首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phytophthora root and stem rot caused by Phytophthora sojae, is one of the most damaging diseases of soybean, for which management is principally done by planting resistant cultivars with race specific resistance which are conferred by Rps (Resistance to Phytophthora sojae) genes. The Rps8 locus, identified in the South Korean landrace PI 399073, is located in a 2.23 Mbp region on soybean chromosome 13. In eight cv. Williams (rps8/rps8) × PI 399073 (Rps8/Rps8) populations, this region exhibited strong segregation distortion. In a cross between the South Korean lines PI 399073 (Rps8/Rps8) and PI 408211B (multiple Rps genes) this region segregated in a Mendelian fashion. In this study, microsporogenesis was evaluated to identify meiotic abnormalities that may be associated with the segregation distortion of the Rps8 region. Pollen was collected from greenhouse-grown plants of the parental genotypes: Williams, PI 399073, and PI 408211B; as well as selected Rps8/rps8 RILs from Williams × PI 399073 BC4F2:3 and PI 399073 × PI 408211B F4:5 populations. There were no differences for pollen viability among the genotypes. However, for PI 399073, a mix of dyads, triads, tetrads and pentads was observed. A high frequency of meiotic abnormalities including fragments, laggards, multinucleated microspores; and microcytes containing DNA was also observed in Rps8/rps8 Williams × PI 399073 BC4F2:3 RILs. These meiotic abnormalities may contribute to the high degree of segregation distortion present in the Williams × PI 399073 populations.  相似文献   

2.
Psathyrostachys huashanica Keng ex Kuo (2n = 2x = 14, NsNs), a source of wheat stripe rust, take-all fungus, and powdery mildew resistance with tolerance to salinity and drought, has been successfully hybridized as the pollen parent to bread wheat without using immature embryo rescuing culture for the first time. All of the CSph2b × P. huashanica hybrid seeds germinate well. Backcross derivatives were successfully obtained. F1 hybrids were verified as intergeneric hybrids on the basis of morphological observation, cytological and molecular analyses. The results obviously showed the phenotypes of the hybrid plants were intermediate between bread wheat and P. huashanica. Chromosome pairing at MI of PMCs in the F1 hybrid plants was low, and the meiotic configuration was 26.80 I + 0.60 II (rod). Cytological analysis of the hybrid plants revealed the ineffectiveness of the ph2b gene on chromosome association between the parents. Eight RAPD-specific markers for Ns genome were selected for RAPD analysis, and the results indicated that F1 hybrids contained the Ns genome of P. huashanica. Furthermore, the significance of the finding for bread wheat improvement was discussed.  相似文献   

3.
The inheritance of the resistance to Fusarium oxysporum f. sp. melonis (F.o.m.) races 0 and 2 in ‘Tortuga’, a Spanish cantalupensis accession, was studied from crosses of ‘Tortuga’ by the susceptible line ‘Piel de Sapo’ and the resistant one ‘Charentais-Fom1’ that carries the resistance gene Fom-1. The segregation patterns observed in the F2 (‘Tortuga’ × ‘Piel de Sapo’) and the backcross (‘Piel de Sapo’ × (‘Tortuga’ × ‘Piel de Sapo’) populations, suggest that resistance of ‘Tortuga’ to races 0 and 2 of F.o.m. is conferred by two independent genes: one dominant and the other recessive. In the F2 derived from the cross between accessions ‘Tortuga’ and ‘Charentais-Fom1’, the lack of susceptible plants indicated that the two accessions are carrying the same resistance gene (Fom-1). The analysis of 158 F2 plants (‘Tortuga’ × ‘Piel de Sapo’) with a Cleaved Amplified Polymorphic Sequence marker 618-CAPS, tightly linked to Fom-1 (0.9 cM), confirmed that ‘Tortuga’ also carries a recessive gene, that we propose to symbolize by fom-4.  相似文献   

