首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Sea urchins produce high‐energy, membrane‐bound fecal pellets that contain residual nutrients and large quantities of microbiota. These egesta are readily consumed by the shrimp, Litopenaeus vannamei. Egesta of the sea urchin, Lytechinus variegatus, were evaluated as a feed supplement or total replacement for a commercial shrimp diet. Shrimp were stocked at 0.49 g ± 0.06 g initial body weight and housed individually in 2.8‐L tanks in a commercial recirculating zebrafish system. Shrimp were assigned to one of six diets: commercial shrimp feed, reference sea urchin feed, collected dried sea urchin egesta, collected wet sea urchin egesta, half ration of shrimp feed and half collected wet sea urchin egesta, and egesta naturally produced by two sea urchins in polyculture. Equivalent dry matter amounts of each diet were proffered to shrimp in each treatment twice daily, except for those that had complete access to natural egesta excreted by sea urchins in polyculture. Sea urchins were proffered a reference sea urchin feed at 2% body weight daily. After 27 days, shrimp proffered collected dried or wet egesta did not differ significantly in percent weight gain and showed the lowest weight gain. The percent weight gain of shrimp fed the commercial shrimp diet did not differ significantly from that of the shrimp fed half commercial shrimp diet and half egesta. The highest weight gain was recorded for those shrimp that consumed the untouched egesta produced by sea urchins in polyculture. These data suggest that consumed egesta have noteworthy nutritional value and therefore would be beneficial to the culture of extractive species in an integrated multitrophic aquaculture system.  相似文献   

2.
This gonad enhancement study investigates the effect of different fresh and formulated feeds and feeding regimes on the growth and gonad quality of wild‐collected adult sea urchin, Tripneustes gratilla, under farm conditions for over 18 weeks. In the first 12 weeks (phase 1), urchins were fed fresh Ulva rigida (U); a 50:50 mixture of fresh U. rigida and Gracilaria gracilis (UG); fresh G. gracilis (G) and a formulated diet 20U (containing 20% U. rigida), and in the final 6 weeks (phase 2) of the study, diet was changed to a formulated feed (20U diet). By the end of phase 1, urchins fed the 20U diet produced gonads (50.72 ± 5.4 g) that were significantly heavier (p < .001) than the gonads of urchins fed the fresh seaweed diets (U, UG & G). By the end of phase 2, gonad weight of urchins in treatment groups UG‐20U and G‐20U were similar to those fed the 20U‐20U diet. Gonad colour of urchins in the G‐20U treatment became significantly lighter (ANOVA, p = .029) and poorer quality, compared with urchins in the U‐20U group. This gonad enhancement study, conducted on wild‐collected adult T. gratilla, has shown that a formulated feed (20U diet) can enhance gonad growth and produce commercially acceptable gonads. This farm‐based study supports previous findings from aquarium‐based studies by our group and indicates that short‐term sea urchin gonad enhancement can be carried out under farm conditions in South Africa.  相似文献   

3.
4.
In experiment 1, juvenile sea urchins (n = 80, 0.088 ± 0.001 g wet weight and 5.72 ± 0.04 mm diameter) were held individually and fed ad libitum one of three semi‐purified formulated diets (n = 16 individuals treatment?1). In the diets, protein was held constant (310 g kg?1 dry, as fed) and carbohydrate level varied (190, 260, or 380 g kg?1 dry, as fed). Wet weights were measured every 2 weeks. Total wet weight gain was inversely proportional to dietary carbohydrate level and energy content of the respective diet. In experiment 2, sea urchins (5.60 ± 0.48 g wet weight, n = 40) fed 190 g kg?1 carbohydrate consumed significantly more dry feed than those fed 260 g kg?1, but not more than those fed 380 g kg?1 carbohydrate. Based on differential feed intake rates, sea urchins that consumed more feed also consumed higher levels of protein and had the highest weight gain. Consequently, protein content and/or protein: energy ratio may be important in determining feed utilization and growth among sea urchins in this study. The average digestible energy intake was approximately 70 kcal kg?1 body weight day?1, suggesting daily caloric intake of juvenile Lytechinus variegatus is lower than in shrimp and fish.  相似文献   

