首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
作者研究了1个稻梨孢菌株与4个稻以外寄主梨孢菌株在混合接种和间隔接种条件下,在水稻植株上的交互作用。结果表明:弱致病菌与强致病菌间交互作用较强,非致病菌与强致病菌间较弱。弱致病菌可明显降低强致病菌的致病性,非致病菌对强致病菌的作用,多数组合表现为减轻病害,但有少数组合表现为促进发病。弱致病菌先接种;2天后接种强致病菌,比两者混合接种具有更强烈的互作效应,病斑数减少达35.7%-38.1%。先接种菌的孢子浓度对后接种菌的致病性也有影响。  相似文献   

2.
为进一步了解田间稻瘟病菌Magnaporthe oryzae群体中AVR-Pia基因的分布及变异,利用水稻单基因系IRBLa-C水稻品种对自云南省13个市(州)采集分离得到的471株稻瘟病菌菌株进行抗性基因Pia有效性测定;利用无毒基因AVR-Pia特异性标记对471株稻瘟病菌菌株进行PCR检测和测序,并分析稻瘟病菌群体中无毒基因AVR-Pia的分布及DNA结构变异;利用有效性结果和PCR检测结果对471株菌株进行反应型划分,筛选鉴定菌株;利用鉴定菌株对云南省112份地方稻种进行Pia基因鉴定。结果表明,在471株稻瘟病菌菌株中,对含有Pia基因的水稻单基因系IRBLa-C表现为抗病和感病的菌株数分别为139株和332株,所占比例分别为29.5%和70.5%;在471株稻瘟病菌菌株中,分别有244株和227株菌株含有无毒基因AVR-Pia和不含有无毒基因AVR-Pia,所占比例分别为51.8%和48.2%,无毒基因AVR-Pia主要为完全缺失变异;在471株稻瘟病菌菌株中,A-和V+反应型菌株数分别为56株和161株,共217株,占总菌株数的46.1%,在13个市(州)稻瘟病菌群体中,A-和V+反应型菌株所占比例差异较大,其中在普洱市、红河哈尼族彝族自治州、昭通市、玉溪市4个市(州)的比例较大,分别为77.8%、57.1%、52.1%和50.0%;在112份云南省地方稻种质资源中,有20份地方稻品种含有抗性基因Pia,主要分布在9个市(州)中。表明云南省13个市(州)绝大部分水稻产区水稻Pia基因已丧抗性,含Pia基因的水稻种质在云南省分布较广。  相似文献   

3.
为明确云南省不同稻区稻瘟病菌Magnaporthe oryzae的毒性频率及交配型分布,利用2007—2013年分离自云南省不同稻区的112株稻瘟病菌单孢菌株,对23个持有不同抗性基因的单基因系和持有Pi57(t)的水稻渗入系IL-E1454进行致病性测定。结果表明,稻瘟病菌对不同抗病基因的毒性频率存在很大差异,分离自粳稻区的稻瘟病菌菌株对持有Piz-t、Pi5、Pi9、Pi20和Pi57(t)这5个水稻品系的毒性频率分别为14.29%、5.36%、5.51%、5.36%和0;分离自籼稻区的稻瘟病菌菌株对持有Pik-h、Piz、Pita、Piz-5、Pita-2、Pi5、Pi7和Pi9这8个水稻品系的毒性频率分别为18.25%、9.13%、9.64%、7.50%、15.72%、0、13.05%和0;分离自陆稻区的稻瘟病菌菌株菌株对持有Pik-h、Pib、Pish、Pi1、Pi5、Pi9、Pi11和Pi57(t)这8个水稻品系的毒性频率分别为6.67%、3.33%、13.79%、13.33%、7.69%、6.67%、0和3.23%;交配型测定结果显示,陆稻区菌株可交配率为100.00%,...  相似文献   