4.
Crown rust, which is caused by Puccinia coronata f. sp. avenae, P. Syd. & Syd., is the most destructive disease of cultivated oats (Avena sativa L.) throughout the world. Resistance to the disease that is based on a single gene is often short-lived because of the extremely great genetic diversity of P. coronata, which suggests that there is a need to develop oat cultivars with several resistance genes. This study aimed to identify amplified fragment length polymorphism AFLP markers that are linked to the major resistance gene, Pc68, and to amplify the F6 genetic map from Pc68/5*Starter × UFRGS8. Seventy-eight markers with normal segregation were discovered and distributed in 12 linkage groups. The map covered 409.4 cM of the Avena sativa genome. Two AFLP markers were linked in repulsion to Pc68: U8PM22 and U8PM25, which flank the gene at 18.60 and 18.83 centiMorgans (cM), respectively. The marker U8PM25 is located in the linkage group 4_12 in the Kanota × Ogle reference oat population. These markers should be useful for transferring Pc68 to genotypes with good agronomic characteristics and for pyramiding crown rust resistance genes.  相似文献   

5.
A self-incompatible (SI) line, S-1300, and its maintainer 97-wen135, a self-compatible (SC) line, were used to study the inheritance of maintenance for self-incompatibility in B. napus. The ratio of SI plants to SC plants from S-1300 × 97-wen135 F2 and (S-1300 × 97-wen135) × 97-wen135 was 346:260 and 249:232, fitting the expected ratio of 9:7 and 1:1, respectively. Based on these observations, here we propose a genetic model in which two independent loci, S locus and S suppressor locus (sp), are predicted to control the inheritance of maintenance for self-incompatibility in B. napus. The genotypes of S-1300 and 97-wen135 are S 1300 S 1300 sp 1300 sp 1300 and S 135 S 135 sp 135 sp 135 , respectively. S 135 is dominant to S 1300 , but coexistence of sp 1300 and sp 135 fails to suppress S locus. Both S 1300 and S 135 can be suppressed by sp 135 , while sp 1300 can suppress S 135 but not S 1300 . The model contains two characteristics: that a dominant S locus exists in self-compatible B. napus, and that co-suppression will occur when sp loci are heterozygous. The model has been validated by the segregation of S phenotypes in the (S-1300 × 97-wen135) × S-1300, the progenies of SC S-1300 × 97-wen135 F2 plants and DH population developed from S-1300 × 97-wen135 F1. This is the first study to report co-suppression of S suppressor loci in B. napus. The genetic model will be very useful for developing molecular markers linked to maintenance for self-incompatibility and for dissecting the mechanism of SI/SC in B. napus.  相似文献   

6.
Powdery mildew caused by Podosphaera xanthii is an important disease of melon, and race 2F is the predominant race in most areas of China. Resistance to P. xanthii race 2F in melon K7-1 was controlled by a dominant gene, designated Pm-2F, in a 106-member population of recombinant inbred lines derived from K7-1× susceptible K7-2. Using bulked segregant analysis with molecular markers, we have identified two polymorphic simple sequence repeats (SSR) to determine that Pm-2F is located on linkage group II. Comparative genomic analyses using mapped SSR markers and the cucumber genome sequence showed that the melon chromosomal region carrying Pm-2F is homologous to a 288,223 bp genomic region on cucumber chromosome (chr) 1. The SSR markers on chr 1 of cucumber, SSR02734, SSR02733 and CS27 were found linked with Pm-2F. Comparative mapping showed that two SSR markers (SSR02734 and CMBR8) flanked the Pm-2F locus and two nucleotide binding site-leucine-rich repeat resistance genes were identified in the collinear region of cucumber. A cleaved amplified polymorphic sequence (CAPS) marker was developed from the sequence of resistance genes and it delimits the genomic region carrying Pm-2F to 0.8 cM. The evaluation of 165 melon accessions and 13 race differential lines showed that the newly developed CAPS (CAPS-Dde I) marker can be used as a universal marker for effective marker assisted selection in melon powdery mildew resistance breeding. The putative resistance gene cluster provides a potential target site for further fine mapping and cloning of Pm-2F.  相似文献   

7.
The recessive adult plant resistance (APR) gene Lr48 in wheat was tagged with flanking random amplified polymorphic DNA (RAPD) markers. Markers S336775 in coupling and S3450 in repulsion with Lr48 were identified in wheat line CSP44. Tests of these markers on available Thatcher near-isogenic lines (NILs) detected the likely presence of Lr48 in TcLr25. A test of allelism of APR involving the cross TcLr25 × CSP44 indicated that Lr48 was present in both lines. A separate experiment on inheritance of resistance in an F2 population of TcLr25 × Agra Local confirmed the presence of a dominant seedling resistance gene (Lr25) and a recessive APR gene (Lr48) in TcLr25. This study demonstrated the value of molecular markers in identifying the presence of masked genes in genetic stocks where direct phenotyping failed to detect their presence.  相似文献   

