首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An experiment of selection for ovulation rate was carried out. Animals were derived from a synthetic line first selected 12 generations for litter size, then 10 generations for uterine capacity. Selection was relaxed for 6 generations. Selection was based on the phenotypic value of ovulation rate with a selection pressure on does of 30%. Males were selected from litters of does with the highest ovulation rate. Males were selected within sire families in order to reduce inbreeding. Ovulation rate was measured in the second gestation by a laparoscopy, 12 days after mating. Each generation had about 80 females and 20 males. Results of three generations of selection were analyzed using Bayesian methods. Marginal posterior distributions of all unknowns were estimated by Gibbs sampling. Heritabilities of ovulation rate (OR), number of implanted embryos (IE), litter size (LS), embryo survival (ES), fetal survival (FS), and prenatal survival (PS) were 0.44, 0.32, 0.11, 0.26, 0.35, and 0.14, respectively. Genetic correlation between OR and LS was 0.56, indicating that selection for ovulation rate can augment litter size. Response to selection for OR was 1.80 ova. Correlated responses in IE and LS were 1.44 and 0.49, respectively. Selection for ovulation rate may be an alternative to improve litter size.  相似文献   

2.
Our objectives were to estimate responses and genetic parameters for ovulation rate, number of fully formed pigs at birth, and other production traits following two-stage selection for increased ovulation rate and number of fully formed pigs. Eight generations of selection were practiced in each of two lines. One selection line was derived from a line that previously selected eight generations for an index to increase ovulation rate and embryonic survival (the IOL pigs). The other selection line was derived from the unselected control line of the index selection experiment (the COL pigs). The control line (C) was continued with random selection. Due to previous selection, Line IOL had greater ovulation rate (4.24 +/- 0.38 and 4.14 +/- 0.29 ova) and litter size (1.97 +/- 0.39 and 1.06 +/- 0.38 pigs) at Generation 0 of two-stage selection than did Lines COL and C. In Stage 1, all gilts from 50% of the largest litters were retained. Approximately 50% of them were selected for ovulation rate in Stage 2. Gilts selected for ovulation rate were mated to boars selected from the upper one-third of the litters for litter size. At Generations 7 and 8, differences in mean EBV for ovulation rate and litter size between Lines IOL and C were 6.20 +/- 0.29 ova and 4.66 +/- 0.38 pigs; differences between Lines COL and C were 2.26 +/- 0.29 ova and 2.79 +/- 0.39 pigs; and differences between Lines IOL and COL were 3.94 +/- 0.26 ova and 1.86 +/- 0.39 pigs. Regressions of line mean EBV on generation number were 0.27 +/- 0.07 ova and 0.35 +/- 0.06 pigs in Line IOL; 0.30 +/- 0.06 ova and 0.29 +/- 0.05 pigs in Line COL; and 0.01 +/- 0.07 ova and 0.02 +/- 0.05 pigs in Line C. Correlated responses were decreased age at puberty and increased number of pigs born alive, number of mummified pigs, prenatal loss, and individual and litter birth weight. Two-stage selection for ovulation rate and number of pigs per litter is a promising procedure to improve litter size in swine.  相似文献   

3.
Our objective was to evaluate the correlated responses to selection for litter size and its components after 10 generations of divergent selection for uterine capacity (UC). A total of 294 intact females from the 11th and 12th generations of divergent selection for high and low UC and from a cryopreserved control population was used (139, 112, and 43 females, respectively). Uterine capacity was assessed as litter size in unilaterally ovariectomized females. Traits recorded on females for up to five parities were litter size (LS) and number born alive (NBA). Laparoscopy was performed in all females at d 12 of their second parity, and the ovulation rate (OR) and number of implanted embryos (IE) were recorded in these females. Embryo survival (ES = IE/OR), fetal survival (FS = LS/IE), and prenatal survival (PS = LS/OR) were computed. Correlated responses in LS and in its components were inferred using Bayesian methods. Correlated responses in LS were asymmetric. The divergence between high and low lines was 2.35 kits, mainly because of a higher correlated response in the low line (1.88 kits). The lower LS in the low line was associated with a lower PS (control - low = 0.14), because of decreases in ES and FS.  相似文献   