4.
The virulence structure of theMagnaporthe grisea rice population from the northwestern Himalayan region of India was deciphered on 24 rice genotypes harboring different blast resistance genes. Matching virulences appropriate to all the rice genotypes, except Fukunishiki (Pi-z, Pi-sh) and Zenith (Pi-z, Pi-a, Pi-i), were present in the pathogen population. Moreover, a very low percentage of isolates were virulent on Tetep (Pi-ta, Pi-k h, Pi-4b) and Tadukan (Pi-ta/Pi-ta 2). Although virulence was recorded on most of the lines tested, none was susceptible to all of the isolates. Three pairs of genotypes, namely, C101LAC:C101A51; K-1: Dular; and Dular: HPU-741, exhibited complementary resistance spectra as no isolate combined virulence to both the members of each of the three pairs of genotypes despite the fact that individual members were susceptible to a major portion of the pathogen population. The blast resistance genesPi-z, Pi-k h, Pi-l andPi-2 and their various combinations were construed to provide broad spectrum and durable blast resistance in Himachal Pradesh. Pathotype analysis revealed the existence of extremely high pathotypic diversity in the pathogen population. Based on the observed population structure forM. grisea, it was not possible to designate a minimum set of pathogen isolates that could be used in blast resistance screens to identify effective sources of blast resistance. The overall results suggested that the pathotype analysis alone is insufficient to describe the existing pathogenic variability, especially when this information has to be used for guiding the breeding programs aimed at developing durable blast resistance. However, population genetics approach of studying pathogenic specialization by monitoring the frequency of individual virulence genes and analyzing virulence gene combinations for their association or dissociation might generate useful information for developing durable blast resistance. http://www.phytoparasitica.org posting May 14, 2006.  相似文献   

5.
西南地区稻瘟病菌群体遗传多样性分析   总被引:3,自引:2,他引:1  
为明确西南地区稻瘟病菌Magnaporthe grisea(Hebert)Barr群体遗传结构及其多样性水平,选用13对SSR引物对来自18个县(市)的221个稻瘟病菌单孢菌株进行PCR扩增,利用最长距离法和生物学软件进行聚类分析和群体遗传多样性分析。结果显示,13对SSR引物均能扩增出一条大小相同且清晰的条带,多态位点百分率高达100%。221个菌株在0.16相异水平上可划分为13个遗传宗谱,宗谱SCL01含205个菌株,占总菌株数的92.76%,为优势宗谱;宗谱SCL02~SCL013为劣势宗谱,差异极大。在群体水平上,菌源丰富的8个区域稻瘟病菌群体的Nei’s基因多样性指数为0.2133,Shannon信息指数为0.3588,具有丰富的遗传多样性,且群体间差异较大;这8个种群基于UPGMA法大都聚为一类,种群遗传谱系与地理区域分布呈一定相关性,群体遗传多样性均值为0.2518,存在一定的遗传分化,且群体内多样性大于群体间,总遗传变异的59.37%存在于群体内。总体上,西南地区稻瘟病菌群体结构既有明显的优势宗谱,又存在许多复杂多变的特异性小宗谱,具有丰富的遗传多样性,与地理分布关系较为密切。  相似文献   

6.
黑龙江省水稻种质抗瘟性及稻瘟病菌致病性分析   总被引:1,自引:0,他引:1  
为明确黑龙江省水稻种质抗性及稻瘟病菌的致病性,以黑龙江省8个水稻品种、24个单基因系作为供试材料,120株稻瘟病菌株作为接种体,采用喷雾接种法测定了各供试水稻的抗瘟性及稻瘟病菌的致病性。结果表明,水稻品种对2010年和2011年菌株的抗性频率分别在31.67%~68.33%和21.67%~55.00%之间,2010年最好的抗性品种为松粳12,2011年最好的抗性品种为五优稻4和东农425;松粳12东农425组合联合抗病性最好。水稻单基因系对2010年和2011年菌株的抗性频率分别在10.00%~90.00%和5.00%~86.67%之间,抗性最好的单基因系分别为IRBLzt-T(Pi-zt)和IRBLz5-CA(Pi-z5);松粳12、东农425和龙粳22的基因聚合效果最好。2010年和2011年菌株对抗瘟基因群的致病率分别在8.33%~95.83%和25.00%~95.83%之间;无毒基因总出现频率分别为461和412次。研究表明,水稻种质抗性受菌株致病性影响较大,但高抗种质相对稳定,基因聚合方式更适宜当地品种抗性改良。  相似文献   