8.
Fusarium wilt, caused by Fusarium oxysporum f. sp. melonis (F.o.m), is a worldwide soil-borne disease of melon (Cucumis melo L.). The most effective control measure available is the use of resistant varieties. Resistance to races 0 and 2 of this fungal pathogen is conditioned by the dominant gene Fom-1. An F2 population derived from the ‘Charentais-Fom1’ × ‘TRG-1551’ cross was used in combination with bulked segregant analysis utilizing the random amplified polymorphic DNA (RAPD) markers, in order to develop molecular markers linked to the locus Fom-1. Four hundred decamer primers were screened to identify three RAPD markers (B17649, V01578, and V061092) linked to Fom-1 locus. Fragments amplified by primers B17649 and V01578 were linked in coupling phase to Fom1, at 3.5 and 4 cM respectively, whereas V061092 marker was linked in repulsion to the same dominant resistant allele at 15.1 cM from the Fom-1 locus. These RAPDs were cloned and sequenced in order to design primers that would amplify only the target fragment. The derived sequence characterized amplified region (SCAR) markers SB17645 and SV01574 (645 and 574 bp, respectively) were present only in the resistant parent. The SV061092 marker amplified a band of 1092 bp only in the susceptible parent. These markers are more universal than the CAPS markers developed by Brotman et al. (Theor Appl Genet 10:337–345, 2005). The analysis of 24 melon accessions, representing several melon types, with these markers revealed that different melon types behaved differently with the developed markers supporting the theory of multiple, independent origins of resistance to races 0 and 2 of F.o.m.  相似文献   

9.
Pseudomonas syringae is the main pathogen responsible for bacterial blight disease in pea and can cause yield losses of 70%. P. syringae pv. pisi is prevalent in most countries but the importance of P. syringae pv. syringae (Psy) is increasing. Several sources of resistance to Psy have been identified but genetics of the resistance is unknown. In this study the inheritance of resistance to Psy was studied in the pea recombinant inbred line population P665 × ‘Messire’. Results suggest a polygenic control of the resistance and two quantitative trait loci (QTL) associated with resistance, Psy1 and Psy2, were identified. The QTL explained individually 22.2 and 8.6% of the phenotypic variation, respectively. In addition 21 SSR markers were included in the P665 × ‘Messire’ map, of which six had not been mapped on the pea genome in previous studies.  相似文献   

10.
Gene effects of resistance to two isolates of Phytophthora nicotianae in two crosses of pepper were investigated using separate generation means analysis. Additive-dominance models were inadequate in all cases. Digenic parameter models were adequate in three cases and the probability of goodness of fit of models was negatively correlated with the aggressiveness of the pathogen. None of these models explained variation among generation means in the combined cross Beldi × CM334 with P. nicotianae isolate Pn2. Additive × additive, dominance × dominance and dominance × additive effects were significant in most cases. Additive and dominance effects (of negative sign) contribute more to resistance than to susceptibility. Additive variance was greater than environmental and dominance variance and ranged from 0.038 to 0.224. Narrow-sense heritabilities were dependent upon the cross and inoculate and ranged from 86 to 92%. The results of this study indicate that selection with more aggressive isolates of the pathogen will be useful for enhancing resistance in pepper.  相似文献   

11.
In a previously made cross Brassica napus cv. Oro (2n = 38) × Capsella bursa-pastoris (2n = 4x = 32), one F1 hybrid with 2n = 38 was totally male sterile. The hybrid contained no complete chromosomes from C. bursa-pastoris, but some specific AFLP (amplified fragment length polymorphism) bands of C. bursa-pastoris were detected. The hybrid was morphologically quite similar to ‘Oro’ except for smaller flowers with rudimentary stamens but normal pistils, and showed good seed-set after pollination by ‘Oro’ and other B. napus cultivars. The fertility segregation ratios (3:1, 1:1) in its progenies indicated that the male sterility was controlled by a single recessive gene. In the pollen mother cells of the male sterile hybrid, chromosome pairing and segregation were normal. Histological sectioning of its anthers showed that the tapetum was multiple layers and was hypertrophic from the stage of sporogenic cells, and that the tetrads were compressed by the vacuolated and disaggregated tapetum and no mature pollen grains were formed in anther sacs, thus resulting in male sterility. The possible mechanisms for the production of the male sterile hybrid and its potential in breeding are discussed.  相似文献   