5.
Effects of feed type and temperature on growth and body composition of juvenile abalone, Haliotis discus hannai Ino, were determined. A 2 (feed types: formulated diet and dry sea tangle) × 3 (temperature conditions: 20, 23 and 26 C) factorial design with triplicate was used. Seventy juvenile abalone averaging 4.7 g were randomly distributed into each of 18, 50‐L plastic rectangular containers. Six containers were placed into each temperature condition of three 1.3 ton concrete flow‐through raceway systems. Abalone were daily fed with either the formulated diet or dry sea tangle once a day to satiation level. Survival was affected by feed type, but not by temperature. Weight gain of abalone was affected by both feed type and temperature. Regardless of temperature, weight gain of abalone fed the formulated diet was better than that of abalone fed the dry sea tangle. Shell length and width were affected by feed type, but not by temperature. In conclusion, weight gain of abalone was affected by both feed type and temperature, but feed type had a stronger effect than temperature. The formulated diet achieved better growth of abalone than the dry sea tangle regardless of temperature and 20 C seemed to be recommendable for abalone among temperature tested.  相似文献   

6.
Abstract— An important aspect in the development of any aquaculture industry is the maximization of juvenile somatic growth (i.e., body growth) to reduce production time and increase the size of the final product. In this study, green sea urchins Strongylocentrotus clroebachiensis were fed a prepared diet from 4 December 1998 to 10 September 1999 (i.e., 280 d) in a laboratory to investigate the effect of protein source (soybean andlor fish), protein concentration (20,30,40, and 50% dry mass) and juvenile size (4‐8 mm and 12‐20 mm initial test diameter) on somatic growth. A natural diet of Laminwia longicrurus (i.e., kelp) was used as a reference. There was no difference in initial size among the treatments for either the smaller cohort 1 or the larger cohort 2 sea urchins (6.3 mm and 13.8 mm initial average test diameter, respectively) (P > 0.05 for all tests). After 280 d, the sea urchins fed kelp had an average size of 20.7 mm and 24.5 mm (cohort 1 and cohort 2, respectively). The final average sizes of the sea urchins fed the prepared diets, which did not relate to dietary protein concentrations andlor protein source, ranged from 13.2 mm to 16.2 mm (cohort 1) and from 20.4 mm to 22.9 mm (cohort 2), and were significantly smaller than the kelpfed sea urchins (P < 0.05 and P < 0.001, cohort 1 and cohort 2, respectively). All treatments experienced 95% survivorship or greater. Sea urchin size appears to affect growth rate when optimal conditions for growth are available (i.e., diet and water temperature). As water temperatures increased during the summer of 1999, the sea urchins in cohort 1 fed kelp had a significantly higher growth rate (0.069 dd) than the cohort 2 kelpfed sea urchins (0.052 dd) (P < 0.05). However, within each cohort, there were no significant difference in growth rate (P > 0.05) among the sea urchins fed prepared diets, suggesting sea urchins do not require high concentrations of dietary protein for superior growth, and that plant protein can substitute fish protein in sea urchin diets. Furthermore, the sea urchins fed the prepared diets had poorer test quality and larger gonad yields (13‐22%) compared to the kelpfed sea urchins (4.2%) and a wild sample of sea urchins of similar size (4.0%). The results suggest that the sea urchins fed the prepared diets allocated more energy to gonad production, whereas those fed a natural diet allocated more energy toward test production. To address this gap, more research is required to identify the nutritional components required for test growth that were present in kelp, but appeared to be deficient in the prepared diets.  相似文献   

7.
This study investigated the effects of dietary minerals and pigments in prepared diets on the somatic growth performance of wild and hatchery‐reared juvenile green sea urchins, Strongylocentrotus droebachiensis, by two feeding trials. In the first feeding trial, a modified Bernhart‐Tomerelli salt mix (BT) at 0, 1.5, 3, 6, and 15% dry mass and a Shur‐Gain/Maple Leaf Foods mineral mix at 3 and 6% dry mass were used to test for mineral effects. Pigment effects were tested by incorporating 1.25% Algro? to the prepared diets (i.e., 250 mg of beta‐carotene per kilogram of diet). Sea urchins (13–15 mm of initial test diameter [TD]) collected from the wild were fed the prepared diets over 154 d. The sea urchins that were fed the pigmented diets had significantly greater test growth than those fed the nonpigmented diets, and mineral concentration in the pigmented diets was directly related to juvenile size at the end of the feeding trial. A sample of juveniles from each treatment group was sacrificed to determine test, gonad, and gut yields and ash concentrations. Ash concentrations in the test and gonad were higher for juveniles fed pigmented diets than for those fed nonpigmented diets with similar mineral concentration, suggesting an interaction between minerals and pigments within the juvenile sea urchins. The second feeding trail used two size cohorts of hatchery‐reared juveniles ranging from 1–2 mm and 2–3 mm of initial TD to compare the growth of sea urchins fed either the pigmented diet with 15% BT (i.e., the best diet in the first feeding trial) or kelp, Laminaria longicruris, over 159 d. Growth performance was similar for both cohorts, indicating no size effect, but the juveniles fed the prepared diet were significantly larger at the end of the feeding trial than those fed kelp. This suggests that prepared diets with pigment and high mineral concentration can outperform kelp, and be utilized for juvenile green sea urchins to increase test growth.  相似文献   

