首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
以18日龄的牙鲆(Paralichthys olivaceus)稚鱼为研究对象,通过11 d 的生长实验,研究了添加不同比例的微藻粉替代鱼油对牙鲆稚鱼生长、存活率和脂肪酸组成的影响。以鱼油组(FO)为对照组,以裂壶藻粉(Schizochytrium sp.)、微绿球藻粉(Nannochloropsis sp.)和橄榄油替代不同比例的鱼油,配制成5组等氮等能的实验饲料,分别命名为鱼油组(FO),50%混合替代组(M50)、100%混合替代组(M100)、100%裂壶藻橄榄油替代组(S100)、100%微绿球藻橄榄油替代组(N100)。结果显示,微藻粉替代鱼油对牙鲆稚鱼的生长无显著影响;含有裂壶藻的各饲料组(M50、M100、S100)成活率显著高于 FO 组和 N100组(P?0.05);微藻粉替代鱼油不影响牙鲆稚鱼主要脂肪酸的组成;Person相关性分析发现,C14:0、C16:1n-7、C18:2n-6、C20:0、C18:3n-3、C22:0、C20:4n-3、EPA、C22:5n-6和 DHA 的百分含量均与其饲料中的百分含量呈显著正相关(P<0.05);总饱和脂肪酸、总单不饱和脂肪酸、n-3多不饱和脂肪酸的百分含量以及 DHA/EPA 比率均与其饲料组成表现出显著正相关(P<0.05)。综上所述,微藻作为脂肪源替代鱼油完全可以满足牙鲆稚鱼的生长和发育,各种脂肪酸均可以被牙鲆稚鱼充分消化和吸收,并且添加两种微藻后提高了稚鱼的 DHA 含量和 DHA/EPA 比率,与鱼油对照组相比显著提高了牙鲆稚鱼的成活率。因此,以微藻替代鱼油在牙鲆稚鱼的培育中是可行的。  相似文献   

2.
A nutrition trial with meagre, Argyrosomus regius was assessed to determine the effect of dietary replacement of fish oil (FO) by soybean oil (SO) on the growth, feed utilization, body composition, fatty acid composition and basic haematological parameters. Six isonitrogenous (47% crude protein) and isoenergetic (gross energy 22 kJ/g) experimental diets were formulated by replacing 0 (FO), 20 (S20), 40 (S40), 60 (S60), 80 (S80) and 100 (S100) % of the FO with SO. Fish were fed three times daily to near satiation for 14 weeks. The specific growth rate (SGR) of fish fed S100 diet was significantly lower than the other treatments, except SO80 diet. The fish fed SO100 diet displayed significantly higher feed conversion ratio than that of other diets (P < 0.05). It was observed that fish fed the SO100 and SO80 diets displayed haemoglobin (HGB) levels significantly lower (P < 0.05) than fish fed the SO20 diet. Packed cell volume (PCV) of fish fed SO20 diet was significantly higher compared to SO100. The white blood cell (WBC) and red blood cell (RBC) remained unaffected by dietary treatment. The docosahexaenoic acid (22:6n‐3, DHA) and eicosapentaenoic acid (20:5n‐3, EPA) levels of meagre were significantly reduced by the substituting of dietary SO by FO at the end of the feeding period. The level of linoleic acid (18:2n‐6, LA) and linolenic acid (18:3n‐3, LNA) significantly raised in fish fed with SO diets (P < 0.05). The results of this study showed that SO could be replaced FO up to 80% in meagre diet without negative effect on growth performance and basic haematological parameters. Furthermore, the maximum level of FO replacement with SO determined by second order polynomial regression analysis, was 30.1% on the basis of maximum SGR.  相似文献   