4.
Genetic parameters for the splayleg (SL) condition were estimated from 37,673 records of pigs from six lines derived from a Large White-Land-race base population. Random selection for 22 generations was practiced in Lines C1 and C2. Line C2 was derived from C1 at Generation 8. Selection lines were as follows: 1) Line I, selected 11 generations for an index of ovulation rate and embryonic survival followed by 11 generations of selection for litter size; 2) Line IOL, derived from Line I at Generation 8 and which underwent eight generations of two-stage selection for ovulation rate and number of fully formed pigs per litter followed by four generations of litter size selection; 3) Line COL, derived from Line C1 at Generation 8 and selected eight generations in two stages for ovulation rate and number of fully formed pigs followed by four generations of litter size selection; and 4) Line T, selected 12 generations for increased testis size. From logistic models, it was found that boars were 224% more likely to have SL than gilts (P < 0.01). Decreases in birth weight, dam age at puberty, dam nipple number, and dam embryonic survival, and increases in dam litter size and inbreeding increased the odds of SL (P < 0.05). Direct and maternal heritabilities of SL were 0.07 and 0.16, respectively, and the correlation between direct and maternal effects was -0.24. Correlations between direct genetic effects for SL and number born alive, nipple number, birth weight, age at puberty, and embryonic survival were -0.19, -0.36, 0.23, -0.19, and -0.32, respectively. Except for the correlation of 0.32 between maternal effects for SL and direct effects for number of live pigs, correlations of SL maternal genetic effects with direct genetic effects of other traits were less than 0.11. Annual direct genetic trends (%) for SL in I, IOL, COL, T, C1, and C2 were -0.003 +/- 0.003, 0.121 +/- 0.012, -0.273 +/-0.009, 0.243 +/-0.014, -0.274 +/-0.004, and 0.086 +/-0.008, respectively; annual maternal genetic trends (%) were 0.106 +/-0.004, 0.508 +/-0.019, 0.383 +/-0.015, 0.527 +/-0.024, 0.188 +/-0.005, and 0.113 +/-0.012, respectively. Annual genetic maternal trend in Line I after Generation 12 was 0.339 +/-0.014. Maternal breeding value for SL is expected to increase as a correlated response to selection for increased litter size and increased size of testes.  相似文献   

5.
Studies on a base population of mice were used to establish an index of components of litter size and a physiological model for measuring uterine capacity to be used subsequently in a selection experiment evaluating alternative methods for practicing selection to increase litter size. Heritability estimates of litter size, ovulation rate and ova success (fraction of ova resulting in fully formed pups) were .18, .33 and .15, respectively. No significant genetic or phenotypic correlation was found between overall ovulation rate and ova success. Phenotypic means and genetic variances were higher for characteristics measured on the right than on the left side of the reproductive tract. Linear and quadratic selection indexes, derived for a quadratic definition of breeding value, were compared. The linear index was predicted to be .99 as efficient as the quadratic one. Due to simplicity, the linear index (I = 1.21 x ovulation rate + 9.05 x ova success), scaled to have variance the same as litter size, was chosen for use. Ovulation rate in unilaterally ovariectomized females was .95 of that in females with both ovaries. No hypertrophy of the ipsilateral uterine horn in unilaterally ovariectomized females was found before implantation of embryos. Thus, unilateral ovariectomy appears to provide a physiological state to measure uterine capacity (as litter size) in the mouse.  相似文献   

6.
The response per generation to 10 generations of mass selection for ovulation were 0.49 ova, ?1.6% in embryo survival and 0.06 piglets per litter at birth. Line differences (select-control) in generation 9 and 10 gilts and sows ranged from 3.4 to 5 ova. Control line gilts and sows had 5.4 to 10.6% higher embryo survival to days 30 and 70 of gestation than did select line females. One generation of random selection followed by four generations of litter size selection, selection for decreased age at puberty or relaxed ovulation rate selection in the high ovulation rate line has resulted in lines that differed from the control line in litter size at birth by 0.78 ± 0.22, 0.37 ± 0.39 and 0.84 ± 0.52 pigs per litter at first, second and third parity, respectively. These results were used to derive a selection index to increase litter size by selection for its components (ovulation rate, OR, and embryo survival, ES). A technique of selection based on laparotomy to increase the number of females tested with a given set of farrowing places is presented. Rate of response in LS from use of the selection index, I = 10.6 OR + 72.6 ES, in a population of 40 farrowing females and 15 males per generation, is expected to increase litter size 2.5 times faster than selection on LS due to higher selection intensity and optimum emphasis on the component traits.  相似文献   

