首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
ABSTRACT Fusarium graminearum causes Fusarium head blight (FHB) in small grains worldwide. Although primarily a pathogen of cereals, it also can infect noncereal crops such as potato and sugar beet in the United States. We used a real-time polymerase chain reaction (PCR) method based on intergenic sequences specific to the trichodiene synthase gene (Tri5) from F. graminearum. TaqMan probe and primers were designed and used to estimate DNA content of the pathogen (FgDNA) in the susceptible wheat cv. Grandin after inoculation with the 21 isolates of F. graminearum collected from potato, sugar beet, and wheat. The presence of nine mycotoxins was analyzed in the inoculated wheat heads by gas chromatography and mass spectrometry. All isolates contained the Tri5 gene and were virulent to cv. Grandin. Isolates of F. graminearum differed significantly in virulence (expressed as disease severity), FgDNA content, and mycotoxin accumulation. Potato isolates showed greater variability in producing different mycotoxins than sugar beet and wheat isolates. Correlation analysis showed a significant (P < 0.001) positive relationship between FgDNA content and FHB severity or deoxynivalenol (DON) production. Moreover, a significant (P < 0.001) positive correlation between FHB severity and DON content was observed. Our findings revealed that F. graminearum causing potato dry rot and sugar beet decay could be potential sources of inoculum for FHB epidemics in wheat. Real-time PCR assay provides sensitive and accurate quantification of F. graminearum in wheat and can be useful for monitoring the colonization of wheat grains by F. graminearum in controlled environments, and evaluating wheat germplasms for resistance to FHB.  相似文献   

2.
Combined analyses of the natural occurrence of fusarium head blight (FHB), mycotoxins and mycotoxin‐producing isolates of Fusarium spp. in fields of wheat revealed FHB epidemics in 12 of 14 regions in Hubei in 2009. Mycotoxin contamination ranged from 0·59 to 15·28 μg g?1 in grains. Of the causal agents associated with symptoms of FHB, 84% were Fusarium asiaticum and 9·5% were Fusarium graminearum, while the remaining 6·5% were other Fusarium species. Genetic chemotyping demonstrated that F. asiaticum comprised deoxynivalenol (DON), 3‐acetyldeoxynivalenol (3‐AcDON), 15‐acetyldeoxynivalenol (15‐AcDON) and nivalenol (NIV) producers, whereas F. graminearum only included DON and 15‐AcDON producers. Compared with the chemotype patterns in 1999, there appeared to be a modest shift towards 3‐AcDON chemotypes in field populations during the following decade. However, isolates genetically chemotyped as 3‐AcDON were present in all regions, whereas the chemical 3‐AcDON was only detected in three of the 14 regions where 3‐AcDON accounted for 15–20% of the DON and acetylated forms. NIV mycotoxins were detected in seven regions, six of which also yielded NIV chemotypes. The number of genetic 3‐AcDON producers was positively correlated with amounts of total mycotoxins (DON, NIV and acetylated forms) or DON in wheat grains. Chemical analyses of wheat grains and rice cultures inoculated with different isolates from the fields confirmed their genetic chemotypes and revealed a preferential biosynthesis of 3‐AcDON and 4‐AcNIV in rice. These findings suggest the importance of chemotyping coupled with species identification for improved prediction of mycotoxin contamination in wheat.  相似文献   

3.
ABSTRACT Barley has two flowering types, chasmogamous (open-flowering) and cleistogamous (closed-flowering). We examined the effect of the timing of Fusarium graminearum infection on Fusarium head blight (FHB) and mycotoxin accumulation in barley cultivars with different flowering types using greenhouse experiments. In the first experiment, 13 cultivars were spray inoculated at two different developmental stages, and the severity of FHB was evaluated. The effect of the timing of infection differed among cultivars. Cleistogamous cultivars were resistant at anthesis but susceptible at 10 days after anthesis, whereas chasmogamous cultivars were already susceptible at anthesis. In the second experiment, five cultivars were inoculated at three different developmental stages and the concentrations of deoxynivalenol (DON) and nivalenol (NIV) in mature grain were analyzed. Cleistogamous cultivars accumulated more mycotoxins (DON and NIV) when inoculated 10 or 20 days after anthesis than when inoculated at anthesis, whereas chasmogamous cultivars accumulated more mycotoxins when inoculated at anthesis. Thus, the most critical time for F. graminearum infection and mycotoxin accumulation in barley differs with cultivar, and likely is associated with the flowering type. Late infection, even without accompanied FHB symptoms, was also significant in terms of the risk of mycotoxin contamination.  相似文献   