3.
The aim of this study was to determine the effects of replacing fish oil (FO) with laurel seed oil (LSO), as an alternative plant lipid source in diets on the growth and fatty acid composition of rainbow trout (Oncorhynchus mykiss; 111.47 ± 0.2 g mean individual weight). At the end of the feeding trial, survival was 100% in all treatments. No significant differences were seen in growth between the dietary groups (P > 0.05). The protein, lipid and ash contents were not significantly different among the groups (P > 0.05); however, there was a significant difference in protein and ash content between the treatment groups and the initial, and between the 50LSO group and the initial group, respectively (P < 0.05). The viscerosomatic index (VSI) and hepatosomatic index (HSI) values were not affected by increasing LSO percentages in the diets. The n‐6 polyunsaturated fatty acid (PUFA) concentration increased with increasing LSO levels in the diets. In contrast, the n‐3 PUFA levels decreased with increasing LSO levels in the diets. The liver and muscle were used for the analysis of fatty acids. The highest level of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) concentrations was recorded in fillet of fish fed the FO diet and the lowest in those fed the 50LSO diet. However, EPA and DHA ratios in the liver of fish fed the 75LSO diet were higher than those in fillet of fish fed the FO and 50LSO diets. No significant differences were seen in fatty acid composition between the dietary groups (P > 0.05). Based on the results of growth performance and fatty acid composition of the experimental fish in this study, it can be concluded that the 75% concentration of laurel seed oil performed best among the diets tested in the experiment.  相似文献   

4.
It is assumed that Florida pompano have dietary EPA (20:5n‐3) and DHA (22:6n‐3) requirements. However, it is unclear whether both are equally important in meeting demand for n‐3 long‐chain polyunsaturated fatty acids (LC‐PUFAs) or whether the requirement(s) can be influenced by other fatty acids. Accordingly, we assessed production performance and tissue composition of juvenile Florida pompano (41.0 ± 0.5 g) fed diets containing fish oil; beef tallow; or beef tallow partially or fully supplemented with EPA, DHA or both. After 8 weeks, no signs of fatty acid deficiency were observed. Although fish performance did not vary significantly among the dietary treatments, fish fed the DHA‐supplemented feeds exhibited numerically superior growth than those fed the other diets. Fillets of fish fed the beef tallow‐based diets contained reduced levels of n‐3 fatty acids and LC‐PUFAs and elevated levels of MUFAs and n‐6 fatty acids, although dietary supplementation with EPA and/or DHA attenuated these effects somewhat. Our results suggest that beef tallow is suitable as a primary lipid source in Florida pompano feeds and n‐3 LC‐PUFA requirements may be met by as little as 4 g/kg EPA and 4 g/kg DHA. However, there may be value in supplementing tallow‐based diets with DHA to enhance tissue levels and possibly growth.  相似文献   

5.
Adult Atlantic salmon (Salmo salar; approximately 800 g start weight) were fed diets with a high replacement of fish meal (FM) with plant proteins (70% replacement), and either fish oil (FO) or 80% of the FO replaced by olive oil (OO), rapeseed oil (RO) or soybean oil (SO) during 28 weeks in triplicate. Varying the lipid source only gave non‐significant effects on growth and final weight. However, a significantly reduced feed intake was observed in the SO fed fish, and both feed utilization and lipid digestibility were significantly reduced in the FO fed fish. Limited levels of dietary 18:3n‐3, precursor to EPA and DHA, resulted in no net production of EPA and DHA despite increased mRNA expression of delta‐5‐desaturase and delta‐6‐desaturase in all vegetable oil fed fish. Net production of marine protein, but not of marine omega‐3 fatty acids, is thus possible in Atlantic salmon fed 80% dietary vegetable oil and 70% plant proteins resulting in an estimated net production of 1.3 kg Atlantic salmon protein from 1 kg of FM protein. Production of one 1 kg of Atlantic salmon on this diet required only 800 g of wild fish resources (Fish in ‐ Fish out < 1).  相似文献   

6.
A feeding trial was conducted to investigate the complete substitution of either fish oil (FO) or squid liver oil (SLO) with crude palm oil (CPO), canola oil (CO) sunflower oil (SFO) or linseed oil (LO), as the sole added lipid source in diets fed to triplicate groups of giant freshwater prawn, Macrobrachium rosenbergii (initial weight = 0.42 ± 0.01 g) for 6 weeks. Prawns fed the CO or SLO diets showed significantly higher (< 0.05) specific growth rate than those fed the FO or CPO diets. The feed conversion ratio of the prawns was significantly better when fed the CO diet, compared with the FO, CPO, SFO and LO diets. The muscle eicosapentaenoic acid content of prawns fed the vegetable oil (VO) diets were not significantly different (P > 0.05) from those fed the FO diet, although all VO‐based diets led to a significantly lower docosahexaenoic acid content compared with prawns fed the FO or SLO diet. The whole‐body total carotenoid content was significantly lower for prawns fed the SLO diet compared with prawns on the CO or CPO diets. The successful use of VO instead of marine‐based oils in prawn diets will likely reduce feeding costs associated with M. rosenbergii aquaculture.  相似文献   