7.
The aim of this work was to evaluate the response to 10 generations of selection for ovulation rate. Selection was based on the phenotypic value of ovulation rate, estimated at d 12 of the second gestation by laparoscopy. Selection pressure was approximately 30%. Line size was approximately 20 males and 80 females per generation. Traits recorded were ovulation rate at the second gestation, estimated by laparoscopy as the number of corpora lutea in both ovaries; ovulation rate at the last gestation, estimated postmortem; ovulation rate, analyzed as a single trait including ovulation rate at the second gestation and ovulation rate at the last gestation; right and left ovulation rates; ovulatory difference, estimated as the difference between the right and left ovulation rates; litter size, estimated as the total number of kits born and the number of kits born alive, both recorded at each parity. Totals of 1,477 and 3,031 records from 900 females were used to analyze ovulation rate and litter size, respectively, whereas 1,471 records were used to analyze ovulatory difference, right ovulation rate, and left ovulation rate. Data were analyzed using Bayesian methodology. Heritabilities of ovulation rate, litter size, number of kits born alive, right ovulation rate, left ovulation rate, and ovulatory difference were 0.16, 0.09, 0.08, 0.09, 0.04 and 0.03, respectively. Phenotypic correlations of ovulation rate with litter size, number of kits born alive, and ovulatory difference were 0.09, 0.01, and 0.14, respectively. Genetic correlations of ovulation rate with litter size and with number of kits born alive were estimated with low accuracy, and there was not much evidence for the sign of the correlation. The genetic correlation between ovulation rate and ovulatory difference was positive (P = 0.91). In 10 generations of selection, ovulation rate increased in 1.32 oocytes, with most of the response taking place in the right ovary (1.06 oocytes), but there was no correlated response on litter size (-0.15 kits). In summary, the direct response to selection for ovulation rate was relevant, but it did not modify litter size because of an increase in prenatal mortality.  相似文献   

8.
Nine generations of selection for high ovulation rate were followed by two generations of random selection and then eight generations of selection for increased litter size at birth, decreased age at puberty, or continued random selection in the high ovulation rate line. A control line was maintained with random selection. Line means were regressed on generation number and on cumulative selection differentials to estimate responses to selection and realized heritabilities. Genetic parameters also were estimated by mixed-model procedures, and genetic trends were estimated with an animal model. Response to selection for ovulation rate was about 3.7 eggs. Response in litter size to selection for ovulation rate was .089 +/- .058 pigs per generation. Average differences between the high ovulation rate and control lines over generations 10 to 20 were 2.86 corpora lutea and .74 pigs (P less than .05). The regression estimate of total response to selection for litter size was 1.06 pigs per litter (P less than .01), and the realized heritability was .15 +/- .05. When the animal model was used, the estimate of response was .48 pigs per litter. Total response in litter size to selection for ovulation rate and then litter size was estimated to be 1.8 and 1.4 pigs by the two methods. Total response to selection for decreased age at puberty was estimated to be -15.7 d (P less than .01) when data were analyzed by regression (realized heritability of .25 +/- .05) and -17.1 d using the animal model. No changes in litter size occurred in the line selected for decreased age at puberty. Analyses by regression methods and mixed-model procedures gave similar estimates of responses and very similar estimates of heritabilities.  相似文献   

