首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Experiments to investigate the quantum behavior of a macroscopic degree of freedom, namely the phase difference across a Josephson tunnel junction, are described. The experiments involve measurements of the escape rate of the junction from its zero voltage state. Low temperature measurements of the escape rate for junctions that are either nearly undamped or moderately damped agree very closely with predictions for macroscopic quantum tunneling, with no adjustable parameters. Microwave spectroscopy reveals quantized energy levels in the potential well of the junction in excellent agreement with quantum-mechanical calculations. The system can be regarded as a "macroscopic nucleus with wires."  相似文献   

2.
The Kondo effect arises from the quantum mechanical interplay between the electrons of a host metal and a magnetic impurity and is predicted to result in local charge and spin variations around the magnetic impurity. A cryogenic scanning tunneling microscope was used to spatially resolve the electronic properties of individual magnetic atoms displaying the Kondo effect. Spectroscopic measurements performed on individual cobalt atoms on the surface of gold show an energetically narrow feature that is identified as the Kondo resonance-the predicted response of a Kondo impurity. Unexpected structure in the Kondo resonance is shown to arise from quantum mechanical interference between the d orbital and conduction electron channels for an electron tunneling into a magnetic atom in a metallic host.  相似文献   

3.
Yu Y  Han S  Chu X  Chu SI  Wang Z 《Science (New York, N.Y.)》2002,296(5569):889-892
We report the generation and observation of coherent temporal oscillations between the macroscopic quantum states of a Josephson tunnel junction by applying microwaves with frequencies close to the level separation. Coherent temporal oscillations of excited state populations were observed by monitoring the junction's tunneling probability as a function of time. From the data, the lower limit of phase decoherence time was estimated to be about 5 microseconds.  相似文献   

4.
Traditional simulated annealing uses thermal fluctuations for convergence in optimization problems. Quantum tunneling provides a different mechanism for moving between states, with the potential for reduced time scales. Thermal and quantum annealing are compared in a model disordered magnet, where the effects of quantum mechanics can be tuned by varying an applied magnetic field. The results indicate that quantum annealing hastens convergence to the optimum state.  相似文献   

5.
An experimental method based on the Landau-Zener model was developed to measure very small tunnel splittings in molecular clusters of eight iron atoms, which at low temperature behave like a nanomagnet with a spin ground state of S = 10. The observed oscillations of the tunnel splittings as a function of the magnetic field applied along the hard anisotropy axis are due to topological quantum interference of two tunnel paths of opposite windings. Transitions between quantum numbers M = -S and (S - n), with n even or odd, revealed a parity effect that is analogous to the suppression of tunneling predicted for half-integer spins. This observation is direct evidence of the topological part of the quantum spin phase (Berry phase) in a magnetic system.  相似文献   

6.
Control of magnetism on the atomic scale is becoming essential as data storage devices are miniaturized. We show that antiferromagnetic nanostructures, composed of just a few Fe atoms on a surface, exhibit two magnetic states, the Néel states, that are stable for hours at low temperature. For the smallest structures, we observed transitions between Néel states due to quantum tunneling of magnetization. We sensed the magnetic states of the designed structures using spin-polarized tunneling and switched between them electrically with nanosecond speed. Tailoring the properties of neighboring antiferromagnetic nanostructures enables a low-temperature demonstration of dense nonvolatile storage of information.  相似文献   

7.
Single-walled carbon nanotubes are ideal systems for investigating fundamental properties and applications of one-dimensional electronic systems. The interaction of magnetic impurities with electrons confined in one dimension has been studied by spatially resolving the local electronic density of states of small cobalt clusters on metallic single-walled nanotubes with a low-temperature scanning tunneling microscope. Spectroscopic measurements performed on and near these clusters exhibit a narrow peak near the Fermi level that has been identified as a Kondo resonance. Using the scanning tunneling microscope to fabricate ultrasmall magnetic nanostructures consisting of small cobalt clusters on short nanotube pieces, spectroscopic studies of this quantum box structure exhibited features characteristic of the bulk Kondo resonance, but also new features due to finite size.  相似文献   

8.
Goldman VJ  Su B 《Science (New York, N.Y.)》1995,267(5200):1010-1012
In experiments on resonant tunneling through a "quantum antidot" (a potential hill) in the quantum Hall (QH) regime, periodic conductance peaks were observed as a function of both magnetic field and back gate voltage. A combination of the two periods constitutes a measurement of the charge of the tunneling particles and implies that charge deficiency on the antidot is quantized in units of the charge of quasi-particles of the surrounding QH condensate. The experimentally determined value of the electron charge e is 1.57 x 10(-19) coulomb = (0.98 +/- 0.03) e for the states v = 1 and v = 2 of the integer QH effect, and the quasi-particle charge is 5.20 x 10(-20) coulomb = (0.325 +/- 0.01)e for the state v = (1/3) of the fractional QH effect.  相似文献   

9.
We observe a strong Kondo effect in a semiconductor quantum dot when a small magnetic field is applied. The Coulomb blockade for electron tunneling is overcome completely by the Kondo effect, and the conductance reaches the unitary limit value. We compare the experimental Kondo temperature with the theoretical predictions for the spin- 12 Anderson impurity model. Excellent agreement is found throughout the Kondo regime. Phase coherence is preserved when a Kondo quantum dot is included in one of the arms of an Aharonov-Bohm ring structure, and the phase behavior differs from previous results on a non-Kondo dot.  相似文献   

10.
We observe spin blockade due to Pauli exclusion in the tunneling characteristics of a coupled quantum dot system when two same-spin electrons occupy the lowest energy state in each dot. Spin blockade only occurs in one bias direction when there is asymmetry in the electron population of the two dots, leading to current rectification. We induce the collapse of the spin blockade by applying a magnetic field to open up a new spin-triplet current-carrying channel.  相似文献   