7.
Population structure of Eleusine isolates of Pyricularia oryzae (Magnaporthe oryzae) was examined using DNA markers. On the basis of rDNA sequences, Eleusine isolates were divided into two groups. One group clustered with Triticum isolates, while the other clustered with Eragrostis isolates. This grouping was supported by DNA fingerprinting with three repetitive elements: MGR586, MGR583, and grasshopper. These results suggest that the population of Eleusine isolates is composed of at least two groups that evolved independently from the original population of P. oryzae. Most of the isolates that were collected just after an outbreak of finger millet blast in the 1970s had almost identical fingerprint profiles although they were collected in distant prefectures. This result supports the idea that the outbreak was caused by seed transmission of a particular strain of Eleusine isolates.  相似文献   

8.
The present study was conducted to determine if there is specificity in the host-pathogen relationship between the isolates of Xanthomonas oryzae pv. oryzae, the causal bacterium for rice blight and Leersia grasses, the alternative weed hosts of the disease. Plants of three species of Leersia, namely, L. sayanuka, L. oryzoides and L. japonica, were collected from various parts of Japan and were inoculated with the X. oryzae pv. oryzae isolates obtained from various locations in Japan and from 11 Asian countries. Four L. sayanuka plants were found susceptible to all Race II isolates and some Race I isolates, but were resistant to all Race III isolates. Race III is known to have a wider range pathogenicity to rice cultivar groups compared with Race I and II. Although the reactions of two L. oryzoides plants to Race I and II isolates were similar to that of L. sayanuka, the L. oryzoides plant collected from Niigata Prefecture showed a susceptible reaction to some Race III isolates. On the other hand, L. japonica plants gave reactions different those of L. sayanuka and L. oryzoides, with two plants of L. japonica found to be resistant to all test isolates collected from Japan. The Asian isolates exhibited a wide host range against the international differential rice cultivars, but almost all of them were avirulent to Leersia plants. These results indicate that the relationship between the pathogenicity of the causal bacterium and the resistance of host plants is very complex, and suggest that pathogenic diversity of X. oryzae pv. oryzae might be related to the resistance of Leersia spp.  相似文献   

9.

The occurrence of weeds in water rice was surveyed in the Red River Delta, Vietnam during spring and summer rice-growing seasons in 1995 and 1996. Sixty different weeds from 19 plant families were recorded. The most important plant families as weeds of rice were Poaceae and Cyperaceae. The most important weed however was Rotala indica (Willd.) Koehne (Lythraceae) followed by Echinochloa crus-galli (L.) Beauv. and Cyperus difformis L. A brief comparison of this rice weed flora and those of Australia and California was made.  相似文献   

10.
Suppression of rice blast by phylloplane fungi isolated from rice plants   总被引:2,自引:0,他引:2  
Rice phylloplane fungi were evaluated for their potential as biocontrol agents for rice blast disease caused by Magnaporthe grisea. A total of 1923 fungal isolates were obtained from rice plants in fields at Ishigaki and Iwama and from potted plants placed in a cedar woods in Iwama as bait. Although 82.9% of isolated fungi could not be identified, species of Epicoccum were the most prevalent among identified isolates. Of the 1923 isolates, 967 were randomly selected for screening against rice leaf blast. Nine isolates (MKP5111B, MKP5112, J2JMR3-2, K2J131-2, I5R3-1, NOP541, K1KM134-1, NOP5112, MKP33222) suppressed the disease when a conidial or hyphal suspension of both the phylloplane fungus and pathogen were simultaneously used to inoculate rice plants cultured in pots in a growth chamber. Five of the isolates originated from potted plants in the woods and four from Ishigaki, a subtropical island. Five (MKP5111B, MKP5112, NOP541, NOP5112, MKP33222) of the nine isolates strongly suppressed conidial germination of M. grisea (0.7%) and formed inhibition zones (3–5mm width) in dual cultures with the pathogen. Methanol extracts from the isolates also inhibited mycelial growth of the pathogen. These results suggest that the five isolates produced antibiotic(s). These five isolates are likely identical or closely related fungal species because the sequence of their ITS regions were 100% similar. ITS sequence analysis also suggested that J2JMR3-2 was associated with a species of Fusarium. Under field conditions, J2JMR3-2 reduced both leaf and panicle blast severity, and three other isolates (MKP5111B, K1KM134-1, K2J131-2) suppressed leaf blast in one of the three experiments.  相似文献   

11.

