首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Effects of increasing level of field pea (variety: Profi) on intake, digestion, microbial efficiency, and ruminal fermentation were evaluated in beef steers fed growing diets. Four ruminally and duodenally cannulated crossbred beef steers (367+/-48 kg initial BW) were used in a 4 x 4 Latin square. The control diet consisted of 50% corn, 23% corn silage, 23% alfalfa hay, and 4% supplement (DM basis). Treatments were field pea replacing corn at 0, 33, 67, or 100%. Diets were formulated to contain a minimum of 12% CP, 0.62% Ca, 0.3% P, and 0.8% K (DM basis). Each period was 14 d long. Steers were adapted to the diets for 9 d. On d 10 to 14, intakes were measured. Field pea was incubated in situ, beginning on d 10, for 0, 2, 4, 8, 12, 16, 24, 36, 48, 72, and 96 h. Bags were inserted in reverse order, and all bags were removed at 0 h. Ruminal fluid was collected and pH recorded at -2, 0, 2, 4, 6, 8, 10, and 12 h after feeding on d 13. Duodenal samples were taken for three consecutive days beginning on d 10 in a manner that allowed for a collection to take place every other hour over a 24-h period. Linear, quadratic, and cubic contrasts were used to compare treatments. There were no differences in DMI (12.46 kg/d, 3.16% BW; P > 0.46). Ruminal dry matter fill (P = 0.02) and mean ruminal pH (P = 0.009) decreased linearly with increasing field pea level. Ruminal ammonia-N (P < 0.001) and total VFA concentrations (P = 0.01) increased linearly with increasing field pea level. Total-tract disappearance of OM (P = 0.03), N (P = 0.01), NDF (P = 0.02), and ADF (P = 0.05) increased linearly with an increasing field pea level. There were no differences in total-tract disappearance of starch (P = 0.35). True ruminal N disappearance increased linearly (P < 0.001) with increasing field pea level. There were no differences in ruminal disappearance of OM (P = 0.79), starch (P = 0.77), NDF (P = 0.21), or ADF (P = 0.77). Treatment did not affect microbial efficiency (P = 0.27). Field pea is a highly digestible, nutrient-dense legume grain that ferments rapidly in the rumen. Because of their relatively high level of protein, including field peas in growing diets will decrease the need for protein supplementation. Based on these data, it seems that field pea is a suitable substitute for corn in growing diets.  相似文献   

2.
Fourteen Holstein steers (446 +/- 4.4 kg of initial BW) with ruminal, duodenal, and ileal cannulas were used in a completely randomized design to evaluate effects of whole or ground canola seed (23.3% CP and 39.6% ether extract; DM basis) on intake, digestion, duodenal protein supply, and microbial efficiency in steers fed low-quality hay. Our hypothesis was that processing would be necessary to optimize canola use in diets based on low-quality forage. The basal diet consisted of ad libitum access to switchgrass hay (5.8% CP; DM basis) offered at 0700 daily. Treatments consisted of hay only (control), hay plus whole canola (8% of dietary DM), or hay plus ground canola (8% of dietary DM). Supplemental canola was provided based on the hay intake of the previous day. Steers were adapted to diets for 14 d followed by a 7-d collection period. Total DMI, OM intake, and OM digestibility were not affected (P > or = 0.31) by treatment. Similarly, no differences (P > or = 0.62) were observed for NDF or ADF total tract digestion. Bacterial OM at the duodenum increased (P = 0.01) with canola-containing diets compared with the control diet and increased (P = 0.08) in steers consuming ground canola compared with whole canola. Apparent and true ruminal CP digestibilities were increased (P = 0.01) with canola supplementation compared with the control diet. Canola supplementation decreased ruminal pH (P = 0.03) compared with the control diet. The molar proportion of acetate in the rumen tended (P = 0.10) to decrease with canola supplementation. The molar proportion of acetate in ruminal fluid decreased (P = 0.01), and the proportion of propionate increased (P = 0.01), with ground canola compared with whole canola. In situ disappearance rate of hay DM, NDF, and ADF were not altered by treatment (P > or = 0.32). In situ disappearance rate of canola DM, NDF, and ADF increased (P = 0.01) for ground canola compared with whole canola. Similarly, ground canola had greater (P = 0.01) soluble CP fraction and CP disappearance rate compared with whole canola. No treatment effects were observed for ruminal fill, fluid dilution rate, or microbial efficiency (P > or = 0.60). The results suggest that canola processing enhanced in situ degradation but had minimal effects on ruminal or total tract digestibility in low-quality, forage-based diets.  相似文献   

