> 0.05). Hepatosomatic index (HSI) of the 4.9, 9.0, 11.8 and 14.2 g kg?1 Met diets was significantly higher than that of fish fed diets 18.1 and 20.8 g kg?1 Met diets (< 0.05). Viscerosomatic index (VSI) of the 4.9, 9.0 and 11.8 g kg?1 Met diets was significantly higher than that of fish fed diets 14.2, 18.1 and 20.8 g kg?1 Met diets (< 0.05). Quadratic regression analysis of WG and PER against dietary methionine levels indicated that the optimal dietary methionine requirement for maximum growth and feed utilization of juvenile Pseudobagrus ussuriensis was 14.3 and 14.1 g kg?1 dry diet (35.3 and 34.8 g kg?1 dietary protein), respectively, in the presence of 2.5 g kg?1 dry diets cystine.  相似文献   

14.
A feeding trial was conducted in a recycling water system during 10 weeks to determine the optimal protein to lipid ratio in Asian red‐tailed catfish (Hemibagrus wyckioides). Six diets of two protein levels (390 and 440 g kg?1) with three lipid levels (60, 90 and 120 g kg?1) were formulated. Fish (1.96 g) were fed six diets with four replicates to apparent satiation at a stocking density of 50 fish per tank (500 L). Faeces were collected in cultured tanks at the end of the feeding trial for digestibility measurement. Significantly, improved growth performances (P < 0.01) and higher feed utilization (P < 0.001) were observed in fish fed with higher lipid diets. However, higher protein diets did not significantly improve fish growth but they reduced FCR (P < 0.001) and protein efficiency ratio (P < 0.01). Higher lipid diets also resulted in significantly increased adipose‐somatic index, carcass fat and reduced moisture of the fish. The study revealed the protein sparing effect of dietary lipid in the catfish and highest growth performance was found by fish fed 390 g kg?1 protein and 120 g kg?1 lipid diet with P/E ratio of 20.48 mg protein kJ?1. DP/DE ratio for maximal growth rate in diets was 21.48 mg protein kJ?1.  相似文献   

15.
Juvenile haddock, Melanogrammus aeglefinus L. (initial weight, 13.5 ± 0.1 g) were fed practical diets containing digestible protein to digestible energy (DP DE?1) ratios of 25–30 g DP MJ DE?1as‐fed using three protein levels (450, 500 and 550 g kg?1) each at two lipid levels (110 and 160 g kg?1) for 63 days. The results showed mean weight gain and feed conversion ratio were highest for diets containing 28.5 and 30.2 g DP MJ DE?1. DP DE?1 ratio had no significant effect on protein efficiency ratio except at the lowest level (24.7 g DP MJ DE?1) indicating a protein sparing effect of higher lipid when dietary protein is below the requirement. Haddock appears to preferentially use protein as the prime source of DE. DP DE?1 ratio had little effect on apparent digestibility (AD) of protein while AD of lipid was significantly affected. Significant differences in AD of energy and organic matter were found to be inversely related to the carbohydrate level of the diet. DP DE?1 ratios of 28.5 g DP MJ DE?1 or lower resulted in significantly higher hepatosomatic indexes. The highest whole‐body nitrogen gains and energy retention efficiencies were achieved at 28.5 and 30.2 g DP MJ DE?1, whereas only slight differences in nitrogen retention efficiencies were observed. The highest levels of energy retained in the form of protein were achieved at 28.5 and 30.2 g DP MJ DE?1. The diet that provided the best growth, feed utilization and digestibility with minimal HSI contained 546 g kg?1 protein (513 g kg?1 DP), 114 g kg?1 lipid, 164 g kg?1 carbohydrate, 17.0 MJ kg DE?1 and a DP DE?1 ratio of 30.2 g DP MJ DE?1.  相似文献   

16.
An 11‐week growth trial was conducted to determine dietary myo‐inositol (MI) requirement for juvenile gibel carp (Carassius auratus gibelio). Myo‐inositol was supplemented to the basal diet to formulate six purified diets containing 1, 56, 107, 146, 194 and 247 mg MI kg?1 diet, respectively. Each diet was fed to triplicate groups of juvenile gibel carp (initial body weight 3.38 ± 0.27 g, mean ± SD) in a flow‐through system. The diets were randomly assigned to different fish tanks. Fish fed ≥ 107 mg MI kg?1 diet had significantly higher weight gain (WG), feed efficiency (FE) and protein efficiency ratio than those fed 1 mg MI kg?1 diet. Fish fed ≥ 56 mg MI kg?1 diet had higher feeding rate and survival compared with fish fed 1 mg MI kg?1 diet. Dietary supplemental inositol did not affect fish liver inositol concentration. Fish fed ≥ 56 mg MI kg?1 diet had higher body dry matter, crude protein and gross energy and lower hepatosomatic index than fish fed 1 mg MI kg?1 diet. Dietary inositol supplementation decreased fish body ash. Quadratic regression of weight gain indicated that the myo‐inositol requirement to maximum growth for juvenile gibel carp was 165.3 mg MI kg?1 diet.  相似文献   