8.
Groups of juvenile green sea urchin, Strongylocentrotus droebachiensis (average wet weight = 3.3 g), were fed five different dry feed rations (0.2%, 0.4%, 0.8%, 1.2% and 2.4% of their body weight per week) under constant light and temperature conditions for 160 days (Experiment I) in groups to examine growth effects, and for 40 days as individual treatments (Experiment II) to examine feeding efficiency. There was 100% survival of the sea urchins during both experiments. In Experiment I, the lowest ration group (0.2%) had significantly lower growth than the rest of the groups. There was no significant differences in growth between the sea urchin fed ration over 0.4% dry feed of the body wet weight per week. In Experiment II, the lowest feed ration groups (0.2%) had significant lowest growth but had the best feed conversion ratio (FCR), using 0.5 g of feed of dry feed per gram of sea urchin wet weight body growth. The FCR increased with increasing feed ration and the 2.4% group had the poorest FCR, using 1.3 g of feed per gram weight gain. Results from Experiments I and II illustrate that juvenile green sea urchin can grow at a restricted feed ration that is under maximum feed intake, without reduction in growth.  相似文献   

9.
The effects of varying protein and carbohydrate levels in prepared diets on the somatic growth of juvenile green sea urchins, Strongylocentrotus droebachiensis, were examined. Ten diets were tested on 600 hatchery reared urchins (mean start weight = 0.11 g) for 6 mo with three replicate groups per diet. Nine of the diets were prepared specifically for urchins and varied in protein (16–40% protein) and carbohydrate (29–49% carbohydrate) levels. The other two diets consisted of a commercially available abalone diet and the kelp, Saccharina latissima. Weight measurements were carried out at 6‐wk intervals, and at the end of the study urchins were individually weighed and a subsample from each treatment was analyzed for gonad weight and color. End weights after 6 mo ranged from 2.56 g for urchins fed the abalone diet to 6.11 g for urchins fed one of the prepared diets. Most of the prepared feeds outperformed kelp, and significant differences in growth were detected between some of the diets. In general, diets with lower protein levels (16–22% protein) and higher carbohydrate levels (>40% carbohydrate) produced the fastest growth. However, further diet refinement and/or use of finishing diets may be necessary to optimize gonad quality.  相似文献   

10.
The nutritive values of three pelleted prepared diets, based on animal (AP), vegetable (VP) and yeast protein (YP) were studied for the sea urchin Heliocidaris erythrogramma (Val.). Fresh macroalga Ulva australis was used as a natural control diet. Triplicate groups of five animals were fed one of the four diets ad libitum every second day for 85 days. Sea urchins fed pelleted feeds had significantly higher food consumption rates (dry basis) and significantly lower total and protein absorption efficiencies compared with the algal diet. The gonad yield and gonad production efficiency in sea urchins fed the natural diet were significantly higher compared with initial group (gonad yield only) and urchins fed animal and vegetable diets, but did not differ significantly from those of the animals fed the yeast diet. Percent protein and lipid in the gonads were not affected by the dietary source. The taste and smell of gonads were generally better in sea urchins collected from the wild or fed yeast and natural diets than in sea urchins fed animal and vegetable diets. The animal protein diet was the most stable in seawater while the yeast protein diet had the poorest water stability. The results of this study suggest that development of a more stable, single‐cell, protein‐based diet has a potential to promote gonad production of H. erythrogramma.  相似文献   

