首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Pre-harvest sprouting (PHS) is one of the serious problems for wheat production, especially in rainy regions. Although seed dormancy is the most critical trait for PHS resistance, the control of heading time should also be considered to prevent seed maturation during unfavorable conditions. In addition, awning is known to enhance water absorption by the spike, causing PHS. In this study, we conducted QTL analysis for three PHS resistant related traits, seed dormancy, heading time and awn length, by using recombinant inbred lines from ‘Zenkouji-komugi’ (high PHS resistance) × ‘Chinese Spring’ (weak PHS resistance). QTLs for seed dormancy were detected on chromosomes 1B (QDor-1B) and 4A (QDor-4A), in addition to a QTL on chromosome 3A, which was recently cloned as TaMFT-3A. In addition, the accumulation of the QTLs and their epistatic interactions contributed significantly to a higher level of dormancy. QDor-4A is co-located with the Hooded locus for awn development. Furthermore, an effective QTL, which confers early heading by the Zenkouji-komugi allele, was detected on the short arm of chromosome 7B, where the Vrn-B3 locus is located. Understanding the genetic architecture of traits associated with PHS resistance will facilitate the marker assisted selection to breed new varieties with higher PHS resistance.  相似文献   

2.
Y. Bougot    J. Lemoine    M.T. Pavoine    H. Guyomar'ch    V. Gautier    H. Muranty    D. Barloy 《Plant Breeding》2006,125(6):550-556
Powdery mildew is one of the major diseases of wheat in regions with a maritime or semi‐continental climate which can strongly affect grain yield. The objective of the study was to identify and compare quantitative resistance to powdery mildew of line RE9001 at the adult plant and vernalized seedling stages. RE9001 has no known Pm gene and shows a high level of adult plant resistance in the field. Using 104 recombinant inbred lines (RILs) of an RE9001 × ‘Courtot’ F8 population, a genetic map was developed with 363 markers distributed over 26 linkage groups and covering 3825 cM. The global map density was 1 locus/10.3 cM. RILs were assessed under field and tunnel greenhouse conditions for 2 years in two locations. Eleven quantitative trait loci (QTL) were detected at the adult stage and they explained 63% of the variation, depending on the environment. Three QTLs were found, at least, in the two environments. One QTL from RE9001, mapped on chromosome 2B, was stable in each environment. This QTL, QPm.inra.2B, explained 10.3–36.6% of the variation and could be mapped in the vicinity of the Pm6 gene. At the vernalized seedling stage, one QTL detected by the isolate 93‐27 could be an allele of the Pm3g gene present in ‘Courtot’. No residual effect of the Pm3g gene was detected at either stage. Markers flanking the QTL 2B could be useful tools to combine resistance to powdery mildew in wheat cultivars.  相似文献   

3.
Advanced backcross QTL analysis was used to identify QTLs for seedling and adult plant resistance to leaf rust in introgression lines derived from a cross between the spring wheat cultivar ‘Saratovskaya 29’ and a synthetic allopolyploid wheat (T. timopheevii/T. tauschii). F2 mapping populations involving two backcross selections (‘BC5’ and ‘BC9’ lines) were genotyped with microsatellite markers. Two significant QTL for adult plant resistance were identified in line ‘BC5’: one on chromosome 2B, but originating from chromosome 2G, explained 31% of the trait variance. The other, derived from T. tauschii and mapped to the short arm of chromosome 2D explained 19% of the trait variance. In the second line, one major seedling and adult plant resistance QTL was identified on chromosome 2B. Both QTL co-located to the same marker interval. Such introgression lines, resulting from the reconstruction of common wheat genome, are of interest both as initial material for breeding and improvement of current cultivars, and as a resource for the study of the interaction and transformation of genomes.  相似文献   