17.
The effect of various dietary starch to proteins ratios (STA/P) on growth performance, oxidative status and liver enzyme activities involved in intermediary metabolism in juvenile Nile tilapia was evaluated. Four isocaloric‐practical diets (12.73 MJ kg?1 digestible energy) with increasing STA/CP ratios were formulated. These were designated D0 (344 g crude protein (CP) and 163.5 g starch (STA) kg?1), D1 (310 g CP and 243 g STA kg?1), D2 (258 g CP and 322 g STA kg?1) and D3 (214 g CP and 401 g STA kg?1). Each diet was fed to triplicate groups of 60 fish (2.7 g) for 45 days. Compared with the control diet (D0), significantly (P < 0.05) depressed growth and feed efficiency were observed only in the groups fed on diet D3. The activities of hepatic enzymes involved in glycolysis and lipogenesis pathways were significantly enhanced in groups fed on diet D3 compared with other diets. A significant (P < 0.05) increase in catalase activity was detected only in groups fed on diet D3. Similarly, a significant (P < 0.05) enhancement in superoxyde dismutase, glutathione S‐transferases and glutathione peroxidise was observed in groups fed on diets D2 and D3 compared with other diets. Results demonstrate the ability of juvenile Nile tilapia to spare protein by dietary carbohydrate.  相似文献   

18.
This study was designed to evaluate the effects of using soybean meal supplemented with or without methionine (M) and graded levels of phytase (P) to replace high‐level (60%) fish meal in the diets for juvenile Chinese sucker. Seven experimental diets (about 430 g kg?1 crude protein on dry matter basis) were formulated from practical ingredients. The control diet (FM) was formulated to contain 400 g kg?1 white fish meal (FM), whereas in the other six diets (diets 2–7), soybean meal (SBM) was used to replace 60% fish meal with or without methionine (3 g kg ?1) and 0,500, 1000, 1500 and 2000 U kg?1 phytase (designated as SBM, SM, SMP500, SMP1000, SMP1500 and SMP2000, respectively). Results from the feeding trial indicated that SBM without any methionine or phytase supplement replacing about 60% FM significantly affected the growth of fish (< 0.05). Weight gain of fish fed diet SM was significantly higher than the fish fed diet SBM, but still much lower than fish fed the control diet (< 0.05). SBM with methionine and phytase supplement significantly improved the growth of fish and apparent digestibility coefficients of phosphorus compared with the groups which fed diet SBM and diet SM (< 0.05). Weight gain of fish fed SMP1000, SMP1500 and SMP2000 had no significant difference than fish fed control diet. Furthermore, fish fed SMP1500 showed optimum weight gain and ADC of phosphorus between these three groups. This suggested that soybean meal with 3 g kg?1 methionine and 1500 U kg?1 phytase supplement could successfully replace 60% fish meal in the diet for juvenile Chinese sucker without affecting growth and enhanced the apparent digestibility coefficient of phosphorus.  相似文献   

19.
In this study, we replaced fish meal with peanut meal (PM) in isonitrogenous and isolipidic diets for Pacific white shrimp at inclusion levels of 0, 70, 140, 210, 280 and 350 g kg?1. The diets were hand‐fed to three independent groups of shrimp three times a day over a 6‐week period. Shrimp fed PM diets at a level of 280 g kg?1 or higher had lower per cent weight gain compared with those fed the basal diet, whereas shrimp fed PM diets at 140 g kg?1 or higher had a lower feed utilization and protein efficiency ratio compared with shrimp fed the basal diet. The feeding rate in shrimp fed PM diets at 350 g kg?1 and the survival and protease activity in shrimp fed PM diets at 210 g kg?1 or higher were lower than that in shrimp fed the basal diet. Diets containing 280 g kg?1 or higher of PM caused an increase in the whole‐body moisture content of the shrimp, but decreased whole‐body protein and ash contents compared with the basal diet. Nutrient digestibility was lower or tended to be lower in shrimp fed a PM diet compared with those fed the basal diet. The activities of peroxidase and acid and alkaline phosphatases in plasma decreased with increasing levels of PM inclusion up to 210 g kg?1. Superoxide dismutase activity decreased at dietary PM levels of 280 g kg?1 or higher. Aflatoxin B1 residue in the muscle was not affected by any of the treatments and remained low. The data suggest that up to 140 g kg?1 of PM could be included in practical diets for Pacific white shrimp.  相似文献   

20.
A feeding trial was conducted for 8 weeks to evaluate the effects of supplemental phytic acid (PA) on the apparent digestibility and utilization of dietary amino acids (AAs) and minerals in juvenile grass carp. Five experimental diets consisted of graded levels of PA (0.2, 4.7, 9.5, 19.1 and 38.3 g kg?1, named as P0, P5, P10, P20 and P40). Triplicate groups of fish (initial weight, 22.37 ± 0.16 g) were fed twice daily (08:00 and 16:00 h). The crude protein content in whole body significantly (< .05) decreased in fish fed with 19.1 and 38.3 g PA kg?1 diet. Supplemental PA (>4.7 g kg?1) significantly reduced the apparent digestibility coefficient (ADC) of AAs (Asp, Thr, Ser, Glu, Gly, Ala, Cys, Val, Met, Ile, Leu, Phe, Lys, Pro, His and Arg) and the ADC of minerals (P, Ca, Mg, Zn, Cu, Fe and Mn) in grass carp. The contents of minerals (P, Ca, Mg and Zn) in whole body and bone were also found to be significantly reduced in dietary PA > 4.7 g kg?1, while the bone ash, serum Alkp and Zn contents were found to be significantly decreased when the PA supplementation level was above 9.5 g kg?1, and the contents of serum Ca and Mg were found to be markedly altered in higher PA‐supplemented groups. The results indicated that supplemental PA decreased the apparent digestibility and utilization of AAs and minerals, and thus reduced the feed utilization of grass carp, suggesting that the level of total PA should be below 4.7 g kg?1 in grass carp diet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号