首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Carrots ( Daucus carota L.) contain phytochemicals including carotenoids, phenolics, polyacetylenes, isocoumarins, and sesquiterpenes. Purple carrots also contain anthocyanins. The anti-inflammatory activity of extracts and phytochemicals from purple carrots was investigated by determining attenuation of the response to lipopolysaccharide (LPS). A bioactive chromatographic fraction (Sephadex LH-20) reduced LPS inflammatory response. There was a dose-dependent reduction in nitric oxide production and mRNA of pro-inflammatory cytokines (IL-6, IL-1beta, TNF-alpha) and iNOS in macrophage cells. Protein secretions of IL-6 and TNF-alpha were reduced 77 and 66% in porcine aortic endothelial cells treated with 6.6 and 13.3 microg/mL of the LH-20 fraction, respectively. Preparative liquid chromatography resulted in a bioactive subfraction enriched in the polyacetylene compounds falcarindiol, falcarindiol 3-acetate, and falcarinol. The polyacetylenes were isolated and reduced nitric oxide production in macrophage cells by as much as 65% without cytotoxicity. These results suggest that polyacetylenes, not anthocyanins, in purple carrots are responsible for anti-inflammatory bioactivity.  相似文献   

2.
In order to reinvestigate the key molecules inducing bitter off-taste of carrots ( Daucus carota L.), a sensory-guided fractionation approach was applied to bitter carrot extracts. Besides the previously reported bitter compounds, 6-methoxymellein (1), falcarindiol (2), falcarinol (3), and falcarindiol-3-acetate (4), the following compounds were identified for the first time as bitter compounds in carrots with low bitter recognition thresholds between 8 and 47 micromol/L: vaginatin (5), isovaginatin (6), 2-epilaserine oxide (7), laserine oxide (8), laserine (14), 2-epilaserine (15), 6,8-O-ditigloyl- (9), 6-O-angeloyl-, 8-O-tigloyl- (10), 6-O-tigloyl-, 8-O-angeloyl- (11), and 6-, 8-O-diangeloyl-6 ss,8alpha,11-trihydroxygermacra-1(10) E,4 E-diene (12), as well as 8-O-angeloyl-tovarol (13) and alpha-angeloyloxy-latifolone (16). Among these bitter molecules, compounds 9, 10, 13, and 16 were not previously identified in carrots and compounds 6, 11, and 12 were yet not reported in the literature.  相似文献   

3.
A dichloromethane extract of root celery yielded falcarinol, falcarindiol, panaxydiol, and the new polyacetylene 8-O-methylfalcarindiol. The structure of the new compound was established by one- and two-dimensional (1D and 2D) NMR, mass spectrometry, and optical rotation data. Nonpolar extracts of roots and bulbs of carrots, celery, fennel, parsley, and parsnip were investigated for their content of polyacetylenes by high-performance liquid chromatography with diode array detection (HPLC-DAD). All five species contained polyacetylenes, although carrots and fennel only in minor amounts. Additionally, the cytotoxicity of the four polyacetylenes against five different cell lines was evaluated by the annexin V-PI assay. Falcarinol proved to be the most active compound with a pronounced toxicity against acute lymphoblastic leukemia cell line CEM-C7H2, with an IC(50) of 3.5 micromol/L. The possible chemopreventive impact of the presented findings is discussed briefly.  相似文献   