11.
We have observed coherent time evolution between two quantum states of a superconducting flux qubit comprising three Josephson junctions in a loop. The superposition of the two states carrying opposite macroscopic persistent currents is manipulated by resonant microwave pulses. Readout by means of switching-event measurement with an attached superconducting quantum interference device revealed quantum-state oscillations with high fidelity. Under strong microwave driving, it was possible to induce hundreds of coherent oscillations. Pulsed operations on this first sample yielded a relaxation time of 900 nanoseconds and a free-induction dephasing time of 20 nanoseconds. These results are promising for future solid-state quantum computing.  相似文献   

12.
Room-temperature quantum Hall effect in graphene   总被引:1,自引:0,他引:1  
The quantum Hall effect (QHE), one example of a quantum phenomenon that occurs on a truly macroscopic scale, has attracted intense interest since its discovery in 1980 and has helped elucidate many important aspects of quantum physics. It has also led to the establishment of a new metrological standard, the resistance quantum. Disappointingly, however, the QHE has been observed only at liquid-helium temperatures. We show that in graphene, in a single atomic layer of carbon, the QHE can be measured reliably even at room temperature, which makes possible QHE resistance standards becoming available to a broader community, outside a few national institutions.  相似文献   

13.
An ultracold molecular quantum gas is created by application of a magnetic field sweep across a Feshbach resonance to a Bose-Einstein condensate of cesium atoms. The ability to separate the molecules from the atoms permits direct imaging of the pure molecular sample. Magnetic levitation enables study of the dynamics of the ensemble on extended time scales. We measured ultralow expansion energies in the range of a few nanokelvin for a sample of 3000 molecules. Our observations are consistent with the presence of a macroscopic molecular matter wave.  相似文献   

14.
土中胶结强度的微观研究   总被引:3,自引:0,他引:3  
通过针铁矿胶结高岭土的电性,磁性和量子化学的研究结果,确定了其胶结键的类型和含量,建立了胶结键在该土中赋存的微观模型,求出了胶结强度的理论值,并与实验值进行了比较,其数量级相同。初步揭示了土的宏观力学性质与微观胶结特性的关系。  相似文献   

15.
In 1935, Erwin Schr?dinger suggested his famous gedanken experiment of the cat that is simultaneously "dead" and "alive" inside its box until the box is opened. But as Tesche explains in her Perspective, such a macroscopic manifestation of quantum mechanics has remained elusive until recently. The experiments by van der Wal et al. are an important step toward demonstrating that quantum mechanics can describe macroscopic phenomena. The approach may be exploited in quantum computing and quantum cryptography.  相似文献   

16.
We observed coherent proton tunneling in the cyclic network of four hydrogen bonds in calix[4]arene. The tunneling frequency of 35 megahertz was revealed by a peak in the magnetic field dependence of the proton spin-lattice relaxation rate measured with field-cycling nuclear magnetic resonance in the solid state at temperatures below 80 kelvin. The amplitude of the coherent tunneling peak grows with temperature according to a Boltzmann law with energy D/kB = (125 +/- 10) kelvin (where kB is Boltzmann's constant). The tunneling peak can be interpreted in the context of level crossings in the region where the tunneling frequency matches the proton Larmor frequency. The tunneling spectrum reveals fine structure that we attribute to coupling between the hydrogen bonds in the network. The characteristics of the tunneling peak are interpreted in the context of the potential energy surface experienced by the hydrogen atoms in the network.  相似文献   

17.
Condensed systems of strongly interacting electrons are ideal for the study of quantum complexity. It has become possible to promote the formation of new quantum phases by explicitly tuning systems toward special low-temperature quantum critical points. So far, the clearest examples have been appearances of superconductivity near pressure-tuned antiferromagnetic quantum critical points. We present experimental evidence for the formation of a nonsuperconducting phase in the vicinity of a magnetic field-tuned quantum critical point in ultrapure crystals of the ruthenate metal Sr3Ru2O7, and we discuss the possibility that the observed phase is due to a spin-dependent symmetry-breaking Fermi surface distortion.  相似文献   

18.
Here we present the direct observation of macroscopic quantum properties in an all high-critical-temperature superconductor d-wave Josephson junction. Although dissipation caused by low-energy excitations is expected to strongly suppress macroscopic quantum effects, we demonstrate energy level quantization in our d-wave Josephson junction. The result indicates that the role of dissipation mechanisms in high-temperature superconductors has to be revised, and it may also have consequences for the class of solid-state "quiet" quantum bits with superior coherence time.  相似文献   

19.
Electron tunneling paths in proteins   总被引:2,自引:0,他引:2  
One of the crucial issues in biological electron transfer is the determination of the role of spatially intermediate amino acid residues in controlling or directing the electronic tunneling interaction between redox sites. A quantum path integral Monte Carlo method is developed for the analysis of electronic tunneling pathways in a highly structured environment. This path integral method is applied to intramolecular electron transfer in a ruthenium-modified myoglobin that contains a tryptophan in the "line-of-flight." A principal result is the identification of the relevant cylindrical zone swept out by the tunneling electron.  相似文献   

20.
Microwave spectroscopy experiments have been performed on two quantum levels of a macroscopic superconducting loop with three Josephson junctions. Level repulsion of the ground state and first excited state is found where two classical persistent-current states with opposite polarity are degenerate, indicating symmetric and antisymmetric quantum superpositions of macroscopic states. The two classical states have persistent currents of 0.5 microampere and correspond to the center-of-mass motion of millions of Cooper pairs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号