4.
X. Shen    H. Ohm 《Plant Breeding》2006,125(5):424-429
The objective of this study was to assess the effectiveness of Fusarium head blight (FHB) resistance derived from wheatgrass Lophopyrum elongatum chromosome 7E and to determine whether this resistance can augment resistance in combination with other FHB resistance quantitative trait loci (QTL) or genes in wheat. The ‘Chinese Spring’–Lophopyrum elongatum disomic substitution line 7E(7B) was crossed to three wheat lines: ‘Ning 7840’, L3, and L4. F2 populations were evaluated for type II resistance with the single‐floret inoculation method in the greenhouse. Simple sequence repeat markers associated with Fhb1 in ‘Ning 7840’ and L4 and markers located on chromosome 7E were genotyped in each population. Marker–trait association was analysed with one‐way or two‐way analysis of variance. The research showed that, in the three populations, the average number of diseased spikelets (NDS) in plants with chromosome 7E is 1.2, 3.1 and 3.2, vs. NDS of 3.3, 7.2 and 9.1 in plants without 7E, a reduction in NDS of 2.1, 4.1 and 5.9 in the respective populations. The QTL on 7E and the Fhb1 gene augment disease resistance when combined. The effect of the QTL on 7E was greater than that on 3BS in this experiment. Data also suggest that the FHB resistance gene derived from L. elongatum is located on the long arm of 7E.  相似文献   

5.
This study used cytogenetic stocks to investigate the chromosomal location of genes responsible for polyphenol oxidase (PPO) activity in common and durum wheat seeds. Substitution lines of chromosome 2A of hexaploid varieties ‘Cheyenne’, ‘Thatcher’ and ‘Timstein’ in ‘Chinese Spring’ showed significantly higher PPO activity than all other substitution lines of the same variety, with the exception of substitutions of ‘Cheyenne’ chromosome 3A and ‘Thatcher’ chromosome 4B. Substitution lines of chromosome 2A of Triticum turgidum var. dicoccoides and of chromosome 2D of ‘Chinese Spring’ into the tetraploid variety ‘Langdon’ showed a significant increase in PPO activity relative to all other substitution lines in Langdon. The gene(s) responsible for high PPO activity in chromosome 2D from ‘Chinese Spring’ was mapped on the long arm within a deletion that represents 24% of the distal part of the arm. This study shows that genes located in homoeologous group 2 play a major role in the activity of PPO in wheat.  相似文献   

6.
The objective was to study the genetic basis of adult plant resistance to powdery mildew of the winter wheat line RE714 by quantitative trait loci (QTL) analysis and to investigate the stability of the QTL detected in two different genetic backgrounds. Two DH populations from the crosses between RE714 and the susceptible parents ‘Festin’ and ‘Hardi’ were used. Reaction of the DH lines to powdery mildew was assessed in different environments in Belgium under natural disease infection. Considering both populations and according to the environment tested, one to seven QTL were detected. Among them, residual effects of the race‐specific resistance genes Pm4b and MIRE were found. Two major QTL were very stable (on chromosome 5D and at the MIRE locus), since they were detected in both populations and over all environments tested. The QTL detected varied according to the susceptible parent used, and a residual effect at the Pm4b gene was not observed with the genetic background of ‘Hardi’.  相似文献   

7.
W-C. Zhou    F. L. Kolb    G-H. Bai    L. L. Domier    L. K. Boze  N. J. Smith 《Plant Breeding》2003,122(1):40-46
The objectives of this study were to validate the major quantitative trait locus (QTL) for scab resistance on the short arm of chromosome 3B in bread wheat and to isolate near‐isogenic lines for this QTL using marker‐assisted selection (MAS). Two resistant by susceptible populations, both using ‘Ning7840’ as the source of resistance, were developed to examine the effect of the 3BS QTL in different genetic backgrounds. Data for scab resistance and simple sequence repeat (SSR) markers linked to the resistance QTL were analyzed in the F2:3 lines of one population and in the F3:4 lines of the other. Markers linked to the major QTL on chromosome 3BS in the original mapping population (‘Ning7840’/‘Clark’) were closely associated with scab resistance in both validation populations. Marker‐assisted selection for the QTL with the SSR markers combined with phenotypic selection was more effective than selection based solely on phenotypic evaluation in early generations. Marker‐assisted selection of the major QTL during the seedling stage plus phenotypic selection after flowering effectively identified scab resistant lines in this experiment. Near‐isogenic lines for this 3BS QTL were isolated from the F6 generation of the cross ‘Ning7840’/‘IL89‐7978’ based on two flanking SSR markers, Xgwm389 and Xbarc147. Based on these results, MAS for the major scab resistance QTL can improve selection efficiency and may facilitate stacking of scab resistance genes from different sources.  相似文献   