12.
The present study evaluated the individual plants reaction of F2 hybrid generation of C. annuum: ATZ1 × PO and ATZ1 × CDT as well as two interspecific hybrids: C. frutescens × C. annuum ATM1 and C. frutescens × C. chinense on androgenesis conditions in in vitro anther cultures. The experiment was carried out following a modified method of Dumas de Vaulx et al. (Agronomie 1:859–864, 1981). There were demonstrated clear differences in the effectiveness of androgenesis both between the pepper hybrid forms as well as among individual plants of all the genotypes tested. The highest effectiveness of androgenic embryos development was observed for the cultivated form of C. annuum: (ATZ1 × PO)F2. Anthers of most of the plants of this hybrid produced embryos at the level higher than 5%, while in anther cultures of the second C. annuum hybrid (ATZ1 × CDT)F2 almost 3-fold fewer embryos and plants were produced. Anthers isolated from flower buds of interspecific hybrids formed much lower number of embryos. A positive reaction was recorded for five hybrid plants of (C. frutescens × C. annuum ATM1)F2, while in case of (C. frutescens × C. chinense)F2 androgenic embryos were obtained from anthers of two plants. Only in the case of a one of these plants did the effectiveness of androgenesis exceed 5%. The ploidy level of the regenerants was determined by flow cytometry. Among the regenerants there were observed both haploid forms and the plants with the diploid number of chromosomes.  相似文献   

13.
The powdery mildew resistance allele Pm5d in the backcross-derived wheat lines IGV1-455 (CI10904/7*Prins) and IGV1-556 (CI10904/7*Starke) shows a wide spectrum of resistance and virulent pathotypes have not yet been detected in Germany. Although this allele may be distinguished from the other documented Pm5 alleles by employing a differential set of Blumeria graminis tritici isolates, the use of linked molecular markers could enhance selection, especially for gene pyramiding. Pm5d was genetically mapped relative to six microsatellite markers in the distal part of chromosome 7BL using 82 F3 families of the cross Chinese Spring × IGV1-455. Microsatellite-based deletion line mapping placed Pm5d in the terminal 14% of chromosome 7BL. The closely linked microsatellite markers Xgwm577 and Xwmc581 showed useful variation for distinguishing the different Pm5 alleles except the ones originating from Chinese wheat germplasm. Their use, however, would be limited to particular crosses because they are not functional markers. The occurrence of resistance genes closely linked to the Pm5 locus is discussed. Ghazaleh Nematollahi and Volker Mohler equally contributed to this work.  相似文献   

14.
The objective of this work was to check the possible allelism between two sources of resistance to the root-knot nematode Meloidogyne incognita race 1 in lettuce (‘Grand Rapids’ and ‘Salinas-88’). The experiments were carried out in greenhouses, in expanded 128-cell polystyrene trays filled with commercial substrate. Lettuce cultivars ‘Salinas 88’ and ‘Grand Rapids’ were tested along with the populations F1 (‘Grand Rapids’ × ‘Salinas-88’), F2 (‘Grand Rapids’ × ‘Salinas-88’), F3 (‘Grand Rapids’ × ‘Salinas-88’), and with F4 families derived from the latter population. Seedlings were inoculated 15 days after sowing with a nematode egg suspension equivalent to 30 eggs ml−1 of substrate. Plants were evaluated for apparent gall incidence, gall scores, egg mass scores and extracted egg numbers 45 days after the inoculation date. There was evidence that two different genes are involved in control of resistance to M. incognita race 1 in lettuce cultivars Grand Rapids and Salinas-88. Lines with higher levels of nematode resistance than either Grand Rapids or Salinas-88 could be selected in the F4 generation of the cross between these resistant parental lines.  相似文献   