3.
Two experiments were conducted to determine effects of oilseeds or soybean hulls on growth and reproductive performance of heifers and utilization of corn silage diets by growing beef cattle. In Exp. 1, 96 beef heifers (249 kg of BW) were used in a randomized complete block design. Treatments were as follows: 1) corn and soybean meal (CON) at 56% of the DMI; 2) whole linted cottonseed at 15% of the DMI (COT); 3) whole raw soybeans at 15% of the DMI (SB); or 4) pelleted soyhulls at 30% of the DMI (SH). Diets were formulated to be isonitrogenous (13.8% CP) and fed to achieve target weights equal to 65% of expected mature BW at the time of AI. Estrus was synchronized and heifers were inseminated by AI in response to detected estrus. Because the energy value for SH was underestimated, cumulative ADG for SH (1.03 kg/d) was greater (P < or = 0.03) than for CON (0.89 kg/d), COT (0.87 kg/d), or SB (0.86 kg/d). Treatment did not affect (P > 0.10) the proportion of pubertal heifers at the beginning of the breeding season: CON (60%), COT (53%), SB (69%), SH (71%), or first-service conception rates: CON (37%); COT (38%); SB (57%); SH (42%). In Exp. 2, crossbred steers (387 kg) were used in a 6 x 6 Latin square design to evaluate the effects of supplemental nutrient source on utilization of corn silage diets. Treatments included diets used in Exp. 1, plus a negative control (soybean meal at 10% of the DMI; SIL) and whole raw soybeans at 25% of the DMI (SB25). Diets were formulated to be isonitrogenous (13.8% CP) except SB25 (17% CP), and were fed twice daily at 1.8 x NEm. Oilseed inclusion decreased (P < 0.10) acetate:propionate ratios and (P < 0.10) apparent ruminal OM and ruminal and total tract NDF digestibilities. The CON and SH diets had the greatest (P < 0.10) total-tract OM digestibilities. Microbial efficiencies were greatest (P < 0.10), and long chain fatty acid flow to the duodenum increased (P < 0.10) with oilseeds. Biohydrogenation averaged 90.4% and increased slightly (P < 0.10) when oilseeds were added to the diet. Adding oilseeds or soybean hulls to corn silage-based diets did not affect reproductive performance of heifers. Although oilseed additions increased total fatty acid flow to the duodenum, a high degree of biohydrogenation occurred, greatly increasing C18:0, with only marginal increases in unsaturated fatty acid flow. Depending on diet and feeding conditions, inclusion of whole oilseeds may not be an effective means of increasing linoleic acid supply for ruminant animals.  相似文献   

4.
In Exp. 1, early-weaned Targhee and Polypay crossbred lambs (60 ewes and 66 rams; initial BW 24 +/- 1.0 kg) were used in a 2 x 3 factorial experiment to determine the effects of corn processing (whole shelled corn [WSC] or ground and pelleted corn [GC]) in combination with supplemental fiber (none [control]; soybean hulls, SBH [highly digestible]; or peanut hulls, PH [highly indigestible]) on DMI, ADG, feed efficiency, and visceral organ weight. For the total trial, WSC resulted in a 4% increase (P < .01) in ADG vs GC, and supplemental fiber resulted in increased (P < .01) DMI and ADG vs the control diet. Experiment 2 was conducted using 12 Targhee and Polypay crossbred wether lambs (initial BW 25 +/- 7 kg) to determine the effects of corn processing and fiber source in high-concentrate diets on diet digestibility and N retention using the same diets as in Exp. 1. Lambs fed WSC had greater (P < .001) apparent N digestion, true N digestion, and N retention (P < .01) than those fed GC. The apparent digestibilities of DM, OM, and NDF were greater (P < .001) for WSC than for GC diets. Peanut hulls resulted in decreased (P < .01) DM, OM, and NDF apparent digestibilities compared with the control and SBH diets. Starch digestion was not affected (P > .10) by diet. Whole corn resulted in improved DM, OM, NDF, and N digestibility compared with GC. Overall, both the SBH and PH diets resulted in greater DMI and ADG than the control diet, which lacked supplemental fiber.  相似文献   

5.
Four ruminally and duodenally cannulated crossbred beef steers (397+/-55 kg initial BW) were used in a 4 x 4 Latin square to evaluate the effects of increasing level of field pea supplementation on intake, digestion, microbial efficiency, ruminal fermentation, and in situ disappearance in steers fed moderate-quality (8.0% CP, DM basis) grass hay. Basal diets, offered ad libitum twice daily, consisted of chopped (15.2-cm screen) grass hay. Supplements were 0, 0.81, 1.62, and 2.43 kg (DM basis) per steer daily of rolled field pea (23.4% CP, DM basis) offered in equal proportions twice daily. Steers were adapted to diets on d 1 to 9; on d 10 to 14, DMI were measured. Field pea and grass hay were incubated in situ, beginning on d 10, for 0, 2, 4, 8, 12, 16, 24, 36, 48, 72, and 96 h. Ruminal fluid was collected and pH recorded at -2, 0, 2, 4, 6, 8, 10, and 12 h after feeding on d 13. Duodenal samples were taken for three consecutive days beginning on d 10 in a manner that allowed for a collection to take place every other hour over a 24-h period. Linear, quadratic, and cubic contrasts were used to evaluate the effects of increasing field pea level. Total DMI and OMI increased quadratically (P = 0.09), whereas forage DMI decreased quadratically (P = 0.09) with increasing field pea supplementation. There was a cubic effect (P < 0.001) for ruminal pH. Ruminal (P = 0.02) and apparent total-tract (P = 0.09) NDF disappearance decreased linearly with increasing field pea supplementation. Total ruminal VFA concentrations responded cubically (P = 0.008). Bacterial N flow (P = 0.002) and true ruminal N disappearance (P = 0.003) increased linearly, and apparent total-tract N disappearance increased quadratically (P = 0.09) with increasing field pea supplementation. No treatment effects were observed for ruminal DM fill (P = 0.82), true ruminal OM disappearance (P = 0.38), apparent intestinal OM digestion (P = 0.50), ruminal ADF disappearance (P = 0.17), apparent total-tract ADF disappearance (P = 0.35), or in situ DM disappearance of forage (P = 0.33). Because of effects on forage intake and ruminal pH, field peas seem to act like cereal grain supplements when used as supplements for forage-based diets. Supplementing field peas seems to effectively increase OM and N intakes of moderate-quality grass hay diets.  相似文献   