9.
Direct selection for ovulation rate, uterine capacity, litter size and embryo survival and selection for indexes of ovulation rate with each of the remaining traits were simulated for a swine population. The relationships among these traits were determined from a simulation model that assumed that litter size was always less than or equal to both ovulation rate and uterine capacity. Heritabilities of ovulation rate and uterine capacity were assumed to be .25 and .20, respectively, and uncorrelated genetically and phenotypically. No additional genetic variation was assumed. Responses to weak selection pressure were simulated by recurrent updating of phenotypic variances and covariances combined with the heritabilities of ovulation rate and uterine capacity. Two indexes of ovulation rate and uterine capacity each resulted in 37% greater increase in litter size than direct selection for litter size. Indexes of ovulation rate and either litter size or embryo survival increased litter size by 21% more than direct selection for litter size. Selection for ovulation rate, uterine capacity or embryo survival was 6, 35 and 79%, respectively, less effective than direct selection for litter size. Responses to intense selection pressure were determined by direct simulation of genotypes and phenotypes of individuals. The two indexes of ovulation rate and uterine capacity exceeded direct selection for litter size by 39 and 27%. The indexes of ovulation rate and either litter size or embryo survival exceeded direct selection for litter size by 19 and 13%, respectively. Intense selection for ovulation rate or uterine capacity decreased selection response by 26 and 67%, respectively, relative to direct selection for litter size. Intense selection for embryo survival decreased litter size slightly.  相似文献   

10.
The aim of this work was to evaluate the response in 10 generations of selection for ovulation rate in rabbits using a cryopreserved control population. Selection was based on the phenotypic value of ovulation rate estimated at d 12 of second gestation by laparoscopy. To produce the control population, embryos from 50 donor females and 18 males, belonging to the base generation of the line selected for ovulation rate, were recovered. A total of 467 embryos (72-h embryos) were vitrified and stored in liquid N(2) for 10 generations. The size of both populations was approximately 10 males and 50 females. The number of records used to analyze the different traits ranged from 99 to 340. Data were analyzed using Bayesian methodology. A difference between the selected and the control populations of 2.1 ova (highest posterior density interval (HPD(95%))[1.3, 2.9]) was observed in ovulation rate (OR), but it was not accompanied by a correlated response in litter size (LS; -0.3; HPD(95%) [-1.1, 0.5]). The number of implanted embryos (IE) increased with selection in 1.0 embryo (HPD(95%) [-0.6, 2.0]), but this increase was not relevant. Prenatal survival, embryonic survival, and fetal survival (FS) were calculated as LS/OR, IE/OR, and LS/IE, respectively. Prenatal survival was reduced with selection (-0.12; HPD(95%) [-0.20, -0.04]), basically because of a decrease in FS (-0.12; HPD(95%) [-0.19, -0.06]). Embryonic survival could have slightly decreased (-0.05; HPD(95%) [-0.12, 0.02]). In summary, comparison with a control population showed that ovulation rate in rabbits increased with selection without any correlated response in litter size, basically because of a decrease in fetal survival.  相似文献   

11.
This work evaluated the response to 10 generations of divergent selection for uterine capacity (UC) in rabbits to determine whether this response was symmetric by contrasting both lines against a cryopreserved control population. Animals came from the 13th generation of an experiment of divergent selection for UC and from a cryopreserved control population. The two UC lines were divergently selected for 10 generations, and selection was relaxed from the 11th generation until the 13th generation. Uterine capacity was estimated as litter size (LS) in unilaterally ovariectomized (ULO) does. To create the control population, embryos from the base generation were vitrified and stored in liquid N2 for 10 generations. Data from 461 pregnancies produced by 134 ULO does were used: 62 does from the high UC line, 55 females from the low UC line, and 17 females from the control line. The following traits were analyzed: ovulation rate (OR); number of implanted embryos (IE); (UC), estimated as total number of rabbits born; number born alive (NBA); prenatal survival (PS), estimated as UC/OR; embryo survival (ES), estimated as IE/OR; and fetal survival (FS), estimated as UC/IE. Ovulation rate, IE, PS, ES, and FS were measured by laparoscopy only in the second parity. Uterine capacity and NBA were measured over four parities. Responses in UC and its components were estimated as differences between the selected lines and the control line using a Bayesian approach. Selection for UC led to differences of 1.01 kits between the high and low lines, but this response was asymmetric. No differences were found between the high and control lines (high - control = -0.08), whereas the low and control lines differed by 1.08 kits, with a probability of the difference being greater than zero of 0.98. Difference between the high and low lines and between the control and low lines was one-half of the difference reported for correlated response in LS in previous studies. No differences in OR were detected among lines. The control and low lines differed by 1.06 IE, with a probability of the difference being higher than zero of 0.84. Prenatal survival for the low line was less than that of the control line. In summary, selection for UC was asymmetric, which was mainly due to a correlated response in PS. Response in UC was one-half of the difference reported for correlated response in LS in previous studies.  相似文献   