8.
J. Jensen    G. Backes    H. Skinnes  H. Giese 《Plant Breeding》2002,121(2):124-128
Three quantitative trait loci (QTL) for scald resistance in barley were identified and mapped in relation to molecular markers using a population of chromosome doubled‐haploid lines produced from the F1 generation of a cross between the spring barley varieties ‘Alexis’ and ‘Regatta’. Two field experiments were conducted in Denmark and two in Norway to assess disease resistance. The percentage leaf area covered with scald (Rhynchosporium secalis) ranged from 0 to 40% in the 189 doubled‐haploid (DH) lines analysed. One quantitative trait locus was localized in the centromeric region of chromosome 3H, Qryn3, using the MAPQTL program. MAPQTL was unable to provide proper localization of the other two resistance genes and so a non‐interval QTL mapping method was used. One was found to be located distally to markers on chromosome 4H (Qryn4) and the other, Qryn6, was located distally to markers on chromosome 6H. The effects of differences between the Qryn3, Qryn4 and Qryn6 alleles in two barley genotypes for the QTL were estimated to be 8.8%, 7.3% and 7.0%, respectively, of leaf covered by scald. No interactions between the QTLs were found.  相似文献   

9.
芒是小麦重要的穗部器官和形态特征,是小麦长期进化和适应环境的结果,对产量和抗旱性等具有重要影响。目前,对麦芒的遗传与发育还缺乏系统的研究,相关基因克隆或精细定位的研究尚未见报道。本试验利用短芒材料‘六柱头’与长芒材料‘石矮1号’构建的F2群体(SL-F2)对芒的遗传与发育进行了研究。细胞学观察表明,短芒主要是由细胞长度变短引起;遗传分析表明,‘六柱头’的短芒由显性单基因控制;借助Wheat660K SNP芯片的BSA分析和SL-F2群体的精细定位,确定‘六柱头’的芒长抑制基因是前人报道的B2位点,并将其定位到6B染色体4.84Mb的物理区间(471.28~476.12 Mb)内,该区段在中国春与矮抗58间具有良好的共线性。在B2定位区间共有61个基因,其中5个在中国春穗部特异表达,TraesCS6B02G264400在中国春和Azhurnaya幼穗表达差异显著。这些研究结果为B2基因的克隆、小麦芒形成机理的解析及育种中的应用奠定了基础。  相似文献   

10.
K. Kato    H. Miura  S. Sawada 《Plant Breeding》1999,118(5):391-394
A homoeologous quantitative trait locus to that of eps5L on barley chromosome 5H was identified in a syntenic region of wheat chromosome 5A. Wheat single chromosome recombinant lines (SCRs) were developed from a cross between ‘Chinese Spring’(‘Cappelle-Desprez’ 5A) and ‘Chinese Spring’(Triticum spelta 5A), these were grown together with the parental controls under different vernalization and photoperiod regimes. The variation for ear emergence time accelerated heading induced by the T. spelta segment indicated an effect associated with the Xcdo412-Xbcd9 interval. Since no differences between the SCRs and controls in responses to vernalization and photoperiod treatments were detected, this effect was identified as an earliness per se gene, Q Eetocs-5 A.2, which may be homoeologous to the eps5L quantitative trait locus of barley. Xbcd926 has been found to be closely linked to the rice flowering time quantitative trait loci, QHd9a or FLTQ2, on chromosome 9, suggesting possible relationships among the quantitative trait loci across wheat, barley and rice genomes.  相似文献   