6.
Three trials were conducted to evaluate the effects of degree of barley and corn processing on performance and digestion characteristics of steers fed growing diets. Trial 1 used 14 (328 +/- 43 kg initial BW) Holstein steers fitted with ruminal, duodenal, and ileal cannulas in a completely randomized design to evaluate intake, site of digestion, and ruminal fermentation. Treatments consisted of coarsely rolled barley (2,770 microm), moderately rolled barley (2,127 microm), and finely rolled barley (1,385 microm). Trial 2 used 141 crossbred beef steers (319 +/- 5.5 kg initial BW; 441 +/- 5.5 kg final BW) fed for 84 d in a 2 x 2 factorial arrangement to evaluate the effects of grain source (barley or corn) and extent of processing (coarse or fine) on steer performance. Trial 3 investigated four degrees of grain processing in barley-based growing diets and used 143 crossbred steers (277 +/- 19 kg initial BW; 396 +/- 19 kg final BW) fed for 93 d. Treatments were coarsely, moderately, and finely rolled barley and a mixture of coarsely and finely rolled barley to approximate moderately rolled barley. In Trial 1, total tract digestibilities of OM, CP, NDF, and ADF were not affected (P > or = 0.10) by barley processing; however, total tract starch digestibility increased linearly (P < 0.05), and fecal starch output decreased linearly (P < 0.05) with finer barley processing. In situ DM, CP, starch disappearance rate, starch soluble fraction, and extent of starch digestion increased linearly (P < 0.05) with finer processing. In Trial 2, final BW and ADG were not affected by degree of processing or type of grain (P > or = 0.13). Steers fed corn had greater DMI (P = 0.05) than those fed barley. In Trial 3, DMI decreased linearly with finer degree of processing (P = 0.003). Gain efficiency, apparent dietary NEm, and apparent dietary NEg increased (P < 0.001) with increased degree of processing. Finer processing of barley improved characteristics of starch digestion and feed efficiency, but finer processing of corn did not improve animal performance in medium-concentrate, growing diets.  相似文献   

7.
Three experiments were conducted to determine effects of restricting intake of the final finishing diet as a means of dietary adaptation compared with diets increasing in grain over a period of 20 to 22 d on overall cattle performance, carcass characteristics, digestibility, digesta kinetics, and ruminal metabolism. In Exp. 1, 84 Angus x Hereford yearling steers (initial BW = 418 +/- 29.0 kg) were fed for 70 d. Restricting intake during adaptation had no effect (P > 0.10) on overall ADG:DMI, but decreased (P < 0.05) DMI compared with ad libitum access to adaptation diets, which resulted from differences during the initial 28 d of the experiment. In Exp. 2, 150 mixed crossbred steer calves (initial BW = 289 +/- 22.9 kg) were fed for an average of 173 d. Restricting intake decreased (P < 0.01) overall daily gain (1.51 vs 1.65 kg/d) and DMI (8.68 vs 9.15 kg/d) compared with ad libitum fed steers; however, ADG:DMI was not influenced (P > 0.10) by adaptation method. Experiment three used eight ruminally and duodenally fistulated steers (initial BW = 336 +/- 20 kg) in a completely random design. Total tract digestibility, digesta kinetics and ruminal metabolism were determined. Restricting intake reduced (P < 0.10) daily DMI variation from d 1 through 7, 8 through 14, and 22 through 28 compared with ad libitum feeding of three adaptation diets. Restricted steers had reduced (adaptation method x period interaction, P < 0.05) intakes and fecal excretions of ADF and greater OM digestibilities on d 4 through 7, 11 through 14, and 18 through 21. Digesta kinetics and ruminal metabolism were generally not affected (P > 0.10) by adaptation method. Our results suggest that restricted-feeding of the final diet as a means of dietary adaptation can be used in finishing cattle with few problems from acidosis or related intake variation. In light-weight steers (Exp. 2), disruptions in intake during the adaptation period might have resulted in restriction for an extended period, which decreased (P < 0.01) hot carcass weight compared with calves fed ad libitum. Effects of limit feeding during the initial 28 d of the feeding period on site and extent of digestion, digesta kinetics, and ruminal metabolism were minimal, supporting few differences in performance across the finishing period for yearling cattle.  相似文献   

8.
Three studies were conducted to evaluate the feasibility of field peas as a protein source in diets for beef cattle. In the first study, 4 cultivars of field pea were incubated in situ to determine rate and extent of CP disappearance. Results indicate that field pea cultivars vary in CP content (22.6, 26.1, 22.6, and 19.4%, DM basis for Profi, Arvika, Carneval, and Trapper, respectively). Soluble protein fraction ranged from 34.9% for Trapper to 54.9% for Profi. Degradable CP fraction was greater (P = 0.01) for Trapper compared with the other cultivars, and no differences (P ≥ 0.25) were observed among Profi, Arvika, and Carneval. Rate of CP degradation differed (P ≤ 0.03) for all cultivars, with Profi being the greatest and Trapper the smallest (10.8, 10.0, 8.1, and 6.3 ± 1.4%/h for Profi, Carneval, Arvika, and Trapper, respectively). Estimated RDP was not different (P = 0.21) for all 4 cultivars. In the second study, 30 crossbred beef steers (301 ± 15 kg) were individually fed and used to evaluate effects of field pea processing (whole, rolled, or ground) on steer performance. Diets contained 40% field pea grain. Growing steers consuming whole field pea had greater ADG (P = 0.08) than those consuming processed field pea (1.69, 1.52, and 1.63 ± 0.05 kg/d, for whole, rolled, and ground, respectively). However, DMI (kg/d and as % of BW) and G:F were not different (P ≥ 0.24). In the third study, 35 individually fed gestating beef cows (694 ± 17 kg) were used to evaluate the use of field pea as a protein supplement for medium quality grass hay (9.3% CP). Treatments consisted of whole field peas at 1) 0 g (CON), 2) 680 g (FP680), 3) 1,360 g (FP1360), and 4) 2,040 g (FP2040), and 5) 1,360 g of 74% barley and 26% canola meal (BCM). Total intake (forage + supplement) of gestating beef cows increased with increasing field pea level (linear, P = 0.01; supplemented vs. nonsupplemented, P = 0.01). In summary, protein quantity and rate of ruminal protein degradation vary across sources of field peas used in this study. Additionally, because of source variability, nutrient analysis and animal requirements should be considered when field pea is incorporated into beef cattle diets. Processing field pea does not improve performance of growing steers. Supplementation of field pea to gestating cows consuming medium-quality grass hay increased total DMI. Overall, our data indicate field pea can be used in a wide variety of beef cattle diets.  相似文献   

