首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
针对传统温室监控系统实时性差、监控环境因子单一的问题,设计了一种基于嵌入式 Web 服务器的远程温室监控系统。该监控系统以嵌入式Web 服务器为核心,结合CGI 技术实现多传感器数据与控制界面的动态传输,通过Internet 远程访问嵌入式Web 服务器,实现用户通过 Web 浏览器对温室环境多因子参数的监测与控制。该系统保证了对温室环境因子的精确检测与实时控制,可为温室作物提供适宜的生长环境。  相似文献   

2.
智能农业温室环境远程监控系统在蔬菜基地的实践应用   总被引:1,自引:0,他引:1  
精细蔬菜园区温室大棚是借助电脑或手机通过网络远程控制自动通风系统、自动微喷灌溉系统、自动遮阳网的农机装备,其全自动微喷灌溉系统由自动控制系统和自动微喷系统组成,把基于物联网设计的传感网水分管理控制系统与微喷系统结合起来,实现土壤湿度数据信息采集、传输、分析,按照蔬菜的需水要求,通过启动或关闭自动控制阀门控制微喷头,适时适量的进行田间灌溉。  相似文献   

3.
介绍了一种结合嵌入式技术和无线传感器网络技术的温室现场环境信息无线采集系统的设计方案.系统主要由嵌入式控制终端和无线传感器网络节点组成.控制终端基于ARM9处理器和嵌入式Linux操作系统设计,用于温室环境数据的接收、远程发送,实时显示和存储.控制终端向远程服务器发送数据,并接收命令,两者之间的通信使用GPRS方式.无线传感器网络采集温室环境数据,并发送给控制终端.整个温室现场监测系统避免了传统温室使用有线方式布线的繁琐.  相似文献   

4.
为实现便捷、实时监控温室内环境参数,利用嵌入式技术和Zigbee无线传感器网络技术设计一种基于嵌入式的智能温室监控系统。系统分为嵌入式监控终端、无线数据传输网络、采集执行机构。采集执行机构负责采集和调节温室内温度、湿度、土壤含水率等参数;使用Zigbee无线传感器网络传输数据;嵌入式监控终端选用ARM平台并搭载Linux操作系统,利用Qt开发环境所含数据收发、数据分析和历史备份功能编写监控软件,并为用户提供人性化操作界面。经测试,系统运行稳定,能够实时监控温室内不同区域的环境参数。  相似文献   

5.
基于无线传感器网络的温室环境信息监测系统   总被引:1,自引:0,他引:1  
为了解决当前温室监测系统存在的布线复杂、节点功耗大、部署不灵活、管理不便等问题,设计了一种基于无线传感器网络的温室环境信息监测系统。以CC2430为核心开发无线传感器节点,完成温室环境因子实时监测;采用ZigBee技术实现无线传感器网络自组网和监测数据自动汇聚;基于ARM9微处理器S3C2410A和WinCE5.0构建网关节点,采用嵌入式数据库管理模式实现了传感器节点管理、环境数据管理和预警等功能。初步试验表明系统具有功耗低、组网灵活、可扩展性强、人机界面友好等优点,能较好地满足温室环境监测的应用需求。  相似文献   

6.
基于无线传感器网络的温室环境信息监测系统   总被引:19,自引:1,他引:18  
为了解决当前温室监测系统存在的布线复杂、节点功耗大、部署不灵活、管理不便等问题,设计了一种基于无线传感器网络的温室环境信息监测系统.以CC2430为核心开发无线传感器节点,完成温室环境因子实时监测;采用ZigBee技术实现无线传感器网络自组网和监测数据自动汇聚;基于ARM9微处理器S3C2410A和WinCE5.0构建网关节点,采用嵌入式数据库管理模式实现了传感器节点管理、环境数据管理和预警等功能.初步试验表明系统具有功耗低、组网灵活、可扩展性强、人机界面友好等优点,能较好地满足温室环境监测的应用需求.  相似文献   