11.
Greenbug and Russian wheat aphid (RWA) are two devastating pests of wheat. The first has a long history of new biotype emergence and recently. RWA resistance has just started to break down. Thus, it is necessary to find new sources of resistance that will broaden the genetic base against these pests in wheat. Seventy‐five doubled haploid recombinant (DHR) lines for chromosome 6A from the F1 of the cross between “Chinese Spring’ and the “Chinese Spring (Synthetic 6A) (Triticum dicoccoides × Aegilops tauschii)” substitution line were used as a mapping population for testing resistance to greenbug biotype C and to a new strain of RWA that appeared in Argentina in 2003. A quantitative trait locus (QTL) (br antixenosis to greenbug was significantly associated with the marker loci Xgwm1009 and Xgwm1185 located in the centromere region of chromosome 6A. Another QTL which accounted for most of the antixenosis against RWA was associated with the marker loci Xgwm1291 and Xiinni1150. both located on the long arm of chromosome 6A. This is the first report of greenbug and RWA resistance genes located on chromosome 6A. It is also the first report of antixenosis against the new strain of RWA. As most of the RWA resistance genes present in released cultivars have been located in [he D‐ genome, it is highly desirable to find new sources in other genomes to combine the existing resistance genes with new sources.  相似文献   

12.
A. M. Castro    A. Vasicek    C. Ellerbrook    D. O. Giménez    E. Tocho    M. S. Tacaliti    A. Clúa    J. W. Snape 《Plant Breeding》2004,123(4):361-365
Breeding for genetic resistance against greenbug and Russian wheat aphid (RWA) is the most effective way of controlling these widespread pests in wheat. Earlier work had shown that chromosome 7D of a synthetic hexaploid wheat, ‘Synthetic’ (T. dicoccoides × Ae. squarrosa) (AABB × DD) gave resistance when transferred into the genetic background of an aphid‐susceptible cultivar, ‘Chinese Spring’, as the recipient. To map the genes involved, a set of 103 doubled haploid recombinant substitution lines was obtained from crossing the 7D substitution line with the recipient, and used to determine the number and chromosomal location of quantitative trait loci (QTL) controlling antixenosis and antibiosis types of resistance. Antixenosis to RWA was significantly associated with marker loci Xpsr687 on 7DS, and Xgwm437 on 7DL. Antibiosis to greenbug was associated with marker loci Xpsr490, Rc3 (on 7DS), Xgwm44, Xgwm111, Xgwm437, Xgwm121 and D67 (on 7DL). Similarly, antibiosis to RWA was linked to loci Xpsr490, Rc3, Xgwm44, Xgwm437 and Xgwm121. At least two QTL in repulsion phase, one close to the centromere either on the 7DS or 7DL arms, and a second distal on 7DL could explain antibiosis to RWA and, partially, this mechanism against greenbug.  相似文献   

13.
Fusarium head blight (FHB), caused primarily by Fusarium graminearum (Schwabe), is an important wheat disease. In addition to head blight, F. graminearum also causes Fusarium seedling blight (FSB) and produces the mycotoxin deoxynivalenol (DON) in the grain. The objectives of this study were: (1) to compare the relationship between resistance of wheat lines to F. graminearum in the seedlings and spikes and (2) to determine whether the quantitative trait loci (QTL) for FSB were the same as QTLs for FHB resistance and DON level reported for the same population previously (Somers et al. 2003). There was no relationship between FSB infection and FHB index or DON content across the population. A single QTL on chromosome 5B that controlled FSB resistance was identified in the population; the marker WMC75 explained 13.8% of the phenotypic variation for FSB. This value implies that there may be other QTL with minor effects present, but they were not detected in the analysis. Such a QTL on chromosome 5B was not reported previously among the QTLs associated with FHB resistance and DON level in this population. However, because of recombination, some lines in the present study have Fusarium resistance for both seedling and head blight simultaneously. For example, DH line HC 450 had the highest level of resistance to FSB and FHB and was among the ten lines with lowest DON content. This line is a good candidate to be used as a parent for future crosses in breeding for Fusarium seedling resistance, together with breeding for head blight resistance. This approach may be effective in increasing overall plant resistance to Fusarium.  相似文献   