9.
Five sheep (average BW 48 kg) with ruminal, duodenal, and ileal cannulas were fed 63% roughage: 37% concentrate diets (CP = 14.5%) in a 5 x 5 Latin square design to study effects of urea and sodium bicarbonate supplementation on nutrient digestion and ruminal characteristics of defaunated sheep. Diets were fed twice daily (DMI = 1,076 g/d). Defaunation was accomplished with 25-ml doses of alkanate 3SL3/sheep daily for 3 d. Control sheep were faunated (Treatment 1) and fed soybean meal as the major N supplement. Remaining sheep were maintained defaunated and fed either the same diet as Treatment 1 (Treatment 2), Treatment 1 with urea replacing 30% of the soybean meal N (Treatment 3), or Treatment 1 with 2% sodium bicarbonate in the diet (Treatment 4). Treatment 5 was a combination of Treatments 3 and 4. Compared with the faunated control, defaunation decreased (P less than .05) total tract DM, OM, NDF, ADF, and CP digestibilities (71.5 vs 69.4, 73.8 vs 71.7, 64.6 vs 61.4, 58.7 vs 55.8, and 74.2 vs 70.6%, respectively) and average (2 to 12 h postfeeding) ruminal fluid ammonia (23.5 vs 13.7 mg/dl) and isobutyrate (.9 vs .7 mM) concentrations. However, defaunation increased (P less than .05) linoleic and linolenic acid flows (.58 vs .45 g C18:2/d; .17 vs .14 g C18:3/d) to and disappearance (.50 vs .39 g C18:2/d; .14 vs .11 g C18:3/d) from the small intestine. Urea supplementation increased (P less than .05) total tract DM (70.2 vs 68.6%) and OM (72.3 vs 71.0%) digestibilities of defaunated sheep but lowered (P less than .05) ruminal fluid isobutyrate concentration (.6 vs .8 mM). Sodium bicarbonate supplementation increased (P less than .05) ruminal fluid pH (6.4 vs 6.2), isobutyrate concentration (.75 vs .60 mM), total tract ADF digestibility (57.6 vs 54.2%), and ruminal NDF (41.6 vs 28.5%), ADF (36.6 vs 22.8%), and CP (-5.5 vs -26.8%) digestibilities in defaunated sheep. Dietary supplementation of urea or sodium bicarbonate increased nutrient digestion by defaunated sheep.  相似文献   

10.
The objectives of this experiment were to determine a NE value for pressed beet pulp and the value of concentrated separator by-product (de-sugared molasses) as a ruminal N source in growing and finishing diets for beef cattle. One hundred forty-four cross-bred beef steers (282 +/- 23 kg of initial BW) were used in 2 experiments (growing and finishing). A randomized complete block design was used, with a 3 x 2 factorial arrangement of treatments (level of pressed beet pulp and inclusion of concentrated separator by-product) for both studies. Steers were blocked by BW and allotted randomly to 1 of 6 treatments. In the growing study, the control diet contained 49.5% corn, 31.5% corn silage, 10.0% alfalfa hay, and 9.0% supplement (DM basis). Pressed beet pulp replaced corn at 0, 20, or 40% of dietary DM, and concentrated separator by-product replaced corn and urea at 10% of dietary DM. The growing study lasted for 84 d. Initial BW was an average of 2-d BW after a 3-d, restricted (1.75% of BW) feeding of 50% alfalfa hay and 50% corn silage (DM basis), and final BW was an average of 2-d BW after a 3-d, restricted (1.75% of BW) feeding of 31.5% corn silage, 10.0% alfalfa hay, 25.0% dry-rolled corn, 20.0% pressed beet pulp, 5.0% concentrated separator by-product, and 8.5% supplement (DM basis). After the growing study, the steers were weighed (415 +/- 32 kg), rerandomized, and allotted to 1 of 6 finishing diets. The control diet for the finishing study included 45% dry-rolled corn, 40% high-moisture corn, 5% brome hay, 5% pressed beet pulp, and 5% supplement. Pressed beet pulp replaced high-moisture corn at 5.0, 12.5, and 20.0% of the dietary DM, and concentrated separator by-product replaced high-moisture corn and supplement at 10.0% of diet DM. Steers were slaughtered on d 83 or 98 of the study. In the growing study, the addition of pressed beet pulp to growing diets linearly decreased (P = 0.001) DMI and ADG and inclusion of 10% concentrated separator by-product decreased (P = 0.001) G:F. Increased levels of pressed beet pulp in the finishing diets caused a linear decrease (P = 0.001) in ADG and tended (P = 0.06 and 0.07 for kg/d and % of BW, respectively) to quadratically decrease DMI, whereas addition of concentrated separator by-product increased (P = 0.02 and 0.001 for kg/d and % of BW, respectively) DMI. Apparent NEg of pressed beet pulp was 94.2% of that of corn in the growing study and 81.5% of that of corn in the finishing study.  相似文献   