15.
Sequence-related amplified polymorphism (SRAP) combined with SSRs, RAPDs, and RGAPs was used to construct a high density genetic map for a F2 population derived from the cross DH962 (G. hirsutum accession) × Jimian5 (G. hirsutum cultivar). A total of 4,096 SRAP primer combinations, 6310 SSRs, 600 RAPDs, and 10 RGAPs produced 331, 156, 17 and 2 polymorphic loci, respectively. Among the 506 loci obtained, 471 loci (309 SRAPs, 144 SSRs, 16 RAPDs and 2 RGAPs) were assigned to 51 linkage groups. Of these, 29 linkage groups were assigned to corresponding chromosomes by SSR markers with known chromosome locations. The map covered 3070.2 cM with a mean density of 6.5 cM per locus. The segregation distortion in this population was 9.49%, and these distorted loci tend to cluster at the end of linkage groups or in minor clusters on linkage groups. The majority of SRAPs in this map provided an effective tool for map construction in G. hirsutum despite of its low polymorphism. This high-density linkage map will be useful for further genetic studies in Upland cotton, including mapping of loci controlling quantitative traits, and comparative and integrative analysis with other interspecific and intraspecific linkage maps in cotton.  相似文献   

16.
The fungal disease cercospora leaf spot CLS (Cercospora zonata) has affected major faba bean (Vicia faba) production regions in southern Australian in the last several years. This study offers the first report of sources of resistance to CLS in faba bean and describes techniques to evaluate resistance to C. zonata in faba bean genotypes within a controlled environment. The method was rapid (43 days), repeatable (R 2 > 0.74) and demonstrated positive correlations (R 2 > 0.45–0.80) to data collected from field disease nurseries under naturally established CLS epiphytotics. All faba bean cultivars currently adopted by the Australian industry were found to be susceptible to CLS and defoliation was found to be an important component of disease expression. Genetic analysis of segregation patterns in F 2 derived F 3 families of 1322/2*Farah (resistant*susceptible) showed the mode of inheritance of resistance to C. zonata was monogenic dominant. F 3 families were shown to segregate in the ratio of 1:2:1 for homozygous resistant: heterozygous: homozygous susceptible (χ22 = 2.78; P > 0.05) and individual plants within heterozygous F 3 families segregated in the ratio of 3:1 for resistant: susceptible responses (χ12 = 2.93; P > 0.05). Monogenic dominant inheritance also explained the change in frequency of resistant and susceptible plants within a population of cv. Cairo following one generation of self-pollination (χ2 = 0.88, 0.3 < P < 0.5). The sources of resistance identified in this study are being used to transfer CLS resistance to adapted faba bean genotypes for future cultivar releases to the southern Australian industry.  相似文献   

17.
Nicotiana wuttkei Clarkson and Symon discovered in the 1990s in Australia may be of potential interest to breeders as it carries resistance to Peronospora hyoscyami de Bary. The crossability between N. wuttkei (2n = 4x = 32) and three N. tabacum (2n = 4x = 48) cultivars (‘Puławski 66’, ‘Wiślica’ and ‘TN 90’) and the morphology and cytology of their amphihaploid hybrids (2n = 4x = 40) were studied. Seeds were produced only when N. wuttkei was used as the maternal parent, but under normal germination all seedlings died. Viable F1 hybrids of N. wuttkei × N. tabacum cv. ‘Puławski’ and N. wuttkei × N. tabacum cv. ‘Wiślica’ were obtained only by in vitro cotyledon culture. The amphihaploid plants were intermediate between the parents for most morphological traits. In 46.4% of the PMC’s, only univalents were present. The remainder of the cells had 1–5 bivalents and 1–2 trivalents. In spite of a detectable frequency of monads (2.6%), dyads (2.6%) and triads (4.5%), the hybrids were self and cross sterile.  相似文献   