7.
基于ESP8266的低成本物联网连栋温室控制管理系统设计   总被引:1,自引:0,他引:1  
针对现有物联网温室自动控制水平较低,管理模式落后,通信结构复杂,建网成本高等缺点,设计一种基于ESP8266的低成本物联网连栋温室控制管理系统。首先,给出系统的总体架构,并详细设计环境因子感知层、控制传输层和应用管理层;其次,以STM32作为温室内的控制器,对系统的硬件结构进行设计;进而,基于Qt Creator开发环境,设计远程监控端控制管理软件;最后,通过搭建物联网温室模拟试验装置,对本文所设计系统的可行性进行验证。试验结果表明,本系统所设计的低成本物联网温室控制管理系统可有效实现各环境因子的实时采集、控制与管理。  相似文献   

8.
简述了一种结合Internet网络和嵌入式技术的远程温室监控系统。系统采用移动终端作为监控端,通过全球移动通信系统GPRS控制温室内的喷灌设备、通风设备和照明设备;移动终端可以通过Internet网络登录Cortex-A8信息处理器上构建的Web服务器BOA和网络视频服务器MJPG-streamer,实现实时视频监测温室现场。信息采集模块构建无线传感器网络,采集温室内的温度、湿度、光照强度、CO2浓度等参数信息,并将数据发送到Cortex-A8信息处理器,最终以HTML网页的形式显示在Android手机端。实验表明,系统真正实现了多温室远程移动监控,解决了传统温室监控系统受办公地点限制、需要人工现场操作及不够智能化的问题。  相似文献   

9.
基于PIC单片机的智能温室环境控制系统   总被引:5,自引:1,他引:4  
温室环境控制技术是智能温室的核心技术,我国在这一方面比较落后.为此,设计了一种以PIC单片机为控制核心的温室环境控制系统,实现了对温室内光照度、温度、湿度和CO2浓度重要环境因子的监测、控制调节及实时显示.该系统电路结构简单,智能化程度高,控制力可靠,可以将温室中的环境因子控制在一定范围之内;其通信系统抗干扰能力强,而且可以实现各个通信模块的热拔插,非常便于系统的扩展.  相似文献   

10.
基于WIFI的智能温室监控系统设计   总被引:4,自引:0,他引:4  
设计了一套以集成了WIFI功能和ARM内核的SoC芯片GS1010为核心的智能温室环境控制系统,实现了通过无线网络对智能温室内温湿度、光照和CO2浓度的监测与调控.监控系统将采集到的数据进行汇总、显示和记录,自动生成数据库,实现了温室设备的自动控制和远程遥控.整个系统操作简单,经济适用,控制精度完全达到要求,并且接线灵活,方便与现有的有线以太网络整合.  相似文献   

11.
针对农田灌区范围广、数据量大和实时传输难的特点,设计了一种基于无线传感器网络的农田自动节水灌溉系统;综合运用无线传感器智能信息处理技术和无线数据通信技术,全面提升系统的自动化与监测水平。该系统采用星型拓扑结构组网,通过在监测区域部署ZigBee网络节点,将监测数据汇集到嵌入式测控系统,实现统一的数据管理和网络路由监测功能;以微处理器芯片为核心控制器件,由无线传感器网络节点实时采集和处理土壤温湿度数据,并将其发送到接收端,在接收端对数据进行存储和显示,实时监测土壤温湿变化,实现节水灌溉的自动化控制及水资源的高效利用。试验证明,该系统稳定性好,数据传输可靠性高,通过增加数据采集频率,减少了数据丢包率,使用灵活,适用于不便直接连线的一般监测场合应用。  相似文献   