11.
Two trials were conducted to determine the effect of energy source (ENG) and ruminally degradable protein (RDP) on lactating cow performance and intake and digestion in beef steers. In Trial 1, 78 cow-calf pairs were used in a 2 x 2 factorial design to determine the effect of ENG (corn or soyhulls; SH) and RDP (with our without sunflower meal) to a forage diet for lactating beef cows. The basal diet consisted of 75% grass hay (11.5% CP) and 25% wheat straw (7.4% CP). Supplement treatments and predicted RDP balances were corn (-415 g of RDP/d); SH (-260 g of RDP/d); corn plus RDP (0 g of RDP/d); or SH plus RDP (0 g of RDP/d). Data were analyzed as a split-plot in time, with pen as the experimental unit (two pens per treatment). No interaction between ENG and RDP was present (P > 0.08) for any response variable. No differences (P > 0.39) due to ENG or RDP were noted for BW, BCS, or milk yield; however, final calf weight tended to increase with ENG (P = 0.06). In Trial 2, a 5 x 5 Latin square was used to determine effects of ENG and RDP on intake and digestion in steers (686 +/- 51 kg BW). Treatments were arranged as a 2 x 2 plus one factorial and comprised a control (CON; grass hay, 7% CP), grass hay plus 0.4% BW SH, grass hay plus 0.4% BW SH and 0.15% BW sunflower meal, grass hay plus 0.4% BW corn, and grass hay plus 0.4% BW corn and 0.2% BW sunflower meal. Preplanned contrasts included main effects of ENG and RDP, ENG x RDP interaction, and CON vs. supplemented (SUP) treatments. Supplementation increased total DMI compared with CON (P = 0.001), but forage DMI was greater (P = 0.001) for CON than for SUP. An ENG x RDP interaction occurred for forage DMI (P = 0.02); addition of RDP to corn decreased forage intake, whereas addition of RDP to SH had no effect. There was an ENG x RDP interaction (P = 0.001) for ruminal pH; pH tended to increase with RDP addition to SH (P = 0.07), but decreased with RDP addition to corn (P = 0.001). Supplementation increased ruminal ammonia compared with CON (P = 0.001). Likewise, RDP increased ruminal ammonia (P = 0.001). An interaction occurred for OM disappearance (OMD; P = 0.01). The RDP addition to SH numerically decreased OMD (P = 0.23), whereas RDP addition to corn numerically increased OMD (P = 0.14). Intake and digestion seem to respond differently to RDP addition depending on supplemental energy source. Both corn or SH seem to be suitable supplements for the quality of forage used in this trial. Addition of supplemental protein did not improve cow or calf performance.  相似文献   

12.
Energy density in growing diets may affect carcass quality of cattle; however, few reports have described the impact of energy source. The objectives of this research were to determine effects of source [dried distillers grains with solubles (DDGS) vs. corn] and amount (limit-fed to gain 0.9 vs. 1.4 kg of BW/d) of energy during the growing phase on feedlot performance and marbling. Angus-cross steers (144 head) were blocked by BW (average initial BW = 252 ± 36 kg), allotted within each block to 8 pens (6 steers/pen, 24 pens total), and randomly assigned to 1 of 4 feeding systems in a 2 × 2 factorial arrangement of treatments: 1) 65% DDGS fed to gain 0.9 kg of BW/d, 2) 65% DDGS fed to gain 1.4 kg of BW/d, 3) 65% corn fed to gain 0.9 kg of BW/d, and 4) 65% corn fed to gain 1.4 kg of BW/d. Fecal grab samples were collected on d 52 of the growing phase to determine digestibility of DM, ADF, NDF, ether extract (EE), and CP. After the 98-d growing phase, all steers were fed the same finishing diet. Steers were slaughtered by pen when average BW within the pen was 544, 522, and 499 kg for the large, medium, and small BW blocks, respectively. Average daily gain and DMI differed (P<0.01) by design during the growing phase. Compared with the corn-based diets, digestibilities of DM, NDF, and EE were decreased (P<0.02) when DDGS-based diets were fed during the growing phase, whereas the digestibility of N was increased (P<0.01). The ADG was greatest (P=0.02) during the finishing phase for steers fed to gain 0.9 kg of BW/d initially, but source of energy during the growing phase did not affect (P=0.24) finishing phase ADG. Steers fed to gain 0.9 kg of BW/d during the growing phase also had less backfat (P=0.08), decreased USDA yield grades (P=0.03), and greater LM area (P<0.01) than steers fed to gain 1.4 kg of BW/d. There was an interaction between energy source and amount for marbling scores (P=0.02). Steers fed corn-based diets to gain 0.9 kg of BW/d during the growing phase had the most marbling, whereas those fed to gain 0.9 kg of BW/d on DDGS had the least marbling; the remaining feeding systems were intermediate. Overall ADG and DMI were affected (P < 0.06) by both source and amount of energy fed during the growing phase. Feeding the DDGS-based diet to achieve greater ADG during the growing phase increased marbling, whereas feeding the corn-based diet to increase ADG during the growing phase decreased marbling.  相似文献   

13.
The objectives of this research were to determine the interaction of monensin and haylage supplementation for steers fed 60% dried distillers grains (DDGS) on 1) mineral status, performance, and carcass characteristics, and on 2) ruminal pH, H(2)S, and short-chain fatty acid concentrations. In Exp. 1, Angus-cross steers (n=168; BW=277 ± 67 kg) were blocked by BW and allotted in a 2 × 2 factorial arrangement of treatments to 24 pens. Dietary treatments were 1) 0 mg of monensin/kg of diet + 0% haylage, 2) 33 mg of monensin/kg of diet + 0% haylage, 3) 0 mg of monensin/kg of diet + 10% haylage, and 4) 33 mg of monensin/kg of diet + 10% haylage. The remainder of the diet was 60% DDGS, 10% corn silage, 15% supplement, and corn (either 5 or 15%) on a DM basis. When supplemented with 0 mg of monensin/kg of diet, added haylage increased ADG by 5.7%, whereas when supplemented with 33 mg of monensin/kg of diet, added haylage increased ADG by 13% (P < 0.01). No interactions of monensin and haylage were observed for DMI or G:F (P ≥ 0.36). Haylage inclusion increased (P < 0.01) DMI and decreased (P < 0.01) G:F. No interactions (P > 0.05) on plasma mineral concentrations were observed; however, over time, plasma Cu concentrations decreased (P < 0.01), whereas plasma ceruloplasmin and S concentrations increased (P < 0.01). There were no treatment effects (P ≥ 0.08) on carcass characteristics. Cattle fed the 60% DDGS diets benefitted from increased dietary forage, and the effects of monensin and forage were additive for ADG and final BW. In Exp. 2, ruminally fistulated steers (n=8; BW = 346 ± 34 kg) were used in a replicated 4 × 4 Latin square design and were randomly assigned to the diets used in Exp. 1. Haylage inclusion increased ruminal pH from 1.5 through 12 h postfeeding, and the effects of monensin supplementation were additive (P < 0.05). From 1.5 through 9 h postfeeding, steers fed 33 mg of monensin/kg of diet tended to have reduced (P ≤ 0.10) concentrations of H(2)S when compared with steers fed 0 mg of monensin/kg of diet. Acetate:propionate ratios at 6 h postfeeding were 0.94, 0.93, 1.29, and 1.35 for diets 1 to 4, respectively (P < 0.01); total lactate was decreased regardless of treatment (range: 0.94 to 1.42 μmol/mL). Sulfuric acid in DDGS, not ruminal short-chain fatty acids, may be responsible for the low rumen pH observed and may influence the maximum inclusion of DDGS in cattle diets. Monensin supplementation decreased H(2)S concentration and may decrease the risk of polioencephalomalacia for cattle fed high-DDGS diets.  相似文献   