Rice blast (Pyricularia oryzae) has become a serious disease on commercial rice (Oryza sativa) crops in northern Australia and is present there on wild rice (O. australiensis). Characterisation of the host range of P. oryzae is fundamental to both reducing disease spread and to preventing development of epidemics via better management of Poaceae inoculum reservoirs in Australia. Studies on response of three different wild O. australiensis sources toward four isolates of P. oryzae showed all genotypes very susceptible to three isolates [WAC13466 (race IA-1), BRIP53376 (race IB-3), NT2014a (race unknown)], but resistant to isolate BRIP39772 (race IA-3). Studies to investigate levels of blast disease development following inoculation on a range of Poaceae hosts showed both P. oryzae isolates (WAC13466, BRIP53376) were highly virulent on barley (disease index, DI?=?100%), and on Phalaris and O. australiensis (DI?=?70%). However, isolate BRIP53376 showed a significantly higher level of aggressiveness (DI ~80%) on ryegrass, wild oat and rice. Of the two wheat cultivars tested, only one cultivar showed disease and only from WAC13466 (DI ~30%). Sweet corn and goosegrass were also susceptible to both blast isolates, but DI was <50%. That P. oryzae was virulent across these diverse Poaceae hosts, highlights, for Australia, the possibility for these species in, first, harbouring P. oryzae isolates highly virulent to commercial rice, second, fostering spread of rice-attacking P. oryzae strains into regions currently free of rice blast, and third, potential for these alternative host species to encourage development of more virulent host-specific strains of P. oryzae. The current study is an important step towards facilitating improved crop protection in the medium and long term from reducing P. oryzae disease epidemics via a better understanding and management of inoculum reservoirs in Australia.

  相似文献   

12.
The causal agents of mango malformation disease in Brazil are a new Fusarium lineage in the Gibberella fujikuroi species complex and Fusarium sterilihyphosum; however information on the genetic and geographical diversity of these pathogens in Brazil is missing. Vegetative compatibility group (VCG) and amplified fragment length polymorphism (AFLP) analyses were used to measure the genetic diversity within these populations. Both techniques identified the same genetic groups. Six VCG and AFLP groups were identified amongst isolates of the new lineage from Brazil. FB-VCG 1/AFLP I was the most widespread group, found in seven of the 13 sites sampled. The second most frequent group was recovered from three sites. The remaining four groups were recovered from single-sites. We think that this lineage represents a genetically and geographically diverse indigenous population that reproduces clonally. In F. sterilihyphosum, group FS-VCG 1/AFLP VII was found at three sites in the southeast region of Brazil. FS-VCG 2/AFLP VIII contained isolates from South Africa but not from Brazil. Fusarium mangiferae isolates from India and South Africa formed one group, while isolates from Egypt and the USA formed a second group. F. sterilihyphosum at present is represented by a small population that might have been introduced only once into a restricted area. The clonal nature of the observed populations suggests that these fungi either occur naturally on indigenous hosts and have jumped to the introduced mango host (introduced in Brazil) or that they originated with mango and went through a severe population bottleneck when they were introduced to Brazil from India or Southeast Asia.  相似文献   

13.
水直播条件下黑龙江省不同稻区稻瘟病菌致病性分析   总被引:1,自引:0,他引:1  
为明确水直播条件下黑龙江省不同稻区稻瘟病菌Magnaporthe oryzae的致病性分化情况,以24个抗瘟单基因系品种为寄主,来源于2017—2018年黑龙江省水直播稻田的242株稻瘟病菌菌株为接种体,采用离体划伤方法接种,记录病斑反应型,计算有效致病菌株率和抗性频率,并进行聚类分析。结果显示,在水直播条件下,2017年,黑龙江省南部和中东部稻区稻瘟病菌菌株对抗瘟单基因系品种的有效致病菌株率介于8.33%~95.83%和20.83%~95.83%之间,无毒基因出现频率分别为575次和622次;2018年,南部和中东部稻区稻瘟病菌菌株对鉴别体系的有效致病菌株率介于29.17%~95.83%和20.83%~91.67%之间,无毒基因出现频率分别为536次和571次。2017年,黑龙江省南部和中东部稻区稻瘟病菌菌株的致病性相似系数介于0.15~1.00和0.14~1.00之间,以致病性相似系数0.40为阈值,可将菌株分别划分为5个类群和6个类群;2018年,南部和中东部稻区菌株的致病性相似系数介于0.15~0.93和0.26~1.00之间,以致病性相似系数0.40为阈值,可将菌株分别划分为5个类群和4个类群。2017年,抗瘟单基因系品种对黑龙江省南部和中东部稻区稻瘟病菌菌株的抗性频率介于11.29%~88.71%和10.77%~86.15%之间,其中抗瘟单基因系品种IRBL9-W(Pi-9)和IRBLz5-CA(Pi-z5)抗性表现最好;2018年,抗瘟单基因系品种对南部和中东部稻区菌株的抗性频率介于10.34%~82.67%和15.79%~85.96%之间,其中抗瘟单基因系品种IRBL9-W(Pi-9)和IRBLz5-CA(Pi-z5)抗性表现最好。表明水直播条件下黑龙江省稻瘟病菌致病性分化剧烈,稻瘟病菌整体致病力较强,但仍有部分水稻种质抗性较好且相对稳定,基因聚合后抗性会得到进一步提升。  相似文献   