4.
Susceptibility of eight commercial European wheat cultivars to fusarium head blight (FHB) disease caused by Fusarium graminearum , F. culmorum , F. poae and Microdochium nivale (formerly known as Fusarium nivale ) was compared under controlled environment conditions (16°C). FHB did not differentially affect cultivars in terms of disease symptoms, fungal DNA content of grain or deoxynivalenol (DON) contamination. However, the Hungarian-grown cultivars GK-Othalom and Fatima 2 (of Romanian origin) showed greater type V resistance (yield tolerance) to FHB than did the others. Also, nivalenol was produced by F. poae in these two cultivars and in Italian cultivar Norba, but not in other cultivars. Overall, significant relationships were found between the FHB and seedling blight resistance in vitro of these eight cultivars, but such relationships were generally highly dependent on cultivar, and therefore it is likely that the in vitro test is at best measuring components of FHB resistance and/or genotype-specific resistance components.  相似文献   

5.
In the western part of Japan, two wheat cultivars, Nishinokaori and Minaminokaori, are currently cultivated for breadmaking. Breadmaking wheat requires a higher protein content compared to the Japanese noodle wheat (the major type of wheat in Japan). This high protein level in the grain is obtained by top-dressing with nitrogen (N) near anthesis. Because such N applications may increase levels of Fusarium head blight (FHB) and consequent mycotoxin [deoxynivalenol (DON) and nivalenol (NIV)] accumulation in the grain, the effect of N application (0, 4, and 8 g/m2) at anthesis on FHB and mycotoxin accumulation in Nishinokaori and Minaminokaori was tested in the greenhouse in 2004 and 2005 and in two fields in 2006. In the greenhouse, plants were spray inoculated at 3, 10, and 20 days after N treatment. In field experiments, colonized maize kernels, which generate ascospores during the testing season, served as inoculum. In all experiments for both cultivars, N application at anthesis significantly increased grain protein as expected, but had no significant effect on FHB and DON and NIV levels in grain. These results suggest that, at least in these cultivars, N can be applied close to anthesis without increasing the risk of FHB and mycotoxin (DON and NIV) accumulation.  相似文献   

6.
We investigated incidences of Fusarium head blight (FHB) and concentrations of six mycotoxins (deoxynivalenol, nivalenol, 3-acetyldeoxynivalenol, T-2 toxin, HT-2 toxin and zearalenone) in wheat from 2010 to 2013. Field trials were conducted at the Experimental Station of Cultivar Testing in Chrz?stowo, Poland (53o11’N, 17o35’E). We examined the effects of four agronomic factors, including pre-crop type (corn, sugar beets and wheat), date of sowing (late autumn: November 8–December 9 or spring: March 29–April 19), fungicidal application (untreated or treated with two applications) and cultivar (Monsun, Cytra), on FHB index (FHBi) and mycotoxin levels in order to minimize the risk of wheat grain contamination by mycotoxins via integrated pest management methods. The dominant Fusarium species observed on wheat heads were F. culmorum, F. avenaceum (Gibberella avenacea) and F. graminearum (Gibberella zeae), at 21.1%, 17.2% and 7.1%, respectively. A monthly rainfall sum of 113.9 mm and a relatively low air temperature (monthly average 15.5 °C) resulted in the highest FHBi in untreated wheat (25.1%). Agronomic factors crucial for the FHB incidence were the pre-crop, fungicidal treatments and cultivar selection. In wheat planted after wheat or corn, the FHBi was higher compared with a pre-crop of sugar beet. A double application of fungicides at BBCH 30–32 with prothioconazole and spiroxamine and at a BBCH 65 with fluoxastrobin and prothioconazole effectively reduced the FHBi and mycotoxin concentrations, respectively, in grain. The cultivar ‘Cytra’ had a greater FHBi (10.4%) than ‘Monsun’ (4.6%), and grain infestations by Fusarium species were also greater in ‘Cytra’, at 16.5%, than in ‘Monsun’, at 11.2%. Untreated cv. Cytra grown after corn in spring produced grains with the highest amounts of the mycotoxins, deoxynivalenol, 3-acetyldeoxynivalenol, zearalenone and HT-2 (605, 103, 17.5 and 5.53 μg/kg, respectively). Total mycotoxin levels in wheat were correlated with five determinants: duration of the period between the end of flowering and the beginning of kernel abscission, FHBi, F. culmorum isolation, G. zeae isolation and Fusarium ratio (FR) as a % of total mould isolations. Although, the mean concentration of mycotoxins in grain did not exceed the maximum permissible values for unprocessed wheat our study suggests necessity to monitor and mitigate FHB risk for susceptible cultivars, when wheat spring sowing follows corn or wheat.  相似文献   