4.
Sequential application of solvent extraction, gel permeation chromatography, and HPLC in combination with taste dilution analyses revealed that not a sole compound but a multiplicity of bitter tastants contribute to the bitter off-taste of cold-stored carrots and commercial carrot puree, respectively. Among these bitter compounds, 3-methyl-6-methoxy-8-hydroxy-3,4-dihydroisocoumarin (6-methoxymellein), 5-hydroxy-7-methoxy-2-methylchromone (eugenin), 2,4,5-trimethoxybenzaldehyde (gazarin), (Z)-heptadeca-1,9-diene-4,6-diin-3,8-diol (falcarindiol), (Z)-heptadeca-1,9-diene-4,6-diin-3-ol (falcarinol), and (Z)-3-acetoxy-heptadeca-1,9-diene-4,6-diin-8-ol (falcarindiol 3-acetate) could be identified on the basis of MS as well as 1D- and 2D-NMR experiments. Due to the low concentrations of <0.1 mg/kg and the high taste thresholds found for eugenin and gazarin, these compounds could be unequivocally excluded as important contributors to the bitter taste of carrots. Calculation of bitter activity values as the ratio of their concentration to their bitter detection threshold clearly demonstrated that neither in fresh and stored carrots nor in commercial carrot puree did 6-methoxymellein contribute to the bitter off-taste. In contrast, the concentrations of falcarindiol in stored carrots and, even more pronounced, in carrot puree were found to be 9- and 13-fold above its low bitter detection concentration of 0.04 mmol/kg, thus demonstrating that this acetylenic diol significantly contributes to the bitter taste of the carrot products investigated.  相似文献   

5.
The effects of intake of dietary amounts of carrot or corresponding amounts of (-)-(3R)-falcarinol from carrots on development of azoxymethane (AOM)-induced colon preneoplastic lesions were examined in male BDIX rats. Three groups of eight AOM-treated rats were fed the standard rat feed Altromin supplemented with either 10% (w/w) freeze-dried carrots with a natural content of 35 mug falcarinol/g, 10% maize starch to which was added 35 mug falcarinol/g purified from carrots, or 10% maize starch (control). After 18 weeks, the animals were euthanized and the colon was examined for tumors and aberrant crypt foci (ACF), which were classified into four size classes. Although the number of small ACF was unaffected by the feeding treatments, the numbers of lesions as a function of increasing size class decreased significantly in the rats that received one of the two experimental treatments, as compared with the control treatment. This indicates that the dietary treatments with carrot and falcarinol delayed or retarded the development of large ACF and tumors. The present study provides a new perspective on the known epidemiological associations between high intake of carrots and reduced incidence of cancers.  相似文献   

6.
This paper presents an approach to simultaneously analyze polyacetylenes, carotenoids, and polysaccharides in carrot (Daucus carota L.) roots by means of Raman spectroscopy. The components were measured in situ in the plant tissue without any preliminary sample preparation. The analysis is based on the intensive and characteristic key bands observed in the Raman spectrum of carrot root. The molecular structures of the main carrot polyacetylenes, falcarinol and falcarindiol, are similar, but their Raman spectra exhibit specific differences demonstrated by the shift of their -C[triple bond]C- mode from 2258 to 2252 cm(-)(1), respectively. Carotenoids can be identified by -C=C- stretching vibrations (about 1520 and 1155 cm(-)(1)) of the conjugated system of their polyene chain, whereas the characteristic Raman band at 478 cm(-)(1) indicates the skeletal vibration mode of starch molecule. The other polysaccharide, pectin, can be identified by the characteristic band at 854 cm(-)(1), which is due to the -C-O-C- skeletal mode of alpha-anomer carbohydrates. The Raman mapping technique applied here has revealed detailed information regarding the relative distribution of polyacetylenes, carotenoids, starch, and pectin in the investigated plant tissues. The distribution of these components varies among various carrot cultivars, and especially a significant difference can be seen between cultivated carrot and the wild relative D. carota ssp. maritimus.  相似文献   

7.
The polyacetylene falcarinol, isolated from carrots, has been shown to be protective against chemically induced colon cancer development in rats, but the mechanisms are not fully understood. In this study CaCo-2 cells were exposed to falcarinol (0.5-100 microM) and the effects on proliferation, DNA damage, and apoptosis investigated. Low-dose falcarinol exposure (0.5-10 microM) decreased expression of the apoptosis indicator caspase-3 concomitantly with decreased basal DNA strand breakage. Cell proliferation was increased (1-10 microM), whereas cellular attachment was unaffected by <10 microM falcarinol. At concentrations above 20 microM falcarinol, proliferation of CaCo-2 cells decreased and the number of cells expressing active caspase-3 increased simultaneously with increased cell detachment. Furthermore, DNA single-strand breakage was significantly increased at concentrations above 10 microM falcarinol. Thus, the effects of falcarinol on CaCo-2 cells appear to be biphasic, inducing pro-proliferative and apoptotic characteristics at low and high concentrations of falcarinol, respectively.  相似文献   