14.
15.
为评估在水稻育种中被广泛利用的广谱抗稻瘟病基因Piz-t的有效性,对不同年份分离自海南省陵水黎族自治县和三亚市水稻的273株田间稻瘟病菌株中的AvrPiz-t位点变异及其与菌株致病性的相关性进行系统研究。结果表明,海南省田间菌株中无毒基因AvrPiz-t位点的变异频率为0~100.00%,陵水黎族自治县菌株中的变异频率远远高于三亚市菌株。在菌株中共鉴定到3种AvrPiz-t位点变异类型,分别为基因位点完全缺失、DNA重复元件MGR583在基因位点启动子区-10 bp上游和编码区218 bp下游插入。所有AvrPiz-t位点变异的菌株对携带Piz-t抗病基因的单基因水稻系IRBL-11均表现出强的致病性。陵水黎族自治县菌株中AvrPiz-t位点的变异频率呈逐年增加趋势,2021年94株菌株中AvrPiz-t位点的变异频率为100.00%,其中51.06%的菌株变异是MGR583在启动子区-10 bp上游插入,表明DNA重复元件MGR583在AvrPiz-t位点插入是AvrPiz-t从无毒到有毒进化的重要机制之一。  相似文献   

16.
In a study of the population dynamics of Magnaporthe oryzae in the Mekong Delta in Vietnam, 226 isolates were collected from various sites in December 2001, September and December 2004. The pathogenic races of isolates were determined using international differential rice varieties. Isolates with the same race number were not found, not even in the same field or on the same seedling, suggesting that the fungus in the Mekong Delta was dynamically changing. But focusing on the known major resistance genes in the Japanese differential varieties, some isolates in the area were found to be the same race. Phylogenetic analyses based on the transposable elements Pot2 and MGR586 in the genomes supported that the pathogenic races were critically variable in comparison with the genomic diversity. Isolates with MAT1-1 predominated in the Mekong Delta, but in some provinces those with MAT1-2 coexisted at low frequency with MAT1-1. However, no isolates produced perithecia and ascospores. Isolates in the Mekong Delta probably had hot spots in their genomes that are easily altered and associated with some avirulence genes.  相似文献   

17.
Blast is considered the most important fungal disease of rice due to its wide distribution and destructiveness under favorable conditions. Development of new effective and environmentally benign agents against the causal pathogen, Magnaporthe oryzae, is of great interest. In the course of a search for natural antifungal compounds in medicinal plants, we found that the methanol extract of Angelica gigas roots showed a potent control efficacy against rice blast caused by M. oryzae. We isolated antifungal coumarins from the extract, and they were identified as decursin and decursinol angelate. Antifungal activities of these compounds, along with kasugamycin, were tested on M. oryzae in vivo and in vitro. In an in vivo assay, the three compounds effectively suppressed the development of rice blast at concentrations more than 100 μg/mL. Coumarins showed relatively weak inhibitory effect on fungal mycelial growth when compared to kasugamycin. However, they strongly inhibited M. oryzae spore germination, which was not observed in kasugamycin treatments. This is the first report demonstrating that decursinol angelate can provide control against rice blast and that the two coumarins inhibit M. oryzae spore germination. In addition, the wettable powder formulation of the crude extract of A. gigas prohibited the development of blast symptoms on rice plants more effectively than liquid concentrate formulation of kasugamin, a commercial fungicide. Based on our study, we propose that coumarin compounds as well as the A. gigas root crude extract can be used as natural, benign fungicides for controlling rice blast.  相似文献   

