首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
2.
Fermi gases, collections of fermions such as neutrons and electrons, are found throughout nature, from solids to neutron stars. Interacting Fermi gases can form a superfluid or, for charged fermions, a superconductor. We have observed the superfluid phase transition in a strongly interacting Fermi gas by high-precision measurements of the local compressibility, density, and pressure. Our data completely determine the universal thermodynamics of these gases without any fit or external thermometer. The onset of superfluidity is observed in the compressibility, the chemical potential, the entropy, and the heat capacity, which displays a characteristic lambda-like feature at the critical temperature T(c)/T(F) = 0.167(13). The ground-state energy is 3/5ξN E(F) with ξ = 0.376(4). Our measurements provide a benchmark for many-body theories of strongly interacting fermions.  相似文献   

3.
We report on the observation of a highly degenerate, strongly interacting Fermi gas of atoms. Fermionic lithium-6 atoms in an optical trap are evaporatively cooled to degeneracy using a magnetic field to induce strong, resonant interactions. Upon abruptly releasing the cloud from the trap, the gas is observed to expand rapidly in the transverse direction while remaining nearly stationary in the axial direction. We interpret the expansion dynamics in terms of collisionless superfluid and collisional hydrodynamics. For the data taken at the longest evaporation times, we find that collisional hydrodynamics does not provide a satisfactory explanation, whereas superfluidity is plausible.  相似文献   

4.
We consider trapped atomic Fermi gases with Feshbach-resonance enhanced interactions in pseudogap and superfluid temperatures. We calculate the spectrum of radio-frequency (or laser) excitations for transitions that transfer atoms out of the superfluid state. The spectrum displays the pairing gap and also the contribution of unpaired atoms, that is, in-gap excitations. The results support the conclusion that a superfluid, in which pairing is a manybody effect, was observed in recent experiments on radio-frequency spectroscopy of the pairing gap.  相似文献   

5.
A quantum fluid passing an obstacle behaves differently from a classical one. When the flow is slow enough, the quantum gas enters a superfluid regime, and neither whirlpools nor waves form around the obstacle. For higher flow velocities, it has been predicted that the perturbation induced by the defect gives rise to the turbulent emission of quantized vortices and to the nucleation of solitons. Using an interacting Bose gas of exciton-polaritons in a semiconductor microcavity, we report the transition from superfluidity to the hydrodynamic formation of oblique dark solitons and vortex streets in the wake of a potential barrier. The direct observation of these topological excitations provides key information on the mechanisms of superflow and shows the potential of polariton condensates for quantum turbulence studies.  相似文献   

6.
We used radio-frequency spectroscopy to study pairing in the normal and superfluid phases of a strongly interacting Fermi gas with imbalanced spin populations. At high spin imbalances, the system does not become superfluid even at zero temperature. In this normal phase, full pairing of the minority atoms was observed. Hence, mismatched Fermi surfaces do not prevent pairing but can quench the superfluid state, thus realizing a system of fermion pairs that do not condense even at the lowest temperature.  相似文献   

7.
We report that the doping and temperature dependence of photoemission spectra near the Brillouin zone boundary of Bi(2)Sr(2)CaCu(2)O(8+delta)exhibit unexpected sensitivity to the superfluid density. In the superconducting state, the photoemission peak intensity as a function of doping scales with the superfluid density and the condensation energy. As a function of temperature, the peak intensity shows an abrupt behavior near the superconducting phase transition temperature where phase coherence sets in, rather than near the temperature where the gap opens. This anomalous manifestation of collective effects in single-particle spectroscopy raises important questions concerning the mechanism of high-temperature superconductivity.  相似文献   

8.
Superfluids such as helium II consist of two interpenetrating fluids: the normal fluid and the superfluid. The helium II vortex ring has generally been considered merely as a superfluid object, neglecting any associated motion of the normal fluid. We report a three-dimensional calculation of the coupled motion of the normal-fluid and superfluid components, which shows that the helium II vortex ring consists of a superfluid vortex ring accompanied by two coaxial normal-fluid vortex rings of opposite polarity. The three vortex rings form a coherent, dissipative structure.  相似文献   

9.
10.
We studied fermionic pairing in an ultracold two-component gas of 6Li atoms by observing an energy gap in the radio-frequency excitation spectra. With control of the two-body interactions through a Feshbach resonance, we demonstrated the dependence of the pairing gap on coupling strength, temperature, and Fermi energy. The appearance of an energy gap with moderate evaporative cooling suggests that our full evaporation brought the strongly interacting system deep into a superfluid state.  相似文献   

11.
Kim E  Chan MH 《Science (New York, N.Y.)》2004,305(5692):1941-1944
We report on the observation of nonclassical rotational inertia in solid helium-4 confined to an annular channel in a sample cell under torsional motion, demonstrating superfluid behavior. The effect shows up as a drop in the resonant oscillation period as the sample cell is cooled below 230 millikelvin. Measurement of 17 solid samples allows us to map out the boundary of this superfluid-like solid or supersolid phase from the melting line up to 66 bars. This experiment indicates that superfluid behavior is found in all three phases of matter.  相似文献   