14.
Nine ruminally and duodenally cannulated (145 +/- 21 kg of initial BW; Exp. 1) and sixteen intact (181 +/- 36 kg of initial BW; Exp. 2), commercial, Angus, nursing, steer calves were used to evaluate the effects of advancing season and corn distillers dried grains with solubles in creep feed on intake, digestion, microbial efficiency, ruminal fermentation, and performance while grazing native rangeland. Calves were assigned to 1 of 2 treatments: a supplement containing 41% soybean meal, 26.25% wheat middlings, 26.25% soybean hulls, 5% molasses, and 1.5% limestone (control) or a supplement containing 50% corn distillers dried grains with solubles, 14.25% wheat middlings, 14.25% soybean hulls, 14% soybean meal, 5% molasses, and 1.5% limestone (CDDGS). Calves were offered supplement individually (0.45% of BW) once daily. Three 15-d collection periods occurred in June, July, and August. In Exp. 1, there were no differences in OM intake, or OM, N, NDF, or ADF digestion between control calves and those fed CDDGS. Forage and total OM intake increased (P < 0.03), whereas OM digestion decreased (P < 0.01), with advancing season. Duodenal microbial N flow (g/d) was not affected (P = 0.50) by treatment and increased linearly (P = 0.003) as season progressed. Calves consuming CDDGS had decreased (P < 0.01) ruminal acetate:propionate ratio, increased (P < 0.01) molar proportion of butyrate, and decreased (P < 0.001) molar proportions of isobutyrate and isovalerate. In Exp. 2, supplement OM intake (% of BW) was less for CDDGS compared with control calves, but there were no differences in performance or subsequent carcass composition between treatments. Inclusion of 50% corn distillers dried grains with solubles in a creep supplement for nursing calves produced similar results compared with a control creep feed based on soybean meal, soybean hulls, and wheat middlings.  相似文献   

15.
Two 160-d feedlot experiments, each consisting of 20 Angus-Hereford steers (216 +/- 5 kg BW, Exp. 1; 258 +/- 5 kg BW, Exp. 2) and 20 Angus-Hereford heifers (208 +/- 5 kg BW, Exp. 1; 236 +/- 5 kg BW, Exp. 2), were used to investigate the effects of supplementing diets with either roasted soybeans (RSB, roasted at 127 degrees C for 10 min) or soybean meal (SBM) and implanting or not implanting with an estrogenic growth promoter (SYN; Synovex-S, 20 mg of estradiol benzoate plus 200 mg of progesterone or Synovex-H, 20 mg of estradiol benzoate plus 200 mg of testosterone) on performance. The cattle were fed a basal diet of 15% orchardgrass silage, 15% corn silage, and 70% corn-based concentrate. Treatments were 1) no SYN and fed a SBM-supplemented diet, 2) no SYN and fed a RSB-supplemented diet, 3) SYN and SBM, and 4) SYN and RSB. Cattle in the SYN groups were reimplanted at 80 d. Four additional Angus-Hereford steers were used in a digestion and nitrogen balance experiment conducted during the first half of Exp. 1. For the total 160-d feedlot experiments, DMI for RSB compared with SBM was lower (P < .01; 8.5 vs 9.2 kg/d, SEM = .07) and ADG/DMI tended to be higher (P < .10; 165 vs 157 g/kg, SEM = 1.3). Final BW of steers fed RSB was similar (P > .10) to that of steers fed SBM (473 vs 478 kg, SEM = 5.6), as was ADG (1.39 vs 1.43 kg/d, SEM = .02). Dry matter intake for SYN-implanted steers was higher (P < .01) than for steers not implanted (9.2 vs 8.5 kg/d). Likewise, final BW (491 vs 460 kg) and ADG (1.49 vs 1.33 kg/d) were higher (P < .01), and ADG/DMI (166 vs 157 g/kg) tended to be higher (P < .10), for SYN-implanted steers than for steers not implanted. During the more rapid muscle growth period (0 to 80 d), DMI for RSB compared with SBM was lower (P < .01; 7.8 vs 8.6 kg/d, SEM = .07) and ADG/DMI was similar (P > .10; 181 vs 172 g/kg, SEM = 1.8). Dry matter intake for SYN-implanted steers was higher (P < .05) than for steers not implanted (8.4 vs 8.0 kg/d), as was ADG/DMI (P < .01, 182 vs 171 g/kg). During this more rapid growth period, the supplement x implant interaction for ADG was significant (P < .05; 1.35, 1.36, 1.59, and 1.44 kg/d for Treatments 1, 2, 3, and 4, respectively, SEM = .04). There were no differences in digestibilities or N balance. The results suggest that there is no improvement in performance under feedlot conditions when RSB replaces SBM in the diet of beef cattle, and, in young cattle, RSB may reduce the response expected by an estrogenic growth promoter.  相似文献   