14.
Six ‘Chinese Spring/Triticum spelta’ substitution lines for chromosomes 1A, 1D (duplicates), 3D (duplicates), 6D, and one ‘Chinese Spring/ Marquis’ substitution line for chromosome 2B were studied for tissue-culture response (TCR). The results reported here indicate that chromosomes 2B and 6D are critical for TCR, whereas chromosome ID affects callus weight only. Chromosomes 1A and 3D were not found to be critical, however, these chromosomes may carry genes with minor effects.  相似文献   

15.
The effects of NaCl on the growth, ion relations and physiological characteristics at early stages of growth of bread wheat (Triticum aestivum) varieties ‘Chinese Spring’ and ‘Glennson 81’, ‘Chinese Spring’ lines tetrasomic for chromosomes 5A, 2B and 5B, ‘Chinese Spring’ disomic addition lines for chromosomes 2Eb and 5Eb from Thinopyrum bessarabicum (formerly Agropyron junceum), and amphiploids between ‘Chinese Spring’ and Thinopyrum bessarabicum and ‘Chinese Spring’ and Lophopyrum elongatum (formerly Agropyron elongatum) were examined. Plants were grown in a controlled environment cabinet, in nutrient solution with or without addition of 200 mol m?3 NaCl. Growth in terms of leaf area, shoot and root weights was reduced by salt treatment. Salinity conditions gradually reduced the osmotic potential, though there was little effect on water potential. Turgor pressure was not much affected by salt. There was variation between genotypes for all the characteristics studied, especially in the extent of Na accumulation by leaves and roots. The amphiploids and 5Eb addition line accumulated the least Na in comparison with other genotypes. Generally roots accumulated lower quantities of Na than leaves. Genotype K contents were not affected by salt treatment. Stomatal conductance also declined whilst the ABA content increased in the salt treated seedlings. With respect to growth, the amphiploids and 5Eb addition line were most tolerant to salt while ‘Glennson 81’, tetrasomic 2B and tetrasomic 5B lines were most susceptible. The addition of homoeologous group 2 and 5 chromosomes reduced the tolerance to salt relative to ‘Chinese Spring’ euploid. It is concluded that chromosome 5Eb of Thinopyrum bessarabicum carries gene(s) for tolerance to salt and this tolerance may be due to the ability to exclude Na ions from the leaves and roots.  相似文献   

16.
A major quantitative trait locus (QTL) influencing seed fibre and colour in Brassica napus was dissected by marker saturation in a doubled haploid (DH) population from the black‐seeded oilseed rape line ‘Express 617’ crossed with a yellow‐seeded B. napus line, ‘1012–98’. The marker at the peak of a sub‐QTL with a strong effect on both seed colour and acid detergent lignin content lay only 4 kb away from a Brassica (H+)‐ATPase gene orthologous to the transparent testa gene AHA10. Near the peak of a second sub‐QTL, we mapped a copy of the key phenylpropanoid biosynthesis gene cinnamyl alcohol dehydrogenase, while another key phenylpropanoid biosynthesis gene, cinnamoyl co‐a reductase 1, was found nearby. In a cross between ‘Express 617’ and another dark‐seeded parent, ‘V8’, Bna.CCR1 was localized in silico near the peak of a corresponding seed fibre QTL, whereas in this case Bna.CAD2/CAD3 lay nearby. Re‐sequencing of the two phenylpropanoid genes via next‐generation amplicon sequencing revealed intragenic rearrangements and functionally relevant allelic variation in the three parents.  相似文献   

17.
U. Vahl    G. Müller  W. E. Weber 《Plant Breeding》2001,120(5):445-447
The doubled haploid (DH) wheat line ‘dh 5841’ carrying two translocations from rye, 5DL.5RS and 1BL.1RS, has been crossed to the subline of wheat cultivar ‘Amadeus 7143’ with a 1BL.1RS translocation. The resulting F1 hybrid IJ 98 with a heterozygous 5DL.5DS‐5DL.5RS chromosome pair has been used to produce doubled haploids. A total of 57 DH lines were obtained from plantlets regenerated in anther culture after successful colchicine treatment and seed set. These lines were identified regarding the constitution of chromosome 5D (5DL.5DS or 5DL.5RS) by means of isoenzyme marker analysis. Thirty DH lines possessed the 5DL.5DS chromosome, while the remaining 27 lines carried the 5DL.5RS translocation. For some of these lines, the 5DL.5RS chromosome was cytologically confirmed by C‐banding. Furthermore, the DH lines were evaluated for their high molecular weight glutenin subunit composition. All possible combinations for the four independent loci —Skdh, Glu‐Al, Glu‐B1 and Glu‐D1— were detected in only 57 DH lines and no segregation distortion was observed.  相似文献   