12.
Data on ovulation rate, litter size and embryo survival of 364 Sardi (S), D'man (D), S x DS, DS x S, S x D, D X S (F1), F2, D x DS and DS x D ewes mated for first and second lambing to F1 rams were analyzed. Breed group, birth group and season had significant effects on ovulation rate and litter size but not on embryo survival. D'man ewes had the highest ovulation rate (2.79) and litter size (2.00), with an essentially linear increase in each of these variables with percentage of D'man inheritance in the ewe (b = .017 +/- .001 CL and .009 +/- .001 lambs born). Embryo survival was influenced only by the number of ova shed. D'man direct genetic effects were higher (P less than .01) than those of Sardi for ovulation rate (+1.78) and litter size (+1.08) but did not differ for embryo survival (-.07). Maternal effects differed little for any of the three traits. Individual heterosis estimates were negative and significant for ovulation rate but not significant for litter size and embryo survival. Maternal heterosis and epistatic recombination effects were small and not significant for any trait.  相似文献   

13.
Divergent selection in mice was applied in 3 independent replicates for high (maintenance high; MH) and low (maintenance low; ML) heat loss for 16 generations. An unselected control (maintenance control; MC) was also maintained in all replicates. Selection ceased for 26 generations; heat-loss measurement and selection resumed at generation 42. Lactation performance, dam weight, dam feed intake, and efficiency of production of pup weight were recorded or calculated for MH and ML dams in all 3 replicates at generation 46 or 47 with the objective of determining whether selection for heat loss has created correlated responses in maternal performance. One-half of the dams reared their own litters, and one-half reared cross-fostered (across lines) litters. Between 10 and 12 litters were used from each replicate-line-rearing class. Litter size was recorded, and litters were standardized to 8 pups within 24 h of birth. For cross fostering, MH litters were matched to ML litters born within 24 h of each other, and MH-ML litter pairs were cross-fostered at 3 d of age. A weigh-suckle-weigh protocol was used to obtain milk production estimates over a 2-h suckling period at 6, 9, 12, and 15 d. Dam (plus litter) feed intake was also recorded at these times and was calculated as the disappearance of feed over 3-d intervals. Dams of the MH selection tended (P < 0.11) to have greater litter size than those of the ML selection; litter size of MC dams was intermediate. Line of dam affected milk production (P = 0.04) and dam feed intake (P < 0.03) as MH dams produced more milk and consumed more feed than ML dams. Average milk production for the 2-h measurement period was 1.70 +/- 0.07 and 1.41 +/- 0.07 g, and average 3-d feed consumption was 50.8 +/- 1.2 and 45.2 +/- 1.2 g for MH and ML dams, respectively. Cross-fostering had no effect (P > 0.86) on milk production. Line of dam tended to affect 21-d litter weight (P = 0.15) with litters reared by MH dams weighing more than those reared by ML dams, but there was no difference (P > 0.86) in 21-d dam weights. Efficiency of producing litter weight (litter 15-d weight: dam plus litter feed intake from d 6 to 15) was greater (0.49 vs. 0.46, SE = 0.009; P = 0.03) for ML than for MH dams. Selection for reduced heat loss (lower maintenance feed intake in the ML line) resulted in reduced milk production and feed intake in dams and greater efficiency of litter weight production.  相似文献   