16.
Five ruminally fistulated 3-yr-old mature Holstein steers (average BW 691+/-23 kg) were used in a 5 x 5 Latin square experiment with a 2 x 2 + 1 fact orial arrangement of treatments. Effects of protein concentration and protein source on nutrient digestibility, excretion of DM and fecal N, ruminal fluid volume and dilution rate, ruminal characteristics, and in situ DM disappearance of whole shelled corn, ground corn, and orchardgrass hay were measured in steers limit-fed high-concentrate diets at 1.5% of BW. A negative control basal diet (NC; 9% CP) was supplemented to achieve either 11 or 14% CP; supplemental CP was either from soybean meal (11 and 14% SBM) or a 50:50 ratio of CP from urea and soybean meal (11 and 14% U). Dry matter and OM digestibilities were 5% greater (P < .07) for steers fed the SBM diets than for those fed the U diets. Starch digestibility did not differ (P > .10) among steers fed any of the diets. Nitrogen source did not affect (P > .10) apparent N digestibility or fecal N excretion; however, steers fed the NC diet had the lowest (P < .10) apparent N digestibility compared with those fed all other diets. Ruminal fluid volume was lower (P < .06) when steers were fed the NC diet compared with all other diets; there were no differences (P > .74) among diets for ruminal fluid dilution rate. In general, ruminal ammonia N and VFA molar proportions were not affected by protein source or concentration. Although CP concentration affected (P < .06) in situ DM disappearance of ground corn, CP concentration did not (P > .48) affect total tract digestion of DM or OM. This indicates that CP concentration may have affected site of digestion, but not extent of digestion. When mature ruminants were limit-fed a corn-based diet to meet primarily a maintenance function, protein source and concentration had little effect on measures of nutrient digestion.  相似文献   

17.
Crossbred wether goats (n = 24; 50% Boer, 6 per diet) initially averaging 27.4+/-0.4 kg were fed either wheat middlings (wheat midds), soybean hulls (soyhulls), or corn gluten feed at 1% BW (as-fed) along with orchardgrass hay (10.7% CP) offered to ad-libitum consumption for 72 d followed by 5 d total fecal collection. The Control (hay) diet was supplemented with 5.7% soybean meal to bring total dietary protein to 12.5%, by-products were brought to a higher Ca:P ratio with limestone or dicalcium phosphate to make total dietary Ca:P 1.5:1, and soybean meal was added to soyhulls to bring them up to 17% CP (wheat midds = 17% and corn gluten feed = 21% CP). Total DMI (916 g/d+/-57 or 3.2%+/-0.2 BW) did not differ (P > 0.92) among treatments. Initial BW (P = 0.25), final BW (P = 0.48), and ADG (P = 0.56) did not differ for the four treatments. Carcass weight was greater (P = 0.05) for goats fed soyhulls (16.0 kg) or wheat midds (15.6 kg) as compared with goats fed the hay diet (14.5 kg), with carcass weight from goats fed corn gluten feed being intermediate (15.3 kg, SEM = 0.3 kg). Carcass grade did not differ (P = 0.80) and averaged 5.42+/-0.4. Dressing percentage tended (P = 0.12) to be lower for goats fed the hay diet (46.4%) compared with soyhull (48.3%), corn gluten feed (48.3%), or wheat midd (48.8%) diets (SEM = 0.7). Ruminal pH was highest (P < 0.01) for goats fed the hay diet (6.52) and lowest for goats fed wheat midds (6.23) with soyhull (6.41) and corn gluten feed diets (6.35) being intermediate (SEM = 0.05). Digestibility of DM (70.1+/-2.5%), OM (70.3+/-2.6%,), CP (75.5+/-2.0%), GE (68.5+/-2.7%), NDF (68.1+/-3.0%), ADF (65.4+/-3.4%), cellulose (70.1+/-2.9%), and lignin (31.1+/-8.2%) did not differ (P > 0.15). Total ruminal VFA did not differ (86.0+/-6.1 mM, P = 0.59), but acetate:propionate ratio was higher (P < 0.01) for hay (3.1) and soyhull diets (3.3) than for corn gluten feed (2.4) and wheat midd diets (2.4, SEM = 0.11). Ruminal ammonia (mg/100 mL) was lower (P < 0.01) for goats fed hay (15.4) and soyhull diets (11.6) than those fed corn gluten feed (25.2) and wheat midd diets (23.0, SEM = 1.35). Ruminal pH was lower for goats fed the byproducts, but remained above 6. Serum urea nitrogen (mg/100 mL) averaged 21.0+/-1.0 (P = 0.11) with soyhulls tending to be lowest (19.3) and corn gluten feed tending to be highest (22.8). Soyhulls, corn gluten feed, and wheat midds appear to be viable feed ingredients for meat goat diets.  相似文献   