11.
Two formulated diets were evaluated to replace live crab (C) as feed for juveniles Enteroctopus megalocyathus. Formulated diets consisted of crab paste (CP) and a mixture of freeze‐dried meals of crab and squid (C&S). After 10 weeks of feeding, the effect of each diet was analysed on productive performance, nutritional and physiological condition and immune system. Both the crab and C&S diets produced the best values for specific growth rate, feed conversion ratio and protein efficiency ratio. The diet C&S proved to be the most digestible with greatest metabolized energy. The CP diet was similar to the C diet in terms of biological value and protein apparent digestibility; nevertheless, its performance was weaker for the other indicators. Furthermore, the highest α‐amylase, lipase and alkaline proteolytic activity values were observed in octopuses fed live crab, as opposed to those fed formulated feeds. The type of diet did not affect lysozyme activity in neither mucus nor haemolymph. The production of reactive oxygen species was highest in octopuses fed CP diet. It is proposed the use of C&S diet to study the nutritional requirements and to develop an optimal formulated diet for juvenile Patagonian red octopus.  相似文献   

12.
Abstract.— Weight gain and survival were examined in newly-hatched juvenile Australian crayfish Cherax quadricarinatus fed formulated crustacean feeds. Crayfish cultured using several Argent specialty feeds, including brine shrimp flakes, freeze-dried krill, powdered spirulina, and hatchfry encapsulon, exhibited high mortality (>90%) and little or no weight gain. After ten weeks of culture, crayfish fed AB crayfish feed (AB) exhibited the highest weight gain with nearly 100% survival. Weight gain of crayfish fed other formulated feeds, such as Zeigler post-larval feed (ZPL), Zeigler shrimp grower (ZSG), Burris Mill crayfish feed (BM), Rangen shrimp grower (RSG), and a formulated CNStacean feed (CRUS) were significantly lower. Survival of crayfish cultured using these feeds was also significantly lower, ranging from 40% (CRUS) to 72% (BM). Mortalities associated with these feeds occurred both during the intermolt period and during the molt. Recovered biomass was approximately half of that observed for crayfish cultured using AB feed, further indicating the inadequacy of these formulated feeds for use in crayfish cultures. These data suggest that many commercially available feeds do not provide the nutritional requirements for juvenile Australian crayfish.  相似文献   

13.
Supplying juvenile sea urchins with an abundant supply of resources and essential nutrients for growth will facilitate somatic growth and, hence, improve the success of the sea urchin aquaculture industry. Lipids are essential in physical processes such as membrane production and are a concentrated source of energy. This study, using prepared diets, tested the effects of lipid sources containing different major fatty acids (i.e., n‐3 and/or n‐6) (Part 1) and lipid concentration (i.e., 1, 3, 7, and 10%) (Part 2) on the somatic (i.e., test or shell) growth of two size cohorts (7.0‐ and 15.3‐mm average initial test diameter [TD]) of juvenile green sea urchins, Strongylocentrotus droebachiensis. The growth of the sea urchins fed prepared diets was compared to the growth of sea urchins fed a kelp reference diet, Laminaria longicruris. After both feeding trials, the kelp‐fed sea urchins had superior test growth and were more similar in physical appearance to wild sea urchins (i.e., test color, spine length, and gonad color). The sea urchins fed the prepared diets had pale test color, short, stubby spines, and large, pale‐colored gonads compared to wild sea urchins. The smaller cohort of sea urchins grew at a faster rate, but growth patterns for both cohorts were similar. The juveniles fed the prepared diets (in both feeding trials) had high initial growth rates that decreased after approximately 100 d compared to the kelp‐fed juveniles. Differences in test growth were not shown to be affected by sea urchin size (i.e., similar results for both cohorts) or by differences in dietary lipid sources (i.e., the presence of n‐3 and/or n‐6 fatty acids). However, the sea urchins fed diets with lower lipid concentration (≤3%) had larger average TDs than those fed diets with higher lipid concentrations (≥7%). Differences in test growth and physical appearance among those fed the prepared diets and kelp may have been because of nutritional deficiencies in the prepared diets.  相似文献   

14.
The present study was performed to determine whether the palatability, consumption and digestibility of an artificial sea urchin diet could be improved by the addition of a highly preferred seaweed. Four species of macroalgae (Ulva rigida, Ecklonia maxima, Porphyra capensis and Gigartina polycarpa) were assessed by pairwise preference tests. Each macroalgal species was consumed at least once by Tripneustes gratilla and significant preferences always involved Ulva as the most preferred species. Four protein‐rich artificial diets supplemented with varying amounts of Ulva [0, 50, 150 and 200 g kg?1 designated 0, 5, 15 and 20U, respectively] were then developed and fed to urchins over a 20‐day period. Inclusion of 200 g kg?1 dried Ulva significantly improved the palatability of the artificial diet and mean dry feed consumption rates were higher in urchins fed the 20U and 15U diets compared with urchins fed diets with a lower Ulva content. Daily digestible protein (DP) intake also differed significantly, with urchins fed the 20U diet having a significantly higher DP intake compared with the 15U, 5U and 0U treatments. These results indicate that inclusion of the palatable seaweed Ulva acted as a feeding stimulant, increasing the acceptability of the diets and boosting protein intake.  相似文献   