14.
Effects of selection for reproductive traits were estimated using data from 3 pig lines derived from the same Large White population base. Two lines were selected for 6 generations on high ovulation rate at puberty (OR line) or high prenatal survival corrected for ovulation rate in the first 2 parities (PS line). The third line was an unselected control line. Genetic parameters for age and BW at puberty (AP and WP); number of piglets born alive, weaned, and nurtured (NBA, NW, and NN, respectively); proportions of stillbirth (PSB) and survival from birth to weaning (PSW); litter and average piglet BW at birth (LWB and AWB), at 21 d (LW21 and AW21), and at weaning (LWW and AWW) were estimated using REML methodology. Heritability estimates were 0.38 +/- 0.03, 0.46 +/- 0.03, 0.16 +/- 0.01, 0.08 +/- 0.01, 0.09 +/- 0.01, 0.04 +/- 0.01, 0.04 +/- 0.02, 0.19 +/- 0.02, 0.10 +/- 0.02, 0.10 +/- 0.02, 0.36 +/- 0.02, 0.27 +/- 0.01, and 0.24 +/- 0.01 for AP, WP, NBA, PSB, NW, NN, PSW, LWB, LW21, LWW, AWB, AW21, and AWW, respectively. The measures of litter size showed strong genetic correlations (r(a) >/= 0.95) and had antagonistic relations with PSB (r(a) = -0.59 to -0.75) and average piglet BW (r(a) = -0.19 to -0.46). They also had strong positive genetic correlations with prenatal survival (r(a) = 0.67 to 0.78) and moderate ones with ovulation rate (r(a) = 0.36 to 0.42). Correlations of litter size with PSW were negative at birth but positive at weaning. The OR and PS lines were negatively related to PSW and average piglet BW. Puberty traits had positive genetic correlations with OR and negative ones with PS. Genetic trends were estimated by computing differences between OR or PS and control lines at each generation using least squares and mixed model methodologies. Average genetic trends were computed by regressing line differences on generation number. Significant (P < 0.05) average genetic trends were obtained in OR and PS lines for AP (respectively, 2.1 +/- 0.9 and 3.2 +/- 1.0 d/generation) and WP (respectively, 2.0 +/- 0.5 and 1.8 +/- 0.5 d/generation) and in the PS line for NBA (0.22 +/- 0.10 piglet/generation). Tendencies (P < 0.10) were also observed for LWB (0.21 +/- 0.12 kg/generation) and AWW (-0.25 +/- 0.14 kg/generation) in the PS line. Selection on components of litter size can be used to improve litter size at birth, but result in undesirable trends for preweaning survival.  相似文献   

15.
Eleven generations of selection for increased index of ovulation rate and embryonal survival rate, followed by three generations of selection for litter size, were practiced. Laparotomy was used to count corpora lutea and fetuses at 50 d of gestation. High-indexing gilts, approximately 30%, were farrowed. Sons of dams in the upper 10% of the distribution were selected. Selection from Generations 12 to 14 was for increased number of fully formed pigs; replacements were from the largest 25% of the litters. A randomly selected control line was maintained. Responses at Generation 11 were approximately 7.4 ova and 3.8 fetuses at 50 d of gestation (P < .01) and 2.3 fully formed pigs (P < .01) and 1.1 live pigs at birth (P < .05). Responses at Generation 14 were three fully formed pigs (P < .01) and 1.4 live pigs (P < .05) per litter. Number of pigs weaned declined (P < .05) in the index line. Total litter weight weaned did not change significantly. Ovulation rate and number of fetuses had positive genetic correlations with number of stillborn pigs per litter. Significantly greater rate of inbreeding and increased litter size at 50 d of gestation in the select line may have contributed to greater fetal losses in late gestation, greater number of stillborn pigs, and lighter pigs at birth, leading to lower preweaning viability. Heritabilities of traits were between 8 and 25%. Genetic improvement programs should emphasize live-born pigs and perhaps weight of live-born pigs because of undesirable genetic relationships of ovulation rate and number of fetuses with numbers of stillborn and mummified pigs and because birth weight decreased as litter size increased.  相似文献   