7.
小麦赤霉病发生危害形势及防控对策   总被引:15,自引:0,他引:15  
小麦赤霉病已成为当前制约我国小麦生产安全及麦类食品质量安全的最重要的病害之一。本文分析了当前我国小麦赤霉病发生及危害现状,解析了赤霉病频繁暴发危害的原因,综述了国内外小麦赤霉病防控研究进展。针对当前形势,提出"立足预防、分区施策、全程防控"的赤霉病防控对策建议。  相似文献   

8.
A series of experiments was conducted to determine whether type I resistance (resistance to initial infection) to fusarium head blight (FHB) in wheat could be assessed using fungal species/isolates that do not produce deoxynivalenol (DON), a mycotoxin critical to the spread of Fusarium graminearum in the wheat spike. It was shown that, while the non-toxin-producing species Microdochium nivale and M. majus could infect following spray inoculation of wheat spikes, they were unable to spread within the spike following point inoculation. However, although these species might reveal type I resistance, they are not highly pathogenic towards wheat. A nivalenol (NIV)-producing isolate of F. graminearum caused high levels of disease following spray inoculation, but spread only very slowly within the spike and rarely induced bleaching above the point of inoculation. It is proposed that spray inoculation with an appropriate, aggressive, non-DON-producing FHB pathogen may be used to characterize type I resistance to complement point inoculation with a DON-producing isolate to assess type II resistance (resistance to spread within the spike).  相似文献   

9.
Measurements of local environmental conditions, intensity of Fusarium head blight (FHB) in wheat spikes, biomass of Fusarium graminearum, F. culmorum, and F. poae (pathogens causing FHB) and concentration of the mycotoxins deoxynivalenol (DON) and nivalenol (NIV) in harvested wheat grain were obtained in a total of 150 location-years, originating in three European countries (Hungary, Ireland, United Kingdom) from 2001 to 2004. Through window-pane methodology, the length and starting time of temporal windows where the environmental variables were significantly associated with the biological variables were identified. Window lengths of 5 to 30?days were evaluated, with starting times from 18?days before anthesis to harvest. Associations were quantified with nonparametric Spearman correlation coefficients. All biological variables were significantly associated with at least one evaluated environmental variable (P?≤?0.05). Moisture-related variables (e.g., average relative humidity, hours of relative humidity above 80%) had the highest positive correlations with the biological variables, but there also was a significant negative correlation between average temperature and several biological variables. When significant correlations were found, they were generally for all window lengths, but for a limited number of window start times (generally before anthesis for disease index and after anthesis for the toxins and late-season fungal biomasses). Semi-partial Spearman correlation coefficients were used to evaluate the relationship between the environmental variables and the concentration of DON and NIV after the effects of FHB intensity and fungal biomass on the mycotoxins were removed. Significant semi-partial correlations were found between relative humidity variables and DON, and between temperature and relative humidity variables and NIV for time windows that started after anthesis (and not for any earlier time windows). Results confirm that the environment influences disease, fungal biomass, and mycotoxin production, and help refine the time windows where the association is greatest. However, variability in the relationships was high, indicating that no single environmental variable is sufficient for prediction of disease or mycotoxin contamination.  相似文献   