7.
The aim of this study was to investigate the effects of different oils on growth performance and lipid metabolism of the grouper, Epinephelus coioides. Five experimental fish meal‐based isonitrogenous and isolipidic diets were formulated containing either 5.5%‐added fish oil (FO), soybean oil (SBO), corn oil (CO), sunflower oil (SFO) or peanut oil (PO). Each diet was fed to triplicate groups of 20 fish (initial body weight 13.2±0.02 g) grown in seawater at 28.0–30.5 °C for 8 weeks. Fish were fed twice a day to visual satiety. No significant differences in the survival, weight gain, specific growth rate, feed conversion ratio, protein efficiency ratio or hepatosomatic index were found between fish fed the FO or vegetable oils (VO) diets. Dietary lipid sources did not affect whole‐body composition among grouper fed the various diets. Muscle of fish fed the FO diet had significantly higher levels of 14:0, 16:0, 16:1n‐7, 20:5n‐3[eicosapentaenoic acid (EPA)] and docosahexaenoic acid (DHA)+EPA (except for PO fed fish) compared with those of fish fed VO diets. However, the levels of 18:1n‐9, 18:2n‐6 and DHA/EPA ratios in the muscle of fish fed FO diet were significantly lower than those of fish fed the VO diets. The liver of fish fed the FO diet had significantly higher levels of 18:0, 20:5n‐3, 22:6n‐3, n‐3 highly unsaturated fatty acids and DHA+EPA than those of fish fed the VO diets, whereas increases in 18:1n‐9, 18:2n‐6 and mono‐unsaturated fatty acid levels were observed in the liver of fish fed the VO diets.  相似文献   

8.
Five experimental diets containing different lipid sources, fish oil (D1), soybean lecithin (D2), corn oil (D3), canola oil (D4) and olive oil (D5), were evaluated in Atractosteus tropicus larvae for the relative gene expression of the enzymes fatty acid synthase (fas), acetyl‐CoA carboxylase 1 (acc1) and carnitine palmitoyltransferase 1C (cpt1c), in addition to their effects on larval growth, survival and cannibalism during a 30‐day feeding trial. Higher growth and survival were obtained in treatments D1 and D2, and lower performance in diets D3, D4 and D5. The highest levels of expression of fas and acc1 occurred in larvae fed with D1, which contained high amounts of n‐3 long‐chain polyunsaturated fatty acids (LC‐PUFA), mainly DHA and EPA FA are regulators of lipogenesis. The higher cpt1c expression in plant‐based diets is attributed to the fact that these diets are rich in α‐linolenic acid (ALA) and low DHA, EPA and ARA levels that favour ß‐oxidation. In conclusion, the diets with fish oil (D1) and soybean lecithin (D2) were the best treatments for larval growth, survival and cannibalism and thus appear to meet both lipid and energy requirements of A. tropicus larvae, meanwhile the use of vegetable oils influences the expression of intermediary lipogenic genes.  相似文献   

9.
The aim of this study was to evaluate the long‐term effects (7‐month experiment) of diets consisting of fish oil (Kilka fish) and vegetable oil (rapeseed) on the reproductive performance of sterlet sturgeon (Acipenser ruthenus) broodstock. Forty‐five broodstock (990.3 ± 20.05 g) were randomly allocated to three different diet treatments. Three experimental diets were formulated with graded levels of fish oil (100% FO), vegetable oil (100% VO), and a combination of fish and vegetable oil (50% FO + 50% VO). At the end of the 7‐month feeding trial period, the weight gain and final weight were changed significantly different between the treatments (p < 0.05). Broodstock fed the FO + VO diet had higher growth than those fed the only FO or VO diets (p < 0.05). The highest germinal vesicle migration percentage was observed in FO + VO treatment (p < 0.05). The DHA/EPA, DHA/ARA and EPA/ARA ratios in oocyte exhibited a significant difference in the different treatments (p < 0.05). This study indicates that nutrition of broodstock with diet including FO + VO (p < 0.05) can positively affect the growth performance of larvae compared with only FO or VO diets. Furthermore, the high levels of 18:1n‐9, AL and ALA contents in oocytes from broodstock fed VO and the lowest ALA content in oocytes from broodstock fed FO underlined the important role of broodstock diets in the reproductive process and embryonic and/or larval developments of sterlet.  相似文献   