18.
We investigated the use of single primers complementary to sequences in the terminal inverted repeat (TIR) of either Pot2 or MGR586, transposable elements found in Pyricularia grisea, for DNA fingerprinting by repetitive-element-based polymerase chain reaction (rep-PCR). Under standard amplification conditions, rep-PCR with each single primer generated distinct fingerprint patterns among rice-infecting P. grisea isolates collected in Japan. With the Pot2-TIR primer, bands ranging in size from 0.2 to 8 kb and in number from 8 to 13 per isolate were amplified. Although fewer bands were amplified with the MGR586-TIR primer, this molecular technique should be more reliable to identify and classify P. grisea isolates by combining the data of fingerprint patterns from each TIR primer. In a cluster analysis based on DNA fingerprints from this rep-PCR with the Pot2-TIR primer, 10 reference isolates and 12 field isolates from Saga Prefecture in 2002 were separated into six clonal lineages. We also demonstrated that the 12 field isolates belonged to one clonal lineage. Thus, this rep-PCR method using the single primer Pot2-TIR will be useful for the analysis of the population structure of rice blast pathogens.  相似文献   

19.
Verticillium wilt, caused by Verticillium albo-atrum or V. dahliae, is an important disease of many worldwide crop species. In Europe, V. albo-atrum isolates infecting hop express different levels of virulence, inducing mild or lethal disease syndromes, and it is therefore an attractive model for studying the virulence of this pathogen. In this work, eleven amplified fragment length polymorphism (AFLP) primer combinations were used to analyze genetic variability among 55 V. albo-atrum hop isolates from four European hop growing regions, as well as isolates from other hosts and V. dahliae isolates. Cluster analysis divided V. albo-atrum and V. dahliae isolates into two well-separated groups. Within the V. dahliae cluster, isolates were separated without host specific grouping, although no host adapted isolates were included. In V. albo-atrum, the alfalfa isolates were distinct from isolates of other hosts, where a high association with virulence was observed in hop and tomato isolates. All lethal hop isolates were genetically different from mild hop isolates. The lethal hop isolates from England and Slovenia expressed the same virulence phenotype, although they showed a different AFLP pattern. The mild hop isolates formed two subgroups, to which isolates clustered irrespective of geographical location. These data suggest multiple origins of V. albo-atrum hop isolates, and the possible appearance of new virulent isolates in the future in other hop growing regions.  相似文献   

20.
The japonica rice (Oryza sativa) cultivar Chubu 32 has a high level of partial resistance to blast, which is mainly controlled by a dominant resistance gene located on chromosome 11. The partial resistance to the rice blast fungus (Magnaporthe grisea) in Chubu 32 has isolate specificity; isolate IBOS8-1-1 is more aggressive on Chubu 32 than are other isolates. We hypothesized that the gene-for-gene relationship fits this case of a partial resistance gene in Chubu 32 against the avirulence gene in the pathogen. The partial resistance gene in Chubu 32 was mapped between DNA markers C1172 (and three other co-segregated markers) and E2021 and was designated Pi34. In the 32 F3 lines from the cross between a chromosome segment substitution line (Pi34) from Koshihikari/Kasalath and Chubu 32, the lines with high levels of partial resistance to the M. grisea isolate Y93-245c-2 corresponded to the presence of Pi34 estimated by graphic genotyping. This indicated that Pi34 has partial resistance to isolate Y93-245c-2 in compatible interactions. The 69 blast isolates from the F1 progeny produced by the cross between Y93-245c-2 and IBOS8-1-1 were tested for aggressiveness on Chubu 32 and rice cultivar Koshihikari (Pi34). The progeny segregated at a 1 : 1 ratio for strong to weak aggressiveness on Chubu 32. The results suggested that Y93-245c-2 has one gene encoding avirulence to Pi34 (AVRPi34), and IBOS8-1-1 is extremely aggressive on Chubu 32 because of the absence of AVRPi34. This is the first report of a gene-for-gene relationship between a fungal disease resistance gene associated with severity of disease and pathogen aggressiveness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号