10.
Fusarium head blight (FHB) of wheat heads by Fusarium culmorum causes serious yield losses and compromises the end-use quality by accumulation of mycotoxins and alteration of baking characteristics. The most promising control strategies against the disease combine adequate cropping techniques (i.e. crop rotation avoiding maize as a preceding crop) with the use of resistant varieties. Different types of resistance against this disease have been described such as the resistance to primary infection of the spikelets and the reduction of spread of the infection in other parts of the ear. In recent years, the ability of the kernels to prevent penetration of the fungus and mycotoxin accumulation has received increasing attention. Yet, the detection of kernel resistance for breeding purposes is rather difficult, as the corresponding resistance mechanisms are not fully understood. The aim of the present work is to compare different aspects of kernel resistance in order to define the most significant criteria for breeding purposes. The experimental set up included eight modern Swiss spring wheat varieties grown on small irrigated yield plots (3 × 1.5 m) inoculated at anthesis with a mixture of Fusarium culmorum isolates. Disease ratings from 7 to 28 days post-inoculation were completed with post-harvest analyses for the accumulation of the mycotoxin deoxynivalenol and different baking quality parameters. Results indicate that the accumulation of the mycotoxin deoxynivalenol in the kernels is correlated with visible symptoms on the ear before harvest. In terms of baking quality parameters, water absorption, dough softening and dough resistance are impaired in susceptible varieties after FHB infection, while resistant varieties are not affected. The results obtained here indicate that kernel resistance can be defined by low deoxynivalenol accumulation in the kernels and by stability of several baking quality parameters under conditions of high FHB infection pressure.  相似文献   

11.
山东省小麦赤霉病菌种群组成及其致病力分化   总被引:2,自引:2,他引:0  
由禾谷镰孢菌群Fusarium graminearum clade引起的赤霉病是小麦的重要病害。为明确山东省小麦赤霉病菌的种群组成及其致病力,于2011年和2012年从山东省15地市分离了95株小麦赤霉病菌,在形态和分子生物学鉴定种的基础上,采用鉴定B型毒素化学型的特异性引物进行毒素化学型分析。在95个菌株中,93株分离物为禾谷镰孢菌F.graminearum,2株为燕麦镰孢菌F.avenaceum。94株分离物为脱氧雪腐镰孢菌烯醇(deoxynivalenol,DON)化学型,1株为雪腐镰孢菌烯醇(nivalenol,NIV)化学型。在94株DON毒素化学型菌株中,90株为15-乙酰脱氧雪腐镰孢菌烯醇(15-acetyldeoxynivalenol,15-AcDON)化学型,4株为3-乙酰脱氧雪腐镰孢菌烯醇(3-acetyldeoxynivalenol,3-AcDON)化学型。在小麦扬花期,采用单花滴注接种法对29个菌株进行了致病力测定,供试菌株的致病力分化明显。表明在山东省冬小麦产区,产15-AcDON毒素的F.gra-minearum是小麦赤霉病菌的优势种群。  相似文献   

12.
Goswami RS  Kistler HC 《Phytopathology》2005,95(12):1397-1404
ABSTRACT Fusarium head blight (FHB), or scab, is a destructive disease of small grains caused by members of the Fusarium graminearum species complex, comprised of at least nine distinct, cryptic species. Members of this complex are known to produce mycotoxins including the trichothecenes deoxynivalenol (DON) along with its acetylated derivatives and nivalenol (NIV). In this study, 31 strains, belonging to eight species of this complex and originating from diverse hosts or substrates, were tested for differences in aggressiveness and mycotoxin production. Large variation among strains, both in terms of their aggressiveness and the ability to produce trichothecenes on a susceptible cultivar of wheat was found; variation appears to be a strain-specific rather than species-specific characteristic. While pathogenicity was not influenced by the type of mycotoxin produced, a significant correlation was observed between the amount of the dominant trichothecene (DON and its acetylated forms or NIV) produced by each strain and its level of aggressiveness on wheat. Some isolates also were tested for their ability to infect rice cv. M201, commonly grown in the United States. While tested strains were capable of infecting rice under greenhouse conditions and causing significant amount of disease, no trichothecenes could be detected from the infected rice florets.  相似文献   