10.
In order to study the effects of linseed oil substitution on the growth, body composition, tissue fatty acid composition, flesh nutritional value and immune indices of juvenile Manchurian trout, five feed types containing different levels of linseed oil (LO) mixed with fish oil (FO) were prepared: 0 (0 LO); 250 g/kg (25 LO); 500 g/kg (50 LO); 750 g/kg (75 LO); and 1000 g/kg (100 LO); and fed to juvenile Manchurian trout (initial weight 6.43 ± 0.02 g) for 9 weeks. The results showed that substitution of FO with 750 g/kg LO did not affect the growth of juvenile trout, with protein content in the dorsal muscle, and lipid content in the liver not showing any significant difference (p > 0.05). The highest lipid content found in muscle samples occurred for the 25 LO diet. The fatty acid composition found in the dorsal muscle and the liver of the Manchurian trout reflects the fatty acid composition in the diet, where the relative amount of linolenic acid (ALA), linoleic acid (LA) and docosahexaenoic acid (DHA) found in these organs has a positive linear correlation with their relative composition in the diet (p < 0.05). As the amount of LO in the diet was increased, the composition of ALA found in the sampled organs increased, while the composition of DHA and eicosapentaenoic acid (EPA) decreased. At the same time, the index of atherogenicity (IA) and thrombogenicity (IT) of the muscle samples from the 75 LO and 100 LO diets was significantly lower than for the 0 LO and 25 LO diets (p < 0.05), while the flesh lipid quality (FLQ) in the 100 LO diet was significantly lower than for the other diets (p < 0.05). The aspartate transaminase (AST) activity decreased initially, and then increased, as the level of LO replacement for FO was increased, with the 25 LO diet being significantly lower than for other groups (p < 0.05). The alanine aminotransferase (ALT) activity in serum samples from the 100 LO diet was higher than that from other diets. The lysozyme (LZM) activity in both serum and liver tissue first increased to a peak for the 25 LO and 50 LO diets, respectively, and then decreased as the level of LO was further increased. There was no significant change in the alkaline phosphatase (AKP) activity in the liver samples; however, the acid phosphatase (ACP) activity decreased significantly from the highest value for 0 LO feed group. In conclusion, the composition of fatty acids in the dorsal muscle and the liver was found to be modified by the diets, and with the diet containing less than 750 g/kg LO, being both beneficial for growth, and improved immunity, while maintaining the nutritional value of the lipid content in the dorsal muscle during the 9‐week period.  相似文献   

11.
This study evaluated the effects of Aurantiochytrium spp. microalgae meal and oil as dietary docosahexaenoic acid (DHA) sources on the growth, fatty acid composition and DHA retention of orange‐spotted grouper, Epinephelus coioides. Dietary fish oil was replaced with microalgae meal or oil to provide an equal amount of DHA as a fish oil‐containing basal diet. In total, three experimental diets were fed to triplicate groups of fish (initial wt: 8.48 ± 0.06 g) in a recirculating system for 8 weeks. The weight gain and feed efficiency of the fish did not differ significantly among the experimental diets. The fatty acid composition of the whole body of the fish generally reflected the composition of their diet. The concentration of eicosapentaenoic acid in the whole body was higher in the fish fed the fish meal control diet than in those fed the two experimental diets The fish fed the control diet and those fed the diet containing microalgae oil exhibited higher DHA concentrations than did the fish fed the diet containing microalgae meal. The whole‐body DHA retention was the highest in the fish fed the diet with microalgae oil, followed by the fish fed the control diet. The lowest whole‐body DHA retention was observed in the fish fed the diet containing microalgae meal. The results suggested that the oil from Aurantiochytrium spp. microalgae can be used as DHA source for the grouper. DHA utilization by the fish was higher when the diet was supplemented with microalgae oil than with dry microalgae meal.  相似文献   