12.
稻田灌溉排水自动控制新技术的研究   总被引:2,自引:1,他引:2  
介绍一种适合于淹灌稻田实现自动控制的灌溉新技术,其中灌溉部分由自动给水栓、有压输水管道系统和灌溉水源三部分组成,自动给水栓有一个能自动跟踪稻田水层变化的传感装置,它与给水相连,当稻田水层消耗至允许下限时,传感器驱动给水栓开启放水;当稻田水层灌至设计上限时,关闭给水栓,停止灌水。管理人员只须根据作物不同生育阶段的灌水控制要求调定传感装置的上下限,稻田的灌溉既能自动完成。  相似文献   

13.
基于我国水资源短缺和超量使用化肥的严重现状,为达到科学用水施肥的目的,通过采集土壤温湿度、空气温湿度、光照辐射量等信息,并结合作物生长信息,经作物种植专家系统分析后,决策所需灌溉水肥量,利用电磁阀、管道、纳米微孔管和作物根层负压等来自动调解控制植物根部的水肥补给,实现作物根层微灌的自动化,优化植物的生长环境,提高水肥利用率。针对我国现阶段农业偏远、易变、分散的特点,提出了基于ZigBee的无线传感器技术、ARM嵌入式技术、Internet网络及现代信息管理发布系统的温室现场信息采集监控系统设计方案。   相似文献   

14.
微喷灌与陶瓷渗灌互补装置设计与试验   总被引:1,自引:0,他引:1  
针对农果复合种植中农作物和果树的根系深度、灌溉时间和灌水量等指标存在明显差异,采用传统单一灌溉方式难以同时兼顾果树深根和套种作物浅根的灌溉问题,以实现深浅根高效灌溉为目标,开发一种基于水压控制的微喷灌与陶瓷渗灌互补装置。在对装置进行整体结构设计的基础上,重点对3个核心部件:渗灌压力转换器、微喷压力转换器和伸缩装置进行优化配置。对渗灌压力转换器开展二因素六水平全试验优化设计,优选出渗灌压力转换器中弹性膜片的硬度(70HA)和厚度(1.5mm),该条件下,可使地下灌溉的工作压力范围为0.015~0.055MPa,流量10L/h,流态指数为0.004。在对微喷压力转换器进行结构设计的基础上,确定弹簧劲度系数为1.500N/m,可保证微喷头在低压下(小于0.066MPa)不喷水,理论推导出伸缩装置的临界伸长压力为0.066MPa,与试验结果(当水压达到0.066MPa时,伸缩装置开始伸长,0.15MPa时伸缩装置升至最高点,微喷头开始稳定工作)相符。制作出微喷灌与陶瓷渗灌互补装置实物模型,参照国家标准进行性能测试,并将模型应用在日光温室,结果表明:本装置以水压0.066MPa为界,低压渗灌灌溉果树深根,高压微喷灌灌溉套种作物浅根系,互补灌溉功能良好,土壤剖面含水率实测值满足设计预期。该研究可为农果复合林深、浅根的高效灌溉提供有效解决方案。  相似文献   

15.
设计开发了基于ZigBee无线传感网络技术的棉田滴灌监测与控制系统。该系统通过无线传感网络实时采集土壤环境信息,使用自适应加权融合算法对各节点土壤湿度数据进行融合,根据融合数据发送电磁阀控制命令,完成实时监测自动灌溉;结合棉花不同生育期对需肥量和施肥浓度的要求,根据灌溉水量设置注肥比例,系统通过无线传感网络实时采集液态肥流量,实时监控施肥量,并根据施肥量发送施肥电磁阀控制命令,完成水肥一体化灌溉。工作过程中,系统可以将传感器采集的数据通过ZigBee无线网络协调器传输给上位机并实时显示和存储。通过试验验证,该系统可以按照设计要求实现灌溉和施肥的自动控制与检测。  相似文献   

16.
PLC和触摸屏在自动喷灌控制器中的应用   总被引:1,自引:0,他引:1  
科学的灌溉是保证作物优质高产的重要措施,然而国内一些灌溉控制器功能单一,不能按照作物需要随意设置灌溉时段和灌水量.因此,设计了一种由PLC和触摸屏开发的自动喷灌控制器,能自由设定灌溉时段和灌溉间歇周期,从而避免了因灌溉不良造成作物的生长不良,有效地提高了灌溉控制和管理水平.  相似文献   

