首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Hillaire-Marcel C  de Vernal A 《Science (New York, N.Y.)》2008,320(5880):1161; author reply 1161
Rashid and Boyle (Reports, 19 October 2007, p. 439) analyzed oxygen isotopes in planktonic foraminera from marine sediments and concluded that Heinrich events (massive iceberg discharges into the North Atlantic Ocean) caused upper water masses to deepen. We question the robustness of this interpretation and argue that a strongly stratified mixed layer characterized by dense sea-ice cover and production of oxygen-18-depleted brines likely prevailed during such events.  相似文献   

2.
Abundance cycles of the marine alga Florisphaera profunda centered on a period of 7600 carbon-14 years (8400 calendar years) are present in high-resolution records from the equatorial Atlantic spanning 0 to 45,000 years ago. These cycles correlate with Heinrich events 1 through 5, which document rapid changes in continental ice melting around the subpolar North Atlantic. These variations in F. profunda are a direct response to modulation in zonal wind-driven divergence produced by a precessional component of orbital variation during a time of reduced eccentricity modulation.  相似文献   

3.
Bond GC  Lotti R 《Science (New York, N.Y.)》1995,267(5200):1005-1010
High-resolution studies of North Atlantic deep sea cores demonstrate that prominent increases in iceberg calving recurred at intervals of 2000 to 3000 years, much more frequently than the 7000-to 10,000-year pacing of massive ice discharges associated with Heinrich events. The calving cycles correlate with warm-cold oscillations, called Dansgaard-Oeschger events, in Greenland ice cores. Each cycle records synchronous discharges of ice from different sources, and the cycles are decoupled from sea-surface temperatures. These findings point to a mechanism operating within the atmosphere that caused rapid oscillations in air temperatures above Greenland and in calving from more than one ice sheet.  相似文献   

4.
Proxies from Greenland ice cores and North Atlantic marine sediment cores document repeated extreme climate swings of a few decades to millennia during the last glacial cycle, including periods of intense ice rafting called Heinrich events (HEs). We have found similar oxygen isotope variations recorded in mixed-layer-and thermocline-dwelling planktonic foraminifera during HEs 0, 1, and 4, suggesting that three foraminiferal taxa calcified their shells at similar temperatures in a homogenized upperwater column. This implies that the surface mixed layer was deeper during HEs. Similar deepening occurred on the northern margin of the ice-rafted-debris belt, implying that these deep mixed layers during HEs were widespread in the region. We suggest that an increase in storminess during HEs intensified the vertical mixing of meltwater from ice rafting in the upper ocean.  相似文献   

5.
Two hypotheses have been put forward to explain the large and abrupt climate changes that punctuated glacial time. One attributes such changes to reorganizations of the ocean's thermohaline circulation and the other to changes in tropical atmosphere-ocean dynamics. In an attempt to distinguish between these hypotheses, two lines of evidence are examined. The first involves the timing of the freshwater injections to the northern Atlantic that have been suggested as triggers for the global impacts associated with the Younger Dryas and Heinrich events. The second has to do with evidence for precursory events associated with the Heinrich ice-rafted debris layers in the northern Atlantic and with the abrupt Dansgaard-Oeschger warmings recorded in the Santa Barbara Basin.  相似文献   

6.
Between 15,000 and 18,000 years ago, large amounts of ice and meltwater entered the North Atlantic during Heinrich stadial 1. This caused substantial regional cooling, but major climatic impacts also occurred in the tropics. Here, we demonstrate that the height of this stadial, about 16,000 to 17,000 years ago (Heinrich event 1), coincided with one of the most extreme and widespread megadroughts of the past 50,000 years or more in the Afro-Asian monsoon region, with potentially serious consequences for Paleolithic cultures. Late Quaternary tropical drying commonly is attributed to southward drift of the intertropical convergence zone, but the broad geographic range of the Heinrich event 1 megadrought suggests that severe, systemic weakening of Afro-Asian rainfall systems also occurred, probably in response to sea surface cooling.  相似文献   

7.
In 1980, SOFAR (sound fixing and ranging) floats were tracked acoustically in the western North Atlantic entirely by means of moored autonomous listening stations. During a 5-month period 17 float trajectories were obtained in the eastern (45 degrees to 65 degrees W) Gulf Stream and subtropical gyre interior at depths of 700 and 2000 meters. These mid-depth trajectories suggest a time-varying Gulf Stream with instances of both a narrow, swift, westward recirculation south of the stream and a northeastward penetration into the Newfoundland Basin. A hundredfold increase of eddy kinetic energy was observed at 2000 meters from the gyre interior (south of 30 degrees N) to the Gulf Stream.  相似文献   