16.
A candidate gene approach was used to determine whether specific loci explain responses in ovulation rate (OR) and number of fully formed (FF), live (NBA), stillborn, and mummified pigs at birth observed in two lines selected for ovulation rate and litter size compared with a randomly selected control line. Line IOL was selected for an index of OR and embryonic survival for eight generations, followed by eight generations of two-stage selection for OR and litter size. Line C was selected at random for 16 generations. Line COL, derived from line C at Generation 8, underwent eight generations of two-stage selection. Lines IOL and C differed in mean EBV by 6.1 ova and 4.7 FF, whereas lines COL and C differed by 2.2 ova and 2.9 FF. Pigs of Generation 7 of two-stage selection lines were genotyped for the retinol binding protein 4 (RBP4, n = 190) and epidermal growth factor (EGF, n = 189) loci, whereas pigs of Generations 7 and 8 were genotyped for the estrogen receptor (ESR, n = 523), prolactin receptor (PRLR, n = 524), follicle-stimulating hormone beta (FSHbeta, n = 520), and prostaglandin-endoperoxide synthase 2 (PTGS2, n = 523) loci. Based on chi-square analysis for homogeneity of genotypic frequencies, distributions for PRLR, FSHbeta, and PTGS2 were different among lines (P < 0.005). Differences in gene frequencies between IOL vs C and COL vs C were 0.33 +/- 0.25 and 0.16 +/- 0.26 for PRLR, 0.35 +/- 0.20 and 0.15 +/- 0.24 for FSHbeta, and 0.16 +/- 0.16 and 0.08 +/- 0.18 for PTGS2. Although these differences are consistent with a model of selection acting on these loci, estimates of additive and dominance effects at these loci did not differ from zero (P > 0.05), and several of them had signs inconsistent with the changes in allele frequencies. We were not able to find significant associations between the polymorphic markers and phenotypes studied; however, we cannot rule out that other genetic variation within these candidate genes has an effect on the traits studied.  相似文献   

17.
Hypotheses of a negative association between fraternity size (size of litter in which an individual develops prior to birth or is reared following birth) and ovulation rate or litter size were tested by examining reproduction of females born or reared in varying prenatal and postnatal fraternities. Gifts were randomly assigned to develop prenatally and be reared postnatal in small or large fraternities. Dams of experimental animals were randomly assigned to one of two prenatal fraternity size treatments, either unilateral oviductal ligation (to bear a small prenatal litter) or no ligation (to bear a normal prenatal litter). Whereas this did result in differences (P less than .01) in litter size at birth (small = 6.2 +/- .4 vs large = 9.6 +/- .9), there was considerable overlap in observed litter sizes between ligated and nonligated dams. Consequently, effects of prenatal fraternity size were examined by regression. Distinct differences in postnatal fraternity size were created by randomly assigning piglets to small (5 piglets) or large (10 piglets) postnatal fraternities within 24 h of birth. Differences in postnatal fraternity size were maintained through weaning at 3 wk (small = 4.9 +/- .1 vs large = 9.4 +/- .2). Weights at birth (regression of birth weight on prenatal fraternity size = -.07 +/- .02, P less than .01) and weaning (small = 6.09 +/- .15 vs large = 5.46 +/- .17 kg, P less than .01) were heavier for gilts from small prenatal and postnatal fraternities, respectively, compared with gilts from large fraternities. Effects of prenatal and postnatal size on BW did not persist following weaning (P greater than .20).  相似文献   

18.
The objective of this study was to determine if selection response for increased litter size in pigs could be partially attributed to three type 1 marker loci coding for genes known to affect litter size: oestrogen receptor (ESR), retinol‐binding protein 4 (RBP4) and follistatin (FS). In the high litter size line (LS), pigs from the largest litters, based on number of pigs born alive (NBA), were retained to parent the next generation. A randomly selected control line (LC) was maintained. Gilts were reared in litters of 10 pigs or less to minimize maternal effects. Pigs were measured at generations 10–12. Additional traits scored were number of fully formed pigs (NFF) and number of mummified fetuses (MUM). Breeding values for NFF and NBA were greater (p < 0.05) in LS than LC in generations 11 and 12, but no significant line differences were found for MUM. The A allele of the ESR locus was fixed in both lines. After adjustment for effects of genetic drift, frequency of the two alleles segregating for the FS and RBP4 loci did not differ significantly between lines. No significant additive or dominance effects of the FS markers were detected for NFF, NBA and MUM in either LS or LC. Response to selection for increased litter size could not be attributed to effects at the ESR, RBP4 or FS loci.  相似文献   