12.
Supersolidity     
Chan MH 《Science (New York, N.Y.)》2008,319(5867):1207-1209
The observation of nonclassical rotational inertia (NCRI) by the torsional oscillator in 2004 gave rise to a renaissance in the study of solid helium-4. Recent theoretical and experimental studies found evidence that disorder in the solid plays a key role in enabling superfluidity. A recent experiment found a marked increase in the shear modulus that shares the same temperature and helium-3 impurity concentration dependence as that of NCRI. This correlation indicates that the onset of superfluidity requires the pinning and stiffening of the dislocation network by helium-3.  相似文献   

13.
A degenerate gas of identical fermions is brought to collapse by the interaction with a Bose-Einstein condensate. We used an atomic mixture of fermionic potassium-40 and bosonic rubidium-87, in which the strong interspecies attraction leads to an instability above a critical number of particles. The observed phenomenon suggests a direction for manipulating fermion-fermion interactions on the route to superfluidity.  相似文献   

14.
When two communicating vessels are filled to a different height with liquid, the two levels equilibrate because the liquid can flow. We have looked for such equilibration with solid (4)He. For crystals with no grain boundaries, we see no flow of mass, whereas for crystals containing several grain boundaries, we detect a mass flow. Our results suggest that the transport of mass is due to the superfluidity of grain boundaries.  相似文献   

15.
Quantized vortices play a key role in superfluidity and superconductivity. We have observed the formation of highly ordered vortex lattices in a rotating Bose-condensed gas. These triangular lattices contained over 100 vortices with lifetimes of several seconds. Individual vortices persisted up to 40 seconds. The lattices could be generated over a wide range of rotation frequencies and trap geometries, shedding light on the formation process. Our observation of dislocations, irregular structure, and dynamics indicates that gaseous Bose-Einstein condensates may be a model system for the study of vortex matter.  相似文献   

16.
Radio-frequency techniques were used to study ultracold fermions. We observed the absence of mean-field "clock" shifts, the dominant source of systematic error in current atomic clocks based on bosonic atoms. This absence is a direct consequence of fermionic antisymmetry. Resonance shifts proportional to interaction strengths were observed in a three-level system. However, in the strongly interacting regime, these shifts became very small, reflecting the quantum unitarity limit and many-body effects. This insight into an interacting Fermi gas is relevant for the quest to observe superfluidity in this system.  相似文献   

17.
We have determined the upper critical field Hc2 as a function of hole concentration in bismuth-based cuprates by measuring the voltage induced by vortex flow in a driving temperature gradient (the Nernst effect), in magnetic fields up to 45 tesla. We found that Hc2 decreased steeply as doping increased, in both single and bilayer cuprates. This relationship implies that the Cooper pairing potential displays a trend opposite to that of the superfluid density versus doping. The coherence length of the pairs xi(0) closely tracks the gap measured by photoemission. We discuss implications for understanding the doping dependence of the critical temperature Tc0.  相似文献   

18.
A linear carbonyl sulfide (OCS) molecule surrounded by 14 to 16 para-hydrogen (pH(2)) molecules, or similar numbers of ortho-deuterium (oD(2)) molecules, within large helium-4 ((4)He) droplets and inside mixed (4)He/(3)He droplets was investigated by infrared spectroscopy. In the pure (4)He droplets (0.38 kelvin), both systems exhibited spectral features that indicate the excitation of angular momentum around the OCS axis. In the colder (4)He/(3)He droplets (0.15 kelvin), these features remained in the oD(2) cluster spectra but disappeared in the pH(2) spectra, indicating that the angular momentum is no longer excited. These results are consistent with the onset of superfluidity, thereby providing the first evidence for superfluidity in a liquid other than helium.  相似文献   

19.
We have measured the heat capacity of an optically trapped, strongly interacting Fermi gas of atoms. A precise addition of energy to the gas is followed by single-parameter thermometry, which determines the empirical temperature parameter of the gas cloud. Our measurements reveal a clear transition in the heat capacity. The energy and the spatial profile of the gas are computed using a theory of the crossover from Fermi to Bose superfluids at finite temperatures. The theory calibrates the empirical temperature parameter, yields excellent agreement with the data, and predicts the onset of superfluidity at the observed transition point.  相似文献   

20.
Zwierlein MW  Ketterle W 《Science (New York, N.Y.)》2006,314(5796):54; author reply 54
Partridge et al. (Reports, 27 January 2006, p. 503) reported pairing and phase separation in a polarized Fermi gas. We argue that it is not possible to distinguish the superfluid from the normal regimes in the presented data, or to discern which clouds were phase-separated. Some of the reported conclusions are inconsistent with recent experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号