18.
Fusarium root rot (FRR) is a major disease of common bean worldwide. Knowledge of the inheritance of resistance to FRR would be important in devising strategies to breed resistant varieties. Therefore, a 12 × 12 full diallel mating scheme with reciprocal crosses was performed to generate 132 F1 progenies, which were then advanced to the F3. The progenies were evaluated for resistance to FRR under green house conditions in Uganda. General combining ability (GCA) effects were highly significant (P ≤ 0.01) for disease scores. Specific combining ability effects were not significant (P > 0.05) in the F1, but were highly significant (P < 0.01) in the F3 generation. These results indicate that resistance to FRR was governed by genes with additive effects in combination with genes with non-additive effects. Reciprocal differences were also significant (P = 0.01) at F1 and F3, primarily reflecting a large influence of maternal effects in both these generations. In fact, susceptible parents did not differ significantly (P > 0.05) for disease scores when used as paternal parents in the F3, but differed strongly as maternal parents (P = 0.0002). Generally, the progenies were distinctly more resistant when the resistant parent was used as the female in crosses, especially as observed in the F3. The maternal effects were strong in the F3 generation, suggesting a complex form of cytoplasmic–genetic interaction. The non-maternal reciprocal effects in the F3 were significant (P < 0.05) in both the resistant × resistant diallel, and in the resistant × susceptible crosses. Mid-parent heterosis (MPH) occurred in most crosses, with average heterosis approximately equal in each of the three generations, indicating that epistasis was probably more influential than dominance of individual genes. Gene-number formulas indicated that several genes were involved in resistant × susceptible crosses. Among resistant × resistant crosses, many produced continuous distributions of F1 progeny scores, suggesting polygenic inheritance, while bi-modal distributions were characteristic of the F3 distributions, and fit expected ratios for two or three loci segregating in each cross. Dominant forms of epistasis favoring resistance were strongly indicated. Parent–offspring heritability estimates were moderate. Overall, the results indicate that resistant parents contain a number of different resistance genes that can be combined with the expectation of producing strong and durable resistance. The lines MLB-49-89A, MLB-48-89, RWR719 and Vuninkingi, with large and negative GCA effects, contributed high levels of resistance in crosses and would be recommended for use in breeding programs.  相似文献   

19.
Cotton (Gossypium hirsutum L) cultivars highly resistant to the southern root-knot nematode (RKN) [Meloidogyne incognita (Kofoid and White) Chitwood] are not available. Resistant germplasm lines are available; however, the difficulty of selecting true breeding lines has hindered applied breeding and no highly resistant cultivars are available to growers. Recently, molecular markers on chromosomes 11 and 14 have been associated with RKN resistance, thus opening the way for marker assisted selection (MAS) in applied breeding. Our study aimed to determine the utility of these markers for MAS. Cross one was RKN resistant germplasm M240 RNR × the susceptible cultivar, FM966 and is representative of the initial cross a breeder would make to develop a RKN resistant cultivar. Cross two consists of Clevewilt 6 × Mexico Wild (PI563649), which are the two lines originally used to develop the first highly RKN resistant germplasm. Mexico Wild is photoperiodic. We phenotyped the F2 of cross one for gall index and number of RKN eggs per plant and genotyped each plant for CIR 316 (chromosome 11) and BNL 3661 (chromosome 14). From this, we verified that MAS was effective, and the QTL on chromosome 14 was primarily associated with a dominant RKN resistance gene affecting reproduction. In the first F2 population of cross two, we used MAS to identify 11 plants homozygous for the markers on chromosomes 11 and 14, and which also flowered in long days. Progeny of these 11 plants were phenotyped for RKN gall index and egg number and confirmed as RKN highly resistant plants. Generally about 7–10 generations of RKN phenotyping and progeny testing were required to develop the original RKN highly resistant germplasms. Our results show that commercial breeders should be able to use the markers in MAS to rapidly develop RKN resistant cultivars.  相似文献   

20.
Stripe (yellow) rust, caused by Puccinia striiformis Westend. f. sp. tritici Eriks. (Pst), is an important disease of wheat (Triticum aestivum L.) globally. Use of host resistance is an important strategy to manage the disease. The cultivar Flinor has temperature-sensitive resistance to stripe rust. To map quantitative trait loci (QTLs) for these temperature-sensitive resistances, Flinor was crossed with susceptible cultivar Ming Xian 169. The seedlings of the parents, and F1, F3 progeny were screened against Chinese yellow rust race CYR32 in controlled-temperature growth chambers under different temperature regimes. Genetic analysis confirmed two genes for temperature-sensitive stripe rust resistance. A linkage map of SSR markers was constructed using 130 F3 families derived from the cross. Two temperature-sensitive resistance QTLs were detected on chromosome 5B, designated QYr-tem-5B.1 and QYr-tem-5B.2, respectively, and are separated by a genetic distance of over 50 cM. The loci contributed 33.12 and 37.33% of the total phenotypic variation for infection type, respectively, and up to 70.45% collectively. Favorable alleles of these two QTLs came from Flinor. These two QTLs are temperature-sensitive resistance loci and different from previously reported QTLs for resistance to stripe rust.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号