8.
A method for simultaneous determination of ginsenosides and polyacetylenes in Panax quinquefolium L. (American ginseng) roots was developed. The ginsenosides Rb1, Rb2, Rc, Rd, Re, Rg1, Ro, malonyl-Rb1, malonyl-Rc, and malonyl-Rd and the polyacetylenes falcarinol and panaxydol were extracted from fresh ginseng roots in a sequential extraction process with 100% methanol followed by 80% aqueous methanol and quantified simultaneously in extracts by high-performance liquid chromatography using diode array detection. Separations were achieved with a phosphate buffer-acetonitrile gradient system using an RP-C18 column. Except for Rd, the present extraction method resulted in similar or significantly higher concentrations of both ginsenosides and polyacetylenes in comparison to commonly used extraction methods for these compounds. The contents of polyacetylenes and ginsenosides were determined in the root hairs, lateral roots, and main roots of 6 year old ginseng plants. The total mean concentrations of ginsenosides and polyacetylenes in root hairs were 31.0 g/kg fresh weight (FW) and 2.6 g/kg FW, respectively, whereas the concentrations of these bioactive compounds in the main roots were significantly lower with total mean concentrations of 17.8 g/kg FW for ginsenosides and 0.6 g/kg FW for polyacetylenes. The concentration of individual and total ginsenosides and polyacetylenes did not differ significantly between main roots of different sizes. Consequently, it is possible to do quantitative screening for ginsenosides and polyacetylenes to breed ginseng roots with higher levels of bioactive compounds.  相似文献   

9.
Abstract

Reliable assessments of erosion potential, N fertilization need, and nitrogen (N) non‐point pollution potential for soybean [Glycine max (L.) Merr.] cropping systems require accurate estimates of soybean dry matter and N accumulations. The objective of this field study was to determine dry matter and N accumulation in soybean during the growing season and at harvest in samples large enough to reduce sample variation and increase the confidence in measured values. A split‐plot design was used with cultivar (Braxton, Coker 338, and Davis) as the main plot treatment and sampling date as the split‐plot treatment. Each split‐plot contained eight rows 4.6 m in length on 0.75 m spacing. The seed were sown in a Norfolk loamy sand (fine‐loamy, siliceous, thermic, Typic Paleudult) on May 18 at the rate of 33 seeds/m. Water was applied by use of an overhead irrigation gun. Plant samples were collected from 20 m2 of the six center rows on 89, 115, and 138 days after planting as well as at seed harvest. Fallen plant material (crop litter) was collected from each plot at each sampling date. Itact plant samples, crop litter, and soil samples were analyzed for total Kjeldahl N. The mean seed yield was 2.01 Mg/ha; the mean maximum dry matter accumulation for intact shoots plus crop litter was 10.2 Mg/ha, and the coefficients of variation were <10%. The actual harvest index (seed yield/total dry matter accumulation) ranged from 0.19 to 0.28, and the mean maximum N accumulation was 293 kg/ha. These accumulations are greater than those reported for indeterminate soybean grown on high‐N soils in the midwestern United States, and they clearly show that determinate soybean grown in the southeastern United States accumulate substantial amounts of dry matter and N.  相似文献   

10.
Effect of different fertilizers on the potential N2-fixing capacity (acetylene-reduction assay) of a sandy orthic luvisol The N2-fixation capacity of 36 different soil samples, taken from a field trial with 4 fields crops, was tested by the acetylene-reduction-method. Each of the 4 plots was divided into strips. I = mineral fertilizer (NPK), II = stable manure compost, III = stable manure compost with bio-dynamic preparations. These different kinds of fertilizer were given in three amounts of N: 1 = 0,5 × A kg N/ha, 2 = 1 × A kg N/ha, 3 = 1,5 × A kg N/ha. Like the 3 years before in 1984 rye ?Halo”? A = 100, potatoes ?Nicola”? A = 120, red beets ?Rote Kugel”? A = 160, carrots ?Luwal”? A = 120 were cultivated. The soil samples were taken after harvest, dried and sieved. 50 g soil were moistened with a glucose-solution, hatched at 25°C for 24 h and then incubated for another 24 h at the same temperature and an acetylene concentration of 9,23%. The amount of ethylene which had developed after 8 h, 15 h and 24 h was analysed by GC. The acetylene-reduction (AR) of the soils was significantly higher after the cultivation of rye and potatoes compared with carrots and red beets; but always the crops formed the main influence. On an average the organic manured soils showed a higher AR than the mineral fertilized ones. The encouraging effect of the different organic manures was depending on the type of crop.  相似文献   