8.
Scanning electron microscope techniques show that Eocene opaline claystones (fuller's earth and buhrstone) of the Atlantic and Gulf Coastal Plain, deposits long considered volcanic in origin, are actually highly altered diatomites formed as transgressive facies in normal marine continental shelf environmnents. These findings are in agreement with a biogenic origin for time-equivalent horizon A and A deep-sea cherts of the North Atlantic and Caribbean.  相似文献   

9.
Mineral particles suspended in the Gulf of Mexico and Caribbean Sea were analyzed in relation to clay mineral distributions in bottom sediments, to sedimentation processes active in the region, and to the prevailing currents. Circulation in the upper layers of water flowing from the Caribbean, carrying a micaceous-rich mineral assemblage, has exercised an influence on mineral transport into the Gulf of Mexico, different from the montmorillonite-rich load delivered by the Mississippi River. Particulate matter, suspended in North Atlantic water and Amazon River discharge, enters the Caribbean through the Lesser Antilles and contributes to the detrital mineral content of Caribbean water, as does that carried by the wind.  相似文献   

10.
Evidence from a North Atlantic deep-sea sediment core reveals that the largest climatic perturbation in our present interglacial, the 8200-year event, is marked by two distinct cooling events in the subpolar North Atlantic at 8490 and 8290 years ago. An associated reduction in deep flow speed provides evidence of a significant change to a major downwelling limb of the Atlantic meridional overturning circulation. The existence of a distinct surface freshening signal during these events strongly suggests that the sequenced surface and deep ocean changes were forced by pulsed meltwater outbursts from a multistep final drainage of the proglacial lakes associated with the decaying Laurentide Ice Sheet margin.  相似文献   

11.
Ocean general circulation theories predict that the position of the boundary between subtropical and subpolar gyres (and therefore the position of the Gulf Stream-North Atlantic Current system and the subpolar-subtropical front) is set by the line of zero "Ekman pumping," where there is no convergence or divergence of water in the directly wind-forced surface layer of the ocean. In the present-day North Atlantic Ocean this line runs southwest to northeast, from off the Carolinas to off Ireland. However, during the last ice age (18,000 years ago) the subpolar-subtropical boundary ran more zonally, directly toward Gibraltar. A numerical atmospheric general circulation model indicates that the field of Ekman pumping 18,000 years ago was modified by the presence of a continental ice cap more than 3 kilometers thick such that the line of zero Ekman pumping overlaid the paleogyre boundary. These results demonstrate that the presence of a thick continental ice sheet could have caused changes in sea surface temperatures in the North Atlantic during Quaternary glaciations by altering wind patterns.  相似文献   

12.
Atlantic bluefin tuna populations are in steep decline, and an improved understanding of connectivity between individuals from eastern (Mediterranean Sea) and western (Gulf of Mexico) spawning areas is needed to manage remaining fisheries. Chemical signatures in the otoliths of yearlings from regional nurseries were distinct and served as natural tags to assess natal homing and mixing. Adults showed high rates of natal homing to both eastern and western spawning areas. Trans-Atlantic movement (east to west) was significant and size-dependent, with individuals of Mediterranean origin mixing with the western population in the U.S. Atlantic. The largest (oldest) bluefin tuna collected near the northern extent of their range in North American waters were almost exclusively of western origin, indicating that this region represents critical habitat for the western population.  相似文献   

13.
Records of ice-rafted detritus (IRD) concentration in deep-sea cores from the southeast Atlantic Ocean reveal millennial-scale pulses of IRD delivery between 20,000 and 74,000 years ago. Prominent IRD layers correlate across the Polar Frontal Zone, suggesting episodes of Antarctic Ice Sheet instability. Carbon isotopes (delta(13)C) of benthic foraminifers, a proxy of deepwater circulation, reveal that South Atlantic IRD events coincided with strong increases in North Atlantic Deep Water (NADW) production and inferred warming (interstadials) in the high-latitude North Atlantic. Sea level rise or increased NADW production associated with strong interstadials may have resulted in destabilization of grounded ice shelves and possible surging in the Weddell Sea region of West Antarctica.  相似文献   

14.
Oxygen-18 analyses of pelagic and benthic foraminifera from core K 11 indicate that during the last glaciation Norwegian Sea bottom waters were warmer than in modern times and had the same physical parameters (temperature, oxygen isotope ratio, and salinity) as the North Atlantic deep water. This result indicates that the glacial Norwegian Sea was not a sink for dense surface water, as it is now, and that during glacial times North Atlantic deep water invaded the deep Norwegian basin.  相似文献   