18.
The objective of this study was to evaluate an interaction between harvest at 0600 (AM) vs. 1800 (PM) with high (HI) or low (LO) ruminal degradability of a protein supplement to change voluntary intake, digestion, or N retention by steers offered switchgrass (Panicum virgatum L.) hay. Black steers (255 +/- 14 kg of BW) were blocked by BW, and then randomly assigned (5 steers each) to AM/HI, PM/HI, AM/LO, or PM/LO treatment groups. Steers were group-housed in covered, outdoor pens with individual feeding gates. After adaptation and standardization, intake was measured for 21 d followed by a digestion trial (5 d of total collection). Steers were offered 767 (LO) or 825 (HI) g/d of supplement to provide 268 g of CP/d. Compared with AM, PM had greater (P = 0.01) concentrations of total nonstructural carbohydrate (TNC, 71 vs. 56 g/kg of DM), and lesser concentrations of NDF (760 vs. 770 g/kg of DM, P = 0.02), ADF (417 vs. 427 g/kg of DM, P = 0.02), and CP (55.9 vs. 58.6 g/ kg of DM, P = 0.07). Protein fractions A, B(2), and B(3) were similar for AM and PM, but HI contained more (P < 0.02) A (694 vs. 296 g/kg of protein) and less B(2) (174 vs. 554 g/kg of protein) fraction than LO. Harvest interacted with supplement to increase (P = 0.07) ad libitum digestible DMI for steers offered PM/HI (11.4 g/kg of BW daily) compared with steers offered PM/LO (10.2 g/kg of BW daily), but there was no difference for steers offered AM/LO or AM/HI (10.7 g/kg of BW). Apparent digestibilities of DM (594 vs. 571 g/kg of intake), NDF (591 vs. 562 g/kg of intake), ADF (585 vs. 566 g/kg of intake), and N (651 vs. 632 g/kg of intake) were greater (P < 0.04) for PM than for AM. Apparent digestibility of N was greater (P = 0.02) for HI (652 g/ kg of intake) vs. LO (631 g/kg of intake). Interactions between harvest and supplement for apparent digestibilities of NDF (P = 0.09) and ADF (P = 0.03) were due to no change or an increase in digestibility in response to increased ruminal degradability of supplement in steers offered PM harvest, whereas increased ruminal degradability of supplement decreased digestibility of NDF and ADF in steers offered AM harvest. Treatments did not affect hay intake (3.93 kg/d), N retained (15.8 g/d), or plasma urea N (5.25 mM) during ad libitum intake. Greater TNC in PM vs. AM harvest was not sufficient by itself to increase total voluntary DMI, but greater protein degradability interacted with harvest time to increase ruminal fiber digestibility and digestible DMI of beef steers offered PM vs. AM harvest.  相似文献   

19.
The objective of this experiment was to determine the effects of feeding different levels of alkaline hydrogen peroxide-treated wheat straw (AHP-WS) in the diet on feed intake, nutrient digestion, ruminal fermentation, and production responses in mid-lactation dairy cows. Eight Holstein cows, averaging 147 d postpartum, were used in two replications of a 4 x 4 Latin square design. Complete mixed diets consisted of 70% forage and 30% concentrate (DM basis) with various levels of AHP-WS, alfalfa haylage, and corn silage as forage sources. Treatments contained 0 (control), 20.0, 40.1, or 60.0% AHP-WS in the diet. A quadratic effect (P = .08) of AHP-WS level on DMI was noted, with values of 2.16, 22.3, 20.8, and 18.9 kg/d for the control, 20.0, 40.1, and 60.0% AHP-WS treatments, respectively. Apparent digestibilities of DM, OM, CP, and ADF were not affected (P greater than .10) by replacing haylage and corn silage with increasing amounts of AHP-WS in the diet, but there was a linear increase (P = .03) in NDF digestibility (44% for control vs 59% for the 60.0% AHP-WS diet) and a parallel decrease (P less than .05) in cell content digestibility (82 vs 70% for these two diets). Yields of milk and 4% fat-corrected milk (FCM) were decreased (quadratic; P = .0001) as the level of AHP-WS increased in the diet. The addition of AHP-WS to the diet decreased the milk fat percentage from 3.72 to 3.60% (quadratic; P = .05) and decreased milk protein percentage from 3.27 to 3.13% (linear; P = .0001). Cows fed the higher levels of AHP-WS had linear increases (P = .0001) in ruminal concentrations of total VFA (128.0 mM for control vs 136.0 mM for the 60.0% AHP-WS treatment) and molar proportion of acetate, resulting in a quadratic effect (P less than .0001) on the acetate:propionate ratio. These data indicate that feeding the 40.1 and 60.0% AHP-WS diets lowered digestible DM and OM intakes, which resulted in reduced 4% FCM yield as nutrient intakes were decreased compared with cows fed the 20.0% AHP-WS diet or the control diet containing alfalfa haylage and corn silage. Although substituting AHP-WS for haylage and corn silage increased NDF digestibility and tended to increase digestible NDF intake, milk production was depressed because digestible DMI decreased.  相似文献   

20.
Eight multicannulated heifers (average BW 415 +/- 34 kg) were used in a replicated 4 x 4 Latin square to evaluate fluid milk processing wash water solids (WWS) as a dietary N source. Heifers were fed corn/cottonseed hull-based diets containing soybean meal (control, 0% WWS N) or WWS replacing soybean meal at 33, 67, or 100% of supplemental dietary N. Total tract and ruminal DM and OM digestibilities decreased linearly or cubically (P less than .05) as dietary WWS N increased. Total ruminal VFA concentration (P less than .05) and propionic acid molar proportion (P less than .10) were greater in heifers fed 0 vs 100% WWS N. Heifers fed 0% WWS N had the greatest (P less than .05) ruminal ammonia concentration at all sampling times. Dietary WWS did not affect (P greater than .10) ruminal pH, fluid dilution rate, fluid flow, fluid volume, or turnover time. Total tract N digestibility decreased quadratically (P less than .10) with increasing WWS N in the diet. Supplemental WWS N did not affect (P greater than .10) flow of duodenal ammonia N or bacterial N, or efficiency of microbial N synthesis. Diets containing WWS N resulted in a cubic increase (P less than .10) in duodenal flow of essential amino acids compared with 0% WWS N; however, there were no differences in small intestinal amino acid disappearance. Data indicate that WWS can replace 33% of the soybean meal N in a corn/cottonseed hull-based diet without decreasing ruminal fermentation, fluid digesta kinetics, microbial efficiency, or small intestinal amino acid utilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号