12.
Y. Wang  M. Li  K. Filer  Y. Xue  Q. Ai  K. Mai 《Aquaculture Nutrition》2017,23(5):1113-1120
This trial was conducted to evaluate the effects of replacing dietary fish oil with Schizochytrium meal for Pacific white shrimp (Litopenaeus vannamei) larvae (initial body weight 4.21 ± 0.10 mg). Six test microdiets were formulated using Schizochytrium meal to replace 0 g/kg, 250 g/kg, 500 g/kg, 750 g/kg, 1000 g/kg or 1500 g/kg fish oil DHA. No significant differences were observed in survival, growth, final body length and activities of digestive enzyme among shrimp fed different diets (p > .05). No significant differences were observed in C20:5n‐3 (EPA) in muscle samples (p > .05). C18:3n‐3 and C20:4n‐6 in muscle increased as Schizochytrium meal replacement level increased (p < .05). No significant differences were observed in C22:6n‐3 (DHA) and n‐3 fatty acids among shrimp fed diets that algae meal replaced 0 g/kg ‐ 1000 g/kg of fish oil. Shrimp fed diet R150 had higher DHA content than other groups and had higher n‐3 fatty acids than that of shrimp fed diets R50, R75 and R100 (p < .05). C18:2n‐6, PUFA and n‐6 fatty acids in muscle increased, while n‐3/n‐6 ratio decreased with increasing algae meal replacement level from 0 g/kg to 1000 g/kg (p < .05). In conclusion, Schizochytrium meal could replace 1500 g/kg fish oil DHA in the microdiets without negatively affecting shrimp larvae survival, growth and activities of digestive enzyme.  相似文献   

13.
Six purified diets were formulated to contain three lipid sources, fish oil (FO), linseed oil (LO) and soybean oil (SO), at 6% diet lipid crossing two levels of vitamin E (100 and 300 mg α‐tocopheryl acetate/kg diet) for each lipid source (FO100, FO300, LO100, LO300, SO100, SO300). The juvenile Chinese mitten crab, Eriocheir sinensis, respectively, fed on these diets with four replicates for 6 weeks. The crab weight gain (WG) and specific growth rate (SGR) were significantly affected by dietary lipid sources. No difference was found between the crabs fed two levels of vitamin E, but the WG and SGR were numerically higher in crab fed 300 mg/kg vitamin E than those fed the other level of vitamin E. The lipid source and vitamin E level could affect fatty acid composition in the hepatopancreas. The contents of saturated fatty acids (SAFA) and n‐3HUFA were significantly higher in the crab‐fed fish oil. The highest contents of n‐6PUFA and n‐3PUFA were found in the crab‐fed soybean oil and linseed oil respectively. The contents of SAFA, n‐3HUFA and n‐3PUFA were higher in the 300 mg/kg vitamin E treatment. A lower malondialdehyde (MDA) content and higher phenoloxidase (PO) activity were observed in the crab fed 300 mg/kg vitamin E. The results of this study indicate that the Chinese mitten crab fed the diet with 6% fish oil and 300 mg/kg vitamin E showed better growth, antioxidant capacity and resistance to Aeromonas hydrophila.  相似文献   

14.
A 6‐week study was conducted to determine the effects of different lipid sources in pelleted diets on juvenile mud crab Scylla paramamosain. Five isonitrogenous and isolipidic diets containing 8% level of fish oil (FO), lard (LD), safflower oil (SO), perilla seed oil (PO) or mixture oil (MO; VFO:VSO:VPO = 1:1:1), and a live food of marine bivalve Potamocorbula rubromuscula as the control diet (CF), were fed to groups of 25 juvenile crabs (average initial weight 7.4 g, carapace width 3.5 cm) in triplicate. The results showed that crabs fed MO had the highest survival (< 0.05). The moisture content was significantly higher in crabs fed LD, SO and PO (< 0.05). Crabs fed SO exhibited the lowest crude protein and lipid (< 0.05). Ash contents were obviously lower in LD group (< 0.05). Highest total lipid in the hepatopancreas and muscle was in LD and FO group respectively. Glucose, total cholesterol and low‐density lipoprotein were higher while high‐density lipoprotein was lower (< 0.05) in LD group. Tissue fatty acid compositions were consistent with those in diets. FO and MO diets had the same depression effect like CF on fatty acid synthase activity and mRNA expression in the hepatopancreas. The results of this study indicated that FO and mixed oil are suitable for preparation of pelleted diets with better effects for juvenile S. paramamosain compared with live food, and the ratio of n‐6/n‐3 fatty acids in pelleted diets must be <1.  相似文献   