17.
草坪建植和养护需要消耗大量水资源,而我国人均淡水量仅有2 240 m3,是世界平均淡水拥有水平的1/4,因此,草坪业在我国发展缓慢,群众接受度较低。基于土壤湿度参数的绿地草坪自动化节水灌溉装置由控制器、传感器、电磁阀及中央控制器构成,理论核心是草坪调亏灌溉理论。装置通过在草坪土层中安装测定土壤持水量的传感器,采集土壤湿度信息,将数据反馈给控制终端,控制终端结合草坪草的性质及传感器反馈的信息,确定出该草坪所处的水分需求状态,从而通过控制电磁阀开闭来控制灌溉量,对灌溉进行有效调控。该装置具备数据采集、灌溉控制、参数设置和数据处理等功能,可以精准控制土壤湿度,减少草坪耗水量、提高水分利用率,并设置适当水分胁迫,使草坪在更低的耗水量下长势更优。该文论述了装置的组成及运行原理,并结合市场现有灌溉装置进行对比与分析。结果表明,该装置实现了对草坪需水程度的实时监测与智能调控,减少无效灌溉,提升灌溉效率,可以发展出以减少灌溉定额、提升草坪质量为目的的新型灌溉模式,降低草坪养护成本。   相似文献   

18.
自动化灌溉控制工程技术的研究与应用   总被引:9,自引:0,他引:9  
现代化农业对作物生长微环境要求高,对灌水时间、灌水量、灌水部位、水肥营养供给等都有更精确要求,自动化灌溉控制工程技术正是支撑现代化农业的一项基础性技术措施.为此,山东省水科院技术人员,经过多年来的技术开发与工程实践,集成电子信息技术、远程测控网络技术、计算机控制技术及信息采集处理技术,通过计算机通用化和模块化的设计程序,构筑供水流量、压力、土壤水分、作物生长信息、气象资料的自动监测控制系统,进行水、土环境因子的模拟优化,实现灌溉节水、作物生理、土壤湿度等技术控制指标的逼近控制,从而将农业高效节水的理论研究提高到现实的应用技术水平。该项技术已针对山东省不同种植作物、不同灌溉措施进行了系列推广,逐步形成了一套成熟的完整的应用技术体系。  相似文献   

19.
为了节约农田灌溉用水,提高水资源利用效率,实现自动微灌控制,根据精细农业的实际需求,本文提出了基于CAN总线和Linux的微灌监控系统,该系统由数据信息采集模块、嵌入式中央处理模块、灌溉控制模块、CAN总线网络四部分组成,可按设定的时间间隔自动采集空气温湿度、光照辐射强度等信息,并结合作物生长信息,经理论计算,决策所需灌溉水量,利用电磁阀来自动调节控制水量补给,实现作物微灌的自动化,优化植物的生长环境,提高水利用率。系统运行稳定,效果良好,能够实现准确的信息采集和可靠的分布式控制。  相似文献   

20.
为了提高农业用水的利用率,解决农业用水紧张问题,提出了一种基于分布式ZigBee和GPRS无线通信技术的大范围远程控制节水灌溉系统,实现了节水灌溉装置的远程监控和自动化调节。该系统以单片机作为控制器,将土壤湿度测试数据进行传输和保存,通过设定阈值来控制零压启动电磁阀实施灌溉操作,并采用无线传感网络和GPRS将采集的数据进行远程传输,实现了定时定量和精确化灌溉。对精细化滴灌系统的过滤器和湿度测试装置的智能监测性能进行了测试,结果表明:该系统可以有效地将过滤器压力和湿度随时间变化曲线传送到远程监控端,且实现了自动化过滤装置的反冲洗功能、滴灌喷头的自动化调节及滴灌的精细化作业。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号