13.
 为明确不同小麦品种(系)对赤霉病的抗性和麦穗组织中DON毒素积累水平,培育和利用抗赤霉病和DON毒素积累的品种提供资源和依据,本研究采用单小花滴注接种法对河南省的106个小麦品种(系)抗赤霉病性进行鉴定分析,并用ELISA测定了病穗组织中DON毒素水平。结果表明不同小麦品种(系)对赤霉病的抗性有显著差异,106个小麦品种(系)中未发现抗病和中抗材料,中感品种(系)有华育198、郑麦103和春丰0021等14个,占13.2%;感病的有曌式2010-06、百农898和中麦63等92个,占86.8%。不同小麦品种(系)籽粒、颖壳和穗轴中DON毒素积累水平有显著差异,籽粒中DON毒素水平在(0.70~287.63)mg/kg之间,其中郑03876、豫保1号和中麦63 的DON毒素水平在2 mg/kg 以下,为抗毒素材料;其他的103个品种DON毒素水平大于2 mg/kg;颖壳和穗轴中的DON毒素水平在(51.03~392.87)mg/kg之间,普遍比籽粒中DON毒素含量高。籽粒中DON毒素水平与小麦品种(系)的平均病害严重度间呈极显著正相关。  相似文献   

14.
High year-to-year variability in the incidence of Fusarium spp. and mycotoxin contamination was observed in a two-year survey investigating the impact of maize ear rot in 84 field samples from Germany. Fusarium verticillioides, F. graminearum, and F. proliferatum were the predominant species infecting maize kernels in 2006, whereas in 2007 the most frequently isolated species were F. graminearum, F. cerealis and F. subglutinans. Fourteen Fusarium-related mycotoxins were detected as contaminants of maize kernels analyzed by a multi-mycotoxin determination method. In 2006, a growth season characterized by high temperature and low rainfall during anthesis and early grain filling, 75% of the maize samples were contaminated with deoxynivalenol, 34% with fumonisins and 27% with zearalenone. In 2007, characterized by moderate temperatures and frequent rainfall during the entire growth season, none of the 40 maize samples had quantifiable levels of fumonisins while deoxynivalenol and zearalenone were detected in 90% and 93% of the fields, respectively. In addition, 3-acetyldeoxynivalenol, 15-acetyldeoxnivalenol, moniliformin, beauvericin, nivalenol and enniatin B were detected as common contaminants produced in both growing seasons. The results demonstrate a significant mycotoxin contamination associated with maize ear rots in Germany and indicate, with regard to anticipated climate change, that fumonisins-producing species already present in German maize production may become more important.  相似文献   

15.
Fusarium head blight (scab) epidemics of wheat occurred in uawy (Northern Poland) during 1998 and in Wielkopolska (West) and in Southern regions of Poland in 1999. Four species were identified in wheat heads with scab symptoms: Fusarium culmorum, Fusarium graminearum, Fusarium avenaceum and Microdochium nivale. A significant increase in the frequency of F. graminearum (between 23% and 38%), was observed, compared to about 10% during the previous decade. The mycotoxins deoxynivalenol (DON), nivalenol (NIV) and moniliformin (MON) in amounts up to 24.3, 14.2 and 1.72mgkg–1respectively, were identified in kernels samples.  相似文献   

16.
Fusarium head blight (FHB) is a devastating disease of important cereal crops resulting in significant yield loss and mycotoxin contamination. Persistent outbreaks of FHB in Europe and North America have led to various efforts to understand the mechanisms of resistance to this disease and mycotoxin biosynthesis. In this minireview, we summarize basic and applied studies conducted in our laboratories into reducing mycotoxin contamination in FHB.  相似文献   

17.
Fusarium head blight (FHB) is an important disease of wheat, which can result in the contamination of grains with mycotoxins such as deoxynivalenol (DON). Artificial inoculation of flowering ears with conidial suspensions is widely used to study FHB diseases. Our goal was to compare four inoculation treatments in which a conidial suspension was sprayed on flowering ears and to study the effect of the application of moisture during kernel setting and filling with a mist-irrigation system. Ten wheat genotypes were inoculated with a DON-producing Fusarium culmorum strain. Inoculation treatments varied in time of application of the inoculum (morning or evening) and in the method of controlling humidity during inoculation (bagging or mist irrigation). A wet season was simulated with a mist-irrigation system, keeping the crop canopy wet for at least 26 days after flowering. The severity of FHB symptoms (area under disease progress curve (AUDPC)), yield loss and DON contamination in the grains were determined. AUDPC data obtained with the different inoculation treatments were highly correlated (r=0.85–0.95). Mist irrigation after inoculation resulted in a higher mean disease severity, but in a overall lower toxin contamination as compared to the non-irrigated treatments. Genotypic differences in DON accumulation were present: for one wheat line toxin contamination significantly increased when irrigated, while two genotypes accumulated significantly less toxin. The closest relationships (r=0.73–0.89) between the visual symptoms and the DON content were obtained under moderate mean infection pressure. This relation between visual symptoms and the DON content deteriorated at higher infection levels.  相似文献   