15.
Three groups of juvenile golden pompano, Trachinotus ovatus (54.75 ± 0.25 g), were each fed one of three diets containing different lipid sources: fish oil (FO), soybean oil (SO) and lard oil (LO). Fish were reared in sea cages for 8 weeks, and the fish fed the FO diet had significantly higher specific growth rate (SGR) but lower condition factor (CF) than the other treatments. The fatty acid (FA) composition of whole‐body lipids was closely correlated with those in the diets. Although no differences can be found in hepatic fatty acid synthase (fasn) activity, the carnitine palmitoyl transferase 1 (cpt1) activity in fish fed the FO diet was significantly higher compared with other treatments. In addition, the relative gene expression of lipid metabolism‐related enzymes, such as cpt1, fas, apolipoprotein B100 (apoB100), delta‐6 fatty acyl desaturase (fadsd6) and fatty acid‐binding protein 1 (fabp1), was also influenced by the different dietary lipid sources. Serum triglyceride (TG) and glucose content in fish fed the LO and FO diets were significantly higher than those in the SO group. Accordingly, it can be concluded that FO could not be completely replaced by SO or LO in golden pompano diets. The lipid sources of a diet could impose significant influence on body condition factor and hepatic lipid metabolism of golden pompano.  相似文献   

16.
A feeding experiment was conducted to determine the optimal formulation level of algae meal, which is rich in docosahexaenoic acid (DHA), in a non‐fish meal diet. Six iso‐nitrogenous (450 g/kg) and iso‐lipidic (130 g/kg) experimental diets were prepared. The control diet was formulated with fish meal (400 g/kg), fish oil (60 g/kg), plant protein sources (220 g/kg) and rapeseed oil (50 g/kg). Plant protein sources (soy protein concentrate, soybean meal and corn gluten meal), rapeseed and fish oil were formulated in the second diet (NFM + FO). In the third diet, fish oil of the NFM + FO diet was replaced by rapeseed oil (NFM + NFO) and designated as the negative control. In the other three diets, rapeseed oil in the NFM + NFO diet was replaced with algae meal (Schizochytrium sp. powder) at 50 g/kg, 100 g/kg and 150 g/kg (AM5, AM10 and AM15, respectively). Triplicate groups of juvenile red sea bream (8.8 g) were fed the experimental diets for 12 weeks near satiation. The growth was lowest in the fish fed NFM + NFO diet. This was improved by the formulation of algae meal, which reached the growth level of the NFM + FO group in the AM10 group. The lipid content of the whole fish body in the NFM + NFO group was significantly lower than those of other groups. The fatty acid profile showed significant differences among dietary treatments. DHA content in total and polar lipids of the whole body and liver was highest in the AM10 and AM15 groups. These results reconfirm that microalgae are a suitable lipid source for the replacement of dietary fish oil for marine fish, and the optimal level was estimated as 50 g/kg?100 g/kg in diet.  相似文献   

17.
An 8‐week feeding trial was conducted to evaluate the effects of replacement of fish oil (FO) with blending vegetable oils (VOs) on growth performance, antioxidant enzyme activities and fatty acid composition in tissue of swimming crab Portunustrituberculatus. Five isonitrogenous and isolipidic diets were formulated to contain VOs (colza oil: palm oil: linseed oil = 4:2:1) to replace 0 (the control diet), 250, 500, 750 and 1000 g/kg of FO (defined D0, D25, D50, D75, D100). Three hundred juvenile swimming crabs (initial weight 2.34 ± 0.08 g) were randomly stocked and sorted into 300 individual rectangle plastic baskets in three cement pools. Each treatment has three replicates, one replicate has 20 swimming crabs, and each diet fed 60 crabs distributed in 60 baskets. The results indicated that crabs fed the control diet showed significantly higher survival, final body weight, per cent weight gain (PWG), specific growth rate and moulting frequency, crude protein and crude lipid contents in muscles than those fed the D75 and D100 VO diets (p < .05). Crabs fed the D25 VO diet showed significantly higher concentration of triglyceride, low‐density lipoprotein cholesterol and total protein, activities of superoxide dismutase, catalase and glutathione peroxidase (GSH‐Px) in haemolymph than those fed the control diet (p < .05). Fatty acid composition in hepatopancreas was positively correlated with dietary composition. In summary, based on the PWG, the optimal replacement of FO with VOs was estimated to be 250 g/kg. These findings demonstrated that swimming crabs make better use of FO than VOs.  相似文献   