18.
Chinese cabbage (Brassica rapa L. ssp. pekinensis) is one of the most important vegetables in China. However, the inheritance of yield-related traits in Chinese cabbage is poorly understood to date. To map quantitative trait loci (QTL) for yield-related traits in Chinese cabbage, a genetic linkage map was constructed with 192 doubled haploid (DH) lines. The genetic map was constructed based on 190 sequence-related amplified polymorphisms and 43 simple sequence repeats. QTL mapping was conducted for 11 yield-related traits in 170 DH lines derived from a cross between two diverse Chinese cabbage lines, ‘WZ’ and ‘FT’, under different environmental conditions. A total of 46 main QTL (M-QTL) and 7 epistatic QTL (E-QTL) were identified. The phenotypic variation explained by each M-QTL and E-QTL ranged from 4.85 to 25.06 % and 1.85 to 13.29 %, respectively. The QTL-by-environment interactions were detected using the QTLNetwork 2.0 program in joint analyses of multi-environment phenotypic values. The phenotypic variation explained by each QTL and by QTL × environment interaction was 1.14–4.24 % and 0.00–1.26 %, respectively. Our results provide a better understanding of the genetic factors controlling leaf and head-related traits in Chinese cabbage.  相似文献   

19.
The leaf rust resistance gene on chromosome 7AL of ‘Chinese Spring’ transfer no. 12 derived from Thinopyrum ponticum, was transferred to durum wheat by standard backcrossing. In ‘Agatha’ and ‘Indis’ a leaf rust resistance gene from Thinopyrum ponticum and Thinopyrum ponticum respectively, is found on a translocated segment on chromosome arm 7DL. The use of the ‘Langdon’ disomic D-chromosome substitution lines for 7A and 7B resulted in the recovery of tetraploid leaf-rust resistant lines from the crosses with ‘Agatha’ in the B2F1 generation. Tetraploid lines carrying the ‘Indis’ translocation segment were recovered in the B2F2 generation. The F2 segregation ratios for rust resistance after selfing or back-crossing generally fitted a 1: 1 ratio indicating non-transmission of the translocation segments in the male gametes. Homozygous resistant plants were not obtained. Meiotic instability was observed in 28 chromosome B2 F2 derivatives of the crosses between ‘Chinese Spring’ transfer no. 12 and durum wheat.  相似文献   

20.
Y. S. Kwon    K. M. Kim    M. Y. Eun  J. K. Sohn 《Plant Breeding》2002,121(1):10-16
Anther culturability of rice is a quantitative trait controlled by nuclear‐encoded genes. The identification of quantitative trait loci (QTL) and associated marker selection for anther culturability is important for increasing the efficiency of green plant regeneration from microspores. QTL associated with the capacity for green plant regeneration in anther culture of rice were mapped on chromosomes 3 and 10 using 164 recombinant inbred (RI) lines from a cross between ‘Milyang 23’ and ‘Gihobyeo’. The quantitative trait locus located on chromosome 10 was detected repeatedly when three anther culture methods were applied and was tightly linked to the markers, RG323, RG241 and RZ400. Associations between these markers and the efficacy of green plant regeneration in 43 rice cultivars and two F2 populations, ‘MG RI036’/‘Milyang 23’, and ‘MG RI036’;/‘IR 36’ were analysed. One of these markers, RZ400, was able to identify effectively genotypes with good (> 10.0%) and poor (< 3.0%) regenerability, based on the marker genotypes in the cultivars and two F2 populations. This marker enables the screening of rice germplasm for anther culturability and introgression into elite lines in breeding programmes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号