15.
Foraminiferal communities in the Cenozoic shelf deposits of the North American Atlantic Coastal Plain exhibit little unity during almost 55 million years of successive transgressions and regressions. Transgression communities are composed of a dynamic mixture of immigrants and newly evolved species. During regressions, species within these communities either became extinct or emigrated. Some emigrants returned during subsequent transgressions, but many did not. The neritic species of the Atlantic and Gulf continental margins constitute a species pool. Immigrants and emigrants transferred into and out of the species pool, while extinctions and originations repeatedly altered its species composition. While the results indicate a lack of local community unity, at the same time they demonstrate the necessity of a species pool to sustain species diversity.  相似文献   

16.
Traverse A 《Science (New York, N.Y.)》1987,236(4807):1469-1472
Palynological studies of the nonmarine Newark Supergroup of eastern North America and of rift basins in the northern Gulf of Mexico facilitate correlation with well-dated marine sections of Europe. New information emphasizes the chronological link between the Newark basins and a Gulf of Mexico basin and their common history in the rifting of North America from Pangea. Shales from the subsurface South Georgia Basin are shown to be of late Karnian age (early Late Triassic). The known time of earliest sedimentation in the Culpeper Basin is extended from Norian (late Late Triassic) to mid-Karnian, and the date of earliest sedimentation in the Richmond and Deep River basins is moved to at least earliest Karnian, perhaps Ladinian. The subsurface Eagle Mills Formation in Texas and Arkansas has been dated palynologically as mid- to late Karnian. The oldest parts of the Newark Supergroup, and the Eagle Mills Formation, mostly began deposition in precursor rift basins that formed in Ladinian to early Karnian time. In the southern Newark basins, sedimentation apparently ceased in late Karnian but continued in the northern basins well into the Jurassic, until genesis of the Atlantic ended basin sedimentation.  相似文献   

17.
Z Yu  U Eicher 《Science (New York, N.Y.)》1998,282(5397):2235-2238
Evidence from stable isotopes and a variety of proxies from two Ontario lakes demonstrate that many of the late glacial-to-early Holocene events that are well known from the North Atlantic seaboard, such as the Gerzensee-Killarney Oscillation (also known as the Intra-Allerod Cold Period), Younger Dryas, and Preboreal Oscillation, also occurred in central North America. These results thus imply that climatic forcing acted in the same manner in both regions and that atmospheric circulation played an important role in the propagation of these events.  相似文献   

18.
The climate of the Last Glacial period (10,000 to 110,000 years ago) was characterized by rapid millennial-scale climate fluctuations termed Dansgaard/Oeschger (D/O) and Heinrich events. We present results from a speleothem-derived proxy of the South American summer monsoon (SASM) from 16,000 to 50,000 years ago that demonstrate the occurrence of D/O cycles and Heinrich events. This tropical Southern Hemisphere monsoon reconstruction illustrates an antiphase relationship to Northern Hemisphere monsoon intensity at the millennial scale. Our results also show an influence of Antarctic millennial-scale climate fluctuations on the SASM. This high-resolution, precisely dated, tropical precipitation record can be used to establish the timing of climate events in the high latitudes of the Northern and Southern Hemispheres.  相似文献   

19.
Evidence from the Irish Sea basin supports the existence of an abrupt rise in sea level (meltwater pulse) at 19,000 years before the present (B.P.). Climate records indicate a large reduction in the strength of North Atlantic Deep Water formation and attendant cooling of the North Atlantic at this time, indicating a source of the meltwater pulse from one or more Northern Hemisphere ice sheets. Warming of the tropical Atlantic and Pacific oceans and the Southern Hemisphere also began at 19,000 years B.P. These responses identify mechanisms responsible for the propagation of deglacial climate signals to the Southern Hemisphere and tropics while maintaining a cold climate in the Northern Hemisphere.  相似文献   

20.
Oppo DW  Lehman SJ 《Science (New York, N.Y.)》1993,259(5098):1148-1152
Holocene and glacial carbon isotope data of benthic foraminifera from shallow to mid-depth cores from the northeastern subpolar Atlantic show that this region was strongly stratified, with carbon-13-enriched glacial North Atlantic intermediate water (GNAIW) overlying carbon-13-depleted Southern Ocean water (SOW). The data suggest that GNAIW originated north of the polar front and define GNAIW end-member carbon isotope values for studies of water-mass mixing in the open Atlantic. Identical carbon isotope values in the core of GNAIW and below the subtropical thermocline are consistent with rapid cycling of GNAIW through the northern Atlantic. The high carbon isotope values below the thermocline indicate that enhanced nutrient leakage in response to increased ventilation may have extended into intermediate waters. Geochemical box models show that the atmospheric carbon dioxide response to nutrient leakage that results from an increase in ventilation rate may be greater than the response to nutrient redistribution by conversion of North Atlantic deep water into GNAIW. These results underscore the potential rule of Atlantic Ocean circulation changes in influencing past atmospheric carbon dioxide values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号