18.
ABSTRACT Fusarium ear rot and fumonisin contamination are serious problems for maize growers, particularly in the southeastern United States. The lack of maize genotypes highly resistant to infection by Fusarium verticillioides or to fumonisin contamination emphasizes the need for management strategies to prevent contamination by this mycotoxin. Information on the initial appearance of infection and fumonisin contamination of kernels and their increase over time is needed to determine if early harvest may be an appropriate control strategy. Maize ears from replicated studies at two locations in eastern North Carolina were harvested weekly, starting 2 weeks after pollination and continuing for 14 weeks. The percentage of kernels infected with F. verticillioides and the fumonisin contamination in the harvested samples were determined. Kernel infection by F. verticillioides and fumonisin contamination appeared as kernels neared physiological maturity and increased up to the average harvest date for maize in North Carolina. Beyond this date, the concentrations of fumonisin fluctuated. Under years conducive for fumonisin contamination, early harvest (greater than 25% grain moisture) may help reduce the level of contamination.  相似文献   

19.
Lodging is one possible risk factor that leads to increased cereal mycotoxin contamination, but few reports have been published on the subject. We examined the effects of lodging on the level of deoxynivalenol (DON) and nivalenol (NIV) contamination in wheat, barley, and rice infected with the Fusarium graminearum species complex. Case-control and intervention studies were applied to test the hypothesis that lodging increases the level of mycotoxin contamination. A total of 66 grain samples were collected from each field in 12 Japanese prefectures from 2002 to 2006. Each sample set consisted of grains from lodged and nonlodged plants. The concentration of DON + NIV in lodged plants was significantly higher than in nonlodged plants. All samples of wheat and barley were contaminated with DON and NIV; however, most of the lodged rice samples were contaminated only with NIV. In intervention trials to investigate the effects of lodging duration, a small area of wheat inoculated with the pathogen was completely lodged by trampling. Even with 5 days of lodging, the levels of DON + NIV in wheat grain at harvest increased by 27–51% compared to nonlodged control plots. For rice, half of each plot area was completely lodged by trampling 20 days before harvest. The level of NIV in lodged rice grain was significantly higher than that in nonlodged rice at optimum and delayed harvests, because lodging significantly increased the level of Fusarium mycotoxins in the three crops. Thus, practices (e.g., rational use of fertilizers) to avoid lodging should reduce the risk of mycotoxin contamination. This is the first epidemiological study on the effect of lodging on mycotoxin production by the F. graminearum species complex in wheat, barley, and rice.  相似文献   

20.
罗文  张昊  许景升  徐进  冯洁 《植物保护》2016,42(2):192-197
由禾谷镰刀菌复合种(Fusarium graminearum species complex,FGSC)引起的麦类赤霉病,是农业生产上的重要病害。为明确中国长江中下游冬小麦主产区小麦赤霉病菌种的构成及其地理分布,对2008年从江苏、浙江和湖北3省采集的656株小麦赤霉病菌株进行了分类鉴定。结果显示,其中558个菌株为亚洲镰刀菌(Fusarium asiaticum),98个菌株为禾谷镰刀菌(Fusarium graminearum sensu stricto),表明中国长江中下游冬小麦主产区小麦赤霉病的主要致病菌是亚洲镰刀菌。选择亚洲镰刀菌(F.asiaticum)为研究对象,通过PCR-RFLP的方法对其进行产NX-2毒素菌株的检测。结果没有检测到产NX-2毒素菌株,表明中国长江中下游冬小麦主产区并未出现NX-2毒素群体。本研究旨在了解NX-2毒素群体在中国长江中下游地区的地理分布,为进一步研究麦类赤霉病菌群体遗传多样性和演化趋势奠定基础,为麦类赤霉病的防治和毒素污染的控制提供理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号