11.
Acrylamide is formed via the Maillard reaction between reducing sugars and asparagine in a number of carbohydrate-rich foods during heat treatment. High acrylamide levels have been found in potato products processed at high temperatures. To examine the impact of harvest year, information on weather conditions during growth, that is, temperature, precipitation, and light, was collected, together with analytical data on the concentrations of free amino acids and sugars in five potato clones and acrylamide contents in potato chips (commonly known as crisps in Europe). The study was conducted for 3 years (2004-2006). The contents of acrylamide precursors differed between the clones and the three harvest years; the levels of glucose were up to 4.2 times higher in 2006 than in 2004 and 2005, and the levels of fructose were 5.6 times higher, whereas the levels of asparagine varied to different extents. The high levels of sugars in 2006 were probably due to the extreme weather conditions during the growing season, and this was also reflected in acrylamide content that was approximately twice as high as in preceding years. The results indicate that acrylamide formation is dependent not only on the content and relative amounts of sugars and amino acids but also on other factors, for example, the food matrix, which may influence the availability of the reactants to participate in the Maillard reaction.  相似文献   

12.
Abstract

Resource conservation with respect to nitrogen (N) was compared in organic and conventional cultivation of winter and spring wheat. Sustainability was measured in the nitrogen use efficiency of plant‐available N. The amounts of N entering each system and the amounts removed in the harvested crop and remaining as unused mineral nitrogen in the soil at harvest were determined. Net surpluses and losses during the growing season were also monitored, and the environmental variables influencing N harvest in the different cultivation systems were identified. The study was carried out in three different cultivation systems: conventional animal production (CONV), organic animal production (ORG1), and organic cereal production (ORG2). On average for all years and sampling occasions in winter wheat, there were approximately 60 kg more mineral nitrogen left in the soil during the growing season in CONV than in ORG1, and coefficients of variation were higher in CONV. The maximum values were considerably higher in CONV than in ORG1 (p=0.06–0.09), which increased the risk of leaching in the former, particularly in winter wheat cultivation. Nitrogen use efficiency in winter and spring wheat cultivation was 74% in whole crop conventional winter wheat and 81% in organic. Nitrogen use efficiency in harvested winter wheat grain was 44% for CONV and 49% for ORG1. ORG1 spring wheat was as efficient as ORG1 winter wheat, whereas ORG2 spring wheat used 73% of N in the whole crop and 39% in grain. Multivariate regression analysis showed that climate affected CONV and ORG1 winter wheat differently. High temperature in May increased grain yields in ORG1, but the converse was true for CONV. Large unused mineral N reserves at harvest coincided with large N harvest in CONV winter wheat. Residual fertility effects from the preceding crop produced high yields in ORG1 winter and spring wheat but had no effect in CONV. Generally, an increase in N reserves between plant development stages 13 and 31 was positive for both CONV and ORG1 winter wheat. Both winter and spring wheat require most N during this period, so the potential for improvement seems to lie in increasing mineralization (e.g., by intensified weed harrowing early in stage 13 in winter wheat and between stages 13 and 31 in spring wheat). Cultivation of winter wheat in ORG1 was a more efficient use of nitrogen resources than CONV. CONV efficiency could be improved by precision fertilization on each individual field with the help of N analysis before spring tillage and sensor‐controlled fertilization.  相似文献   