18.
A feeding experiment was conducted to develop non‐fish meal and non‐fish oil diet for red seabream by using plant protein source and Schizochytrium meal which is rich in 22:6n‐3 (DHA). Three iso‐nitrogenous and iso‐lipidic experimental diets were prepared (CP 41.2% ± 0.4%, CL 16.4% ± 1%). Control diet contained both fish meal (40%) and fish oil (6%). In the second diet, fish meal was replaced by plant meals (soy protein concentrate, soybean meal, corn gluten meal) [FO]. In the third diet, fish meal and fish oil were replaced by algae meal (Schizochytrium sp. powder) and plant proteins [AO]. Duplicated groups of juvenile red seabream (8.8 g ± 1.5) were fed the experimental diets for 12 weeks to near satiation. There was no statistical difference among treatment in specific growth rate. Feed conversion ratio of AO diet group was higher than that of control. In wet basis, whole body protein level was significantly higher in AO diet than FO group while lipid content was lower than control group. In fatty acid profile, AO group had significantly lower 18:4n‐3, 20:4n‐3, 22:5n‐3 and 20:5n‐3 (EPA) level, but significantly higher 18:3n‐3 and DHA level than the other two diet fed fish. The results might suggest that further developments in microalgae diet offer a promising lipid source of n‐3 PUFA as essential fatty acid on marine fish. And it showed possibility to develop non‐fish meal and non‐fish oil feed for marine aquaculture fish by using microalgae.  相似文献   

19.
This study evaluates the effects of dietary mannan oligosaccharides (MOS) on growth, tissue composition, fatty acid profiles and liver morphology of European sea bass (Dicentrarchus labrax) fed diets containing either soybean oil (SBO; SBOMOS) or fish oil (FO; FOMOS) as unique oil source for 8 weeks. Results showed that MOS supplementation enhanced specific growth rate, regardless of the oil source used, and that dietary oil source reduced fish length, regardless of dietary MOS supplementation. Dietary MOS favoured lipid accumulation in muscle and anterior intestine when supplemented in FO‐based diets compared to fish fed SBO diet and reduces it in liver in relation to lower hepatocyte area, particularly in fish fed SBOMOS diet. Dietary MOS favoured liver and not muscular ∑n‐3 PUFA, DHA, EPA and ARA deposition, when combined with FO but not when included in SBO‐based diets. Thus, MOS dietary supplementation favours fish performance and helps to minimize the side effects derived from high dietary SBO supplementation on liver lipid accumulation and hepatocyte vacuolization, which could be of especial interest on long‐term feeding trials; however, the effects on favoured deposition ∑n‐3 PUFA are limited to FO‐based diets.  相似文献   

20.
We studied the effects of dietary n‐3 LC‐PUFAs on the activities and mRNA expression levels of tissue lipoprotein lipase (LPL) and fatty acid synthase (FAS) during vitellogenesis and ovarian fatty acid composition in female silver pomfret broodstock. Broodstock were fed one of four experimental diets for 185 days: FO (100% fish oil), FSO (70% fish oil + 30% soybean oil), SFO (30% fish oil + 70% soybean oil) or SO (100% soybean oil). The results revealed that hepatic LPL and FAS and ovarian FAS activities and mRNA expression levels significantly increased at vitellogenesis and postvitellogenesis relative to previtellogenesis, with no significant differences between these two stages, except for hepatic LPL mRNA expression. Dietary n‐3 LC‐PUFAs decreased tissue FAS and increased LPL activities and mRNA expression levels. The ovarian concentrations of 20:4n‐6 (ARA), 20:5n‐3 (EPA), 22:6n‐3 (DHA) and n‐3 LC‐PUFAs were directly influenced by n‐3 LC‐PUFA levels. Total n‐3 LC‐PUFA concentrations in SO were 57% lower than those in FO, while 18:2n‐6 concentrations in SO were 4.7 ×  higher than those in FO. These results revealed that high dietary n‐3 LC‐PUFAs levels significantly affected tissue lipid metabolism in female silver pomfret broodstock during vitellogenesis by upregulating LPL and downregulating FAS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号