19.
The aim of this work was to evaluate the correlated responses on survival rates after 10 generations of selection for ovulation rate (OR). Selection was based on the phenotypic value of ovulation rate estimated at d 12 of second gestation by laparoscopy. Traits recorded were litter size (LS), estimated as total number of rabbits born per litter in up to 5 parities; OR, estimated as the number of corpora lutea in both ovaries; the number of implanted embryos (IE), estimated as the number of implantation sites; the number of right and left IE (RIE and LIE); ovulatory difference (OD), defined as the difference between the right and the left OR, expressed as an absolute value; implantatory difference (ID), defined as the difference between RIE and LIE, expressed as an absolute value; embryonic survival (ES), calculated as IE/OR; fetal survival (FS), calculated as LS/IE; prenatal survival (PS), calculated as LS/OR. A total of 1,081 records were used to analyze ES, and 770 were used to analyze FS and PS. The number of records used to analyze the other traits ranged from 1,079 for ID to 3,031 for LS. Data were analyzed using Bayesian methodology. Genetic parameters of OR, OD, and LS were estimated in a previous paper. Estimated heritabilities of IE, ID, ES, FS, and PS were 0.11, 0.03, 0.09, 0.24, and 0.14, respectively. Estimated repeatabilities of IE, ID, and ES were 0.22, 0.12, and 0.20. Estimated phenotypic correlations of OR with ES, FS, and PS were -0.07, -0.26, and -0.28, respectively. Their estimated genetic correlations with FS and PS were negative (probability of being negative 1.00 and 0.98, respectively). Nothing can be said about the sign of the genetic correlation between OR and ES. Ovulation rate was phenotypically uncorrelated with ID. Their estimated genetic correlation was positive (probability of being positive 0.91). The genetic correlation of ID with PS and LS was not accurately estimated. Phenotypic and genetic correlations between LS and survival rates were positive (probability of being positive 1.00). In 10 generations of selection, FS decreased around 1% per generation. No correlated response in ES was observed. In summary, the decrease in FS in rabbits selected for OR seemed to be responsible for the lack of correlated response observed in LS.  相似文献   

20.
Correlated effects of selection for components of litter size on growth and backfat thickness were estimated using data from 3 pig lines derived from the same base population of Large White. Two lines were selected for 6 generations on either high ovulation rate at puberty (OR) or high prenatal survival corrected for ovulation rate in the first 2 parities (PS). The third line was an unselected control (C). Genetic parameters for individual piglet BW at birth (IWB); at 3 wk of age (IW3W); and at weaning (IWW); ADG from birth to weaning (ADGBW), from weaning to 10 wk of age (ADGPW), and from 25 to 90 kg of BW (ADGT); and age (AGET) and average backfat thickness (ABT) at 90 kg of BW were estimated using REML methodology applied to a multivariate animal model. In addition to fixed effects, the model included the common environment of birth litter, as well as direct and maternal additive genetic effects as random effects. Genetic trends were estimated by computing differences between OR or PS and C lines at each generation using both least squares (LS) and mixed model (MM) methodology. Average genetic trends for direct and maternal effects were computed by regressing line differences on generation number. Estimates of direct and maternal heritabilities were, respectively, 0.10, 0.12, 0.20, 0.24, and 0.41, and 0.17, 0.33, 0.32, 0.41, and 0.21 (SE = 0.03 to 0.04) for IWB, IW3W, IWW, ADGBW, and ADGPW. Genetic correlations between direct and maternal effects were moderately negative for IWB (-0.21 +/- 0.18), but larger for the 4 other traits (-0.59 to -0.74). Maternal effects were nonsignificant and were removed from the final analyses of ADGT, AGET, and ABT. Direct heritability estimates were 0.34, 0.46, and 0.21 (SE = 0.03 to 0.05) for ADGT, AGET, and ABT, respectively. Direct and maternal genetic correlations of OR with performance traits were nonsignificant, with the exception of maternal correlations with IWB (-0.28 +/- 0.13) and ADGPW (0.23 +/- 0.11) and direct correlation with AGET (-0.23 +/- 0.09). Prenatal survival also had low direct but moderate to strong maternal genetic correlations (-0.34 to -0.65) with performance traits. The only significant genetic trends were a negative maternal trend for IBW in the OR line and favorable direct trends for postweaning growth (ADGT and AGET) in both lines. Selection for components of litter size has limited effects on growth and backfat thickness, although it slightly reduces birth weight and improves postweaning growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号