13.
Although various reports pointed to 6-methoxymellein (1) as a key player imparting the bitter taste in carrots, activity-guided fractionation experiments recently gave evidence that not this isocoumarin but bisacetylenic oxylipins contribute mainly to the off-taste. Among these, (Z)-heptadeca-1,9-dien-4,6-diyn-3-ol (2), (Z)-3-acetoxy-heptadeca-1,9-dien-4,6-diyn-8-ol (3), and (Z)-heptadeca-1,9-dien-4,6-diyn-3,8-diol (falcarindiol, 4) have been successfully identified. In the present study, an analytical procedure was developed enabling an accurate quantitation of 1-4 in carrots and carrot products. To achieve this, (E)-heptadeca-1,9-dien-4,6-diyn-3,8-diol was synthesized as a suitable internal standard for the quantitative analysis of the bisacetylenes. On the basis of taste activity values, calculated as the ratio of the concentration and the human sensory threshold of a compound, a close relationship between the concentration of 4 and the intensity of the bitter off-taste in carrots, carrot puree, and carrot juice was demonstrated, thus showing that compound 4 might offer a new analytical measure for an objective evaluation of the quality of carrot products. Quantitative analysis on the intermediate products in industrial carrot processing revealed that removing the peel as well as green parts successfully decreased the concentrations in the final carrot puree by more than 50%.  相似文献   

14.
Abstract

Nitrogen (N) management in carrot (Daucus carota L. var sativus) production systems is critical for increasing efficiency of crop production, decreasing costs, and decreasing nitrate leaching losses to groundwater. Leaf tissue testing may be an appropriate method to monitor and meet carrot N requirements. A field trial was conducted in three locations to 1) determine if “critical tissues” identified in previous research are appropriate for leaf tissue testing in N management of carrots, 2) determine the effects of various N regimes on soil and tissue N concentrations, 3) describe the relationships among soil N concentrations, tissue N concentrations, and yield for several N regimes, and 4) study the effects of N regimes on growth, yield, and recovery of marketable grades of carrots. Nitrogen critical tissues for leaf tissue testing were not useful in N management. Overall, results showed no significant differences in soil and tissue N levels due to increasing N regimes. Correlations among soil, tissue, and yield differed at each harvest but most were not significant. N concentration was higher in soils at a depth of 0–15 cm compared to 15–30 cm. Total N concentrations in tissues decreased over sequential harvests. No clear relationships emerged comparing tissue NO3‐N to soil N measurements over the entire growing season. There were no significant differences in growth and yield of carrots in response to N regimes. Interestingly, a N rate of 0 kg/ha had significantly more fancy‐grade carrots than a N rate of 200 kg/ha. There were no significant differences in culls due to increasing N application.  相似文献   

15.
An experiment was conducted in an Andosol paddy field in Shizukuishi (Iwate Prefecture, Japan) to determine the effects of free-air CO2 enrichment (FACE) on biological N2-fixation activity and soil microbial biomass C at three levels of N application. Rice (Oryza sativa L. cv. Akitakomachi) plants were grown under ambient CO2 or FACE (ambient +200 µmol mol-1 CO2) conditions throughout the growing season with each treatment having four replicated plots. Three levels of N fertilizer (high, standard and low; 15, 9 and 4 g N m-2, respectively) were applied to examine the effect of different N availability under both CO2 conditions. Soil samples were collected at four different times from upper and lower soil layers (0-1-cm and 1-10-cm soil depths, respectively) and analysed for biological N2-fixation (BNF) activity and microbial biomass C (MBC) by the acetylene reduction and chloroform fumigation-extraction methods, respectively. The amounts of chlorophyll-type compounds (Chls), an index of algal growth, and soil available C were also determined. Compared to the ambient CO2 treatment, the FACE treatment had significantly higher BNF activity in both the upper and lower soil layers at ripening only in low-N soil and at harvest at all three levels of N fertilization rates. MBC was significantly increased by FACE in both the upper and lower soil layers from the middle to later period of the growing season compared to the ambient CO2 treatment. The FACE treatment increased the Chls in the upper soil layers at ripening only in low-N soil and at harvest at all three levels of N fertilization rates. The amount of soil available C was not significantly different between FACE and ambient CO2 treatments in both the upper and lower soil layers throughout the cropping season. From these results it can be concluded that the FACE treatment had a significantly positive influence on BNF activity, MBC and Chls at different levels of N fertilization rates in paddy field during the cropping season.  相似文献   