15.
A pilot project aimed at testing roe enhancement strategies based on offshore Paracentrotus lividus cultures was conducted off the south‐east coast of Italy (Apulia Region). Adult sea urchins were reared in sea cages located 700 m offshore at a depth of 12 m for 3 months. The animals were fed once a week on two formulated diets, prepared mixing nutrients with agar 20 g/Kg and differing only in terms of the protein source: anchovy flour (Diet A) or krill flour (Diet K). At the end of the rearing trial, the gonad somatic index of sea urchins fed on formulated diets significantly exceeded that of wild sea urchins. Total FAA content in the gonads of wild sea urchins and Diet A‐fed sea urchins was similar, whereas in Diet K‐fed sea urchins it was significantly higher. In terms of fatty acids, the gonads contained SFAs, MUFAs and PUFAs. In visual and sensory assessment of gonads by panel test and electronic nose, the gonads of reared sea urchins were rated as being of better size, while no differences were recorded for coloration, taste and odour. This study shows that under these experimental conditions, commercial‐grade Paracentrotus lividus roe enhancement can be achieved after 3 months in sea cages.  相似文献   

16.
Four semi‐moist formulated feeds were supplied to Octopus vulgaris subadults (664 ± 70 g; 18.4 ± 0.7°C) in two different experiments. In the experiment #1, two diets were prepared with a new mixture of binders (gelatine 150 g kg?1, starch 100 g kg?1 and gum 50 g kg?1). The GEL15‐Squid and GEL15‐Hake feeds included 100 g kg?1 freeze‐dried squid (Todarodes sagittatus) or hake (Merluccius sp.) respectively. Both feeds showed low water disintegration rates at 24 h (13.6–15.0% dry weight). The specific feeding rate was higher in animals fed GEL15‐Hake (2.7%BW day?1), but the growth and feed efficiency were significantly better in animals fed GEL15‐Squid (1.4%BW day?1 and 61.2% respectively; P < 0.05). The proximate composition of the digestive gland, carcass and whole animals was similar. In the experiment #2, the GEL15‐Squid amino acid profile was improved by replacing 50 g kg?1 gelatine by 50 g kg?1 freeze‐dried squid (GEL10‐Squid) or freeze‐dried fish (GEL10‐Fish). These feeds showed higher water disintegration rates (31.7–36.3% dry weight). The feeding rates (2.2–2.3%BW day?1), growth (1.5%BW day?1) and feed efficiency were similar for both diets. Total lipids were higher in the digestive gland and whole animals fed GEL10‐Fish diet (P < 0.05). Future effort could be directed towards alternative binders that allow improve amino acid balance with a minimum gelatine content or even supplementation trials including essential amino acids.  相似文献   

17.
Adult green sea urchins Strongylocentrotus droebachiensis were fed three different quantities (0.25, 0.50, 1.00% body weight/d) of a prepared feed during a 12‐wk experiment to determine the effect of food ration on gonad quantity and quality. A diet of kelp, Laminaria longicruris and/or L. digitata, fed at satiation (3% body weight/d) and urchins taken from the wild at the beginning and end of the experiment served as controls. Urchins fed prepared feed or kelp increased their percent gonad yield significantly over the experimental period. Affer 12 wk, individuals fed the prepared diet at 0.50 or 1.00% body weighffd had significantly higher percent gonad yields (mean ± SEM: 23.5 ± 0.6% and 23.4 ± 0.7%, respectively) than urchins fed at 0.25% body weight/d (18.0 ± 1.0%) or control animals given kelp (18.3 ± 0.8%). There was no significant difference in gonad yield between the 0.50 and 1.00% feeding levels. All feeding treatments had significantly higher percent gonad yields than urchins sampled from the wild at the end of the experiment that had recently spawned (2.8 ± 0.5%). There was no significant difference in gonad taste among urchins fed the prepared diet at 0.25% body weight/d, those given kelp, or those collected from the wild at the end of the experiment (good to very good ratings), but all of these treatments had significantly better tasting gonads than urchins given the prepared feed at 0.50 or 1.00% body weight/d (satisfactory ratings). Gonad taste rating of urchins fed a prepared diet was dependent on ration with greater feed amounts leading to worse tasting gonads (linear regression: r2= 0.68, P < 0.01). Gonad color, texture, and firmness did not differ significantly among any of the feed ration treatments or kelp control. Results suggest that the best ration for prepared feed would be 0.50% body weightld since this would optimize gonad yield while minimizing feed costs. Further research on prepared feeds is required to optimize both gonad color and taste.  相似文献   