16.
Methane production in three types of rice paddy soil was investigated under greenhouse conditions. The amount of methane produced during the first crop season (March to July) was 2–6 times higher than that in the second crop season (August to December). Application of organic fertilizer hastened the drop in redox potential and increased methane production and emission. Methane production also increased with the depth of soil with high values in soil samples from 18 to 30cm depth. Methane production in the first crop season was 18.0, 54.3 and 49.4mgcm–3 for 6tha–1 straw application for Linkou, Tzawchyau and Jiaushi soils, respectively. The value was 33.4mgcm–3 for the second crop season in Jiaushi soil. Methane emission was high during the flowering and maturity stages in the first crop season and the values were high during the tillering and flowering stages in the second crop season. Methane emission was high in Tzawchyau and Jiaushi soils in the first crop season. Methane emission rate reached a maximum from 12 noon to 3p.m. due to high temperature and a minimum at 3 to 6a.m. in both planted and unplanted soils. Received: 17 September 1996  相似文献   

17.
The surface water table is an important factor determining soil chemical, physical and biological processes, and thus affects the functions of forested wetlands. The objective of this study was to assess surface water table dynamics from timber harvesting through early forest plantation establishment in a coastal plain wetland area located in the southeastern United States. Simulated harvesting patterns included two replicates of clear-cutting when soils were dry (dry-weather harvest), three replicates of clear-cutting when soils were wet (wet-weather harvest), and one replicate of uncut control in three 20 ha wetland loblolly pine (Pinus taeda L.) forests of ages 20, 23 and 25 years. After harvesting, two site preparation levels (non-bed and bed; bedding is a tillage process of preparing a series of parallel ridges) were randomly assigned to both dry-weather and wet-weather harvested plots, while an additional level (mole-plow+bed) was assigned only to the wet-weather harvested plots. The harvest treatments were designed to create a broad gradient of surface soil disturbance, while the site preparation treatments were done to encompass a range of site drainage and aeration conditions. Areal changes in soil bulk density, macro- and total porosities, and saturated hydraulic conductivity following harvesting were quantified. The depths of water table were recorded at monthly intervals on a 20 m×20 m grid across the 15 clear-cut and three uncut control plots (a total of 1409 PVC slotted wells) over 6 years (1992–1998), subdivided into five periods: pre-harvest, post-harvest, site preparation, and first year and second year after forest plantation establishment. The results showed that compared to the uncut control, the surface water table depth during a 1-year post-harvest period rose 14 cm for the dry-weather harvested site and 21 cm for the wet-weather harvested site. The difference in the water table rise between the two harvest treatments was small during the dormant season (<2 cm) but large during the growing season (>10 cm). These results indicate the large influence of tree removal on the surface hydrology in forested wetlands and the strong impact of wet-weather harvesting on transpiring ground vegetation due to a larger surface area of soil disturbance. Bedding initially lowered water tables on both dry-weather and wet-weather harvested sites. However, this effect decreased rapidly during the first 2 years after forest plantation establishment. Among all treatments, the dry-weather harvested sites without bedding presented the fastest recovery of water table depth to that of the non-harvested references, suggesting that bedding may have been a further disturbance with respect to wetland surface hydrology.  相似文献   

18.
Northern snake-necked turtles (Chelodina rugosa) traditionally provided an important seasonal source of protein for indigenous communities in Arnhem Land, northern Australia. Harvest techniques today differ little from those used historically, harvesting being applied in the late dry season when ephemeral waters have drawn down and turtles are aestivating. Radio-telemetry was used to quantify survival rates of C. rugosa at a traditional turtle harvest site and relate them to harvest, predation by feral pigs (Sus scrofa) and environmental factors. Although turtle survival was positively correlated with body size, the survival of turtles of all sizes and stages of maturity was compromised by pig predation. Seasonal variation in the onset, duration and severity of rainfall and associated influences on periodic drying, are important for C. rugosa survival because such variation influences the timing and intensity of both Aboriginal harvest and pig predation. Contemporary harvest rates of C. rugosa in Arnhem Land by Aboriginal people are very low because pig predation depletes available stocks immediately before Aboriginal harvesting. Aboriginal harvest rates are regulated also by the frequency and timing of ceremonies and other cultural activities that interfere with harvests. Before the arrival of pigs, such relaxation of harvest pressure in years when harvest would otherwise be possible would have contributed to the local abundance and persistence of C. rugosa. In contrast, pig predation is unrelenting, and years of high turtle survival are now restricted only to years of high wet season rainfall.  相似文献   

19.
Abstract

Chemical analysis of selected plant tissues as a nitrogen (N) fertility diagnostic technique has been established for many irrigated horticultural crops, but not for recently popular high value specialty vegetables such as leaf and romaine lettuce (Lactuca sativa L.). Three field experiments were conducted in southern Arizona during three years to determine the plant part and N form that is most responsive to soil N supply, and to formulate in‐season N status interpretations based upon appropriate tissue tests. Fertilizer N treatments were applied through subsurface drip irrigation tubing at scheduled intervals to leaf and romaine lettuce to provide N levels ranging from deficient to excessive. Plant samples, which included the midrib or leaf blade from the youngest full‐sized leaf and whole plant tissues were collected throughout the growing season with midribs tested for NO3‐N and the remaining tissues for total nitrogen content Marketable fresh weight yields were recorded at harvest for all N treatments in each experiment. In Experiment 1, it was determined that of the plant N testing methods evaluated, midrib NO3‐N concentration in the youngest mature leaf was the most responsive to differences in soil N supply. Experiments 2 and 3 focused on the midrib NO3‐N method of testing to develop season‐long interpretations for evaluating the N fertility status of both crops. The slow root and shoot development inherent in each lettuce type and the minimal uptake of N through mid‐season did not contribute to well‐defined differences between deficient, sufficient, and excessive midrib NO3‐N levels. Resulting interpretations of midrib NO3‐N concentrations for leaf and romaine lettuce feature a greater sensitivity and practicality as a N fertility diagnostic tool during the latter one‐half of the growing season.  相似文献   

20.
【目的】通过研究尿素、氯化铵以及二者混合高塔造粒而成的含氯脲铵氮肥对太湖地区稻麦轮作体系作物产量、氮肥利用率、氨挥发损失、土壤氯残留和耕层土壤 pH 的影响,为新型含氯氮肥的推广,降低环境风险提供理论依据。【方法】通过两年稻麦轮作季的田间小区试验,在当地适宜施氮量条件下,以 CK (不施氮) 和施用普通尿素为对照,研究了两种含氯氮肥的施用对稻麦轮作体系作物产量和氮肥利用率的影响。采集作物收获后 0—20 cm、20—40 cm 土壤样品,采用硫氰酸汞比色法测定土壤氯残留;施肥后采用密闭室间歇通气-稀硫酸吸收法测定氨挥发通量。【结果】尿素、氯化铵和含氯脲铵处理对稻麦产量无显著影响,但与尿素相比含氯脲铵对稻麦有增产的趋势,而氯化铵对小麦有减产趋势。与尿素相比施用含氯脲铵显著提高氮肥利用率 7.0% (P < 0.05)。氨挥发主要发生在稻季,与施用尿素相比单施氯化铵使麦季氨挥发降低 26.3% (1.39 kg/hm2),而使稻季氨挥发增加 10.4% (2.67 kg/hm2);含氯脲铵使麦季和稻季的氨挥发分别降低 5.2% (0.55 kg/hm2) 和 12.9% (6.16 kg/hm2)。施用含氯氮肥土壤氯残留表现为稻季显著增加,而麦季则显著降低的趋势,收获期耕层土壤 (0—20 cm) 氯离子含量最高不超过 160 mg/kg,低于水稻和小麦的耐氯临界值。经过两个稻麦轮作循环后,施用氯化铵土壤 pH 比尿素下降 0.88 个单位,而施含氯脲铵土壤 pH 与尿素没有显著差异。【结论】在太湖地区稻麦轮作体系中,综合考虑产量和环境效益,含氯脲铵氮肥与两种单质肥料相比有一定优势,为氨挥发减排和氯化铵施用难题的解决提供了依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号