18.
In this study, we evaluated protein and carbohydrate levels in cold‐extruded dry diets. Sea urchins (12.6 ± 0.12 SE g wet weight, 29.5 ± 0.11 SE mm diameter) were collected from St. Joseph Bay, Florida (30°N, 85.5°W), and transported to the Texas Agrilife Research Mariculture Laboratory in Port Aransas, Texas. Urchins were held individually in replicated enclosures within a recirculating seawater system (32 ± 2 ppt and 22 ± 2 C). Urchins (n = 16urchins) were fed diets that differed in protein : carbohydrate levels (31:33%, 25:39%, 21:44%, and 17:47% dry weight) for 12‐wk. Survival was 100% in all diet treatments. Urchins fed the 31:33% protein : carbohydrate diet consumed less feed, more dry protein, less dry carbohydrate, less energy, and had lower feed conversion ratios than urchins fed other diets. Urchins fed the 31:33% protein : carbohydrate diet had larger test diameters, total wet weights, production efficiencies, and gonad production efficiencies than urchins in the other diets. Weight gain varied directly and significantly with protein intake. Sufficient energy was available for maximum weight gain as protein was spared. Growth rates and production efficiencies for the urchins in this study were higher than in previous feeding studies with adult Lytechinus variegatus.  相似文献   

19.
Determining the optimum light conditions for sea urchins reared in land‐based systems is vital for the future use and assessment of possible commercial systems of sea urchin farming. The effects of two different light regimes, complete darkness and a long day photoperiod of 16 h light:8 h darkness, on the somatic and gonadal growth of the European sea urchin Paracentrotus lividus (19.5–23.0 mm) was investigated using the commercial UrchinPlatter? System over a 6‐month period (5 March to 5 September). Hatchery‐produced P. lividus were transported to the Aquaculture Fisheries Development Centre (AFDC, University College, Cork UCC). Before arrival at the AFDC, sea urchins were reared on a diet of Laminaria digitata. Females were the predominant species of the animal group, displaying a reproductive Stage III (growing stage) where gametogenesis was commencing. Results show that darkness supports higher somatic growth than the photoperiod treatment. Feeding rates were higher for sea urchins reared under darkness with gonadal growth increasing for both experimental treatments. Individuals reared under darkness had a higher per cent change in gonad index from the initial sample taken at the beginning of the experiment.  相似文献   

20.
饵料和养殖密度对中国对虾幼虾生长及存活率的影响   总被引:6,自引:0,他引:6  
在实验用虾遗传背景一致的情况下,分析了3种饵料(配合饲料、冰冻鲜鱼肉和活卤虫)和4个不同的养殖密度对小水体中国对虾幼虾生长和存活率的影响。结果表明,饵料和饲养密度对中国对虾幼虾生长及存活率有显著影响。在饵料、养殖密度单因子实验及饵料和养殖密度相结合的双因子实验中,幼虾的生长均表现出极其显著的差异(P<0.01),活卤虫对幼虾生长的效应尤为突出。而养殖密度对中国对虾的行为生物学、个体间体重增量均有影响。随着养殖密度的提高,中国对虾增重变慢;同时,个体间体重增量差异变大。随着养殖密度的增加,中国对虾幼虾的存活率呈下降趋势,但不同饵料对存活率影响变化幅度较大,波动在58.1%~85.2%之间,其中投喂活卤虫养殖密度为50尾/桶的存活率最高(85.2%);投喂配合饵料4个养殖密度梯度的存活率变化不明显;而投喂冰冻鱼肉4个养殖密度梯度的存活率变化较大。因此,采用合适的饵料和养殖密度,能够提高中国对虾的生长速度,提高对虾养成存活率,改善生长过程中对虾群体体长、体重的整齐度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号