首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of this study was to identify quantitative trait loci for economically important traits in two families segregating an inactive copy of the myostatin gene. Two half-sib families were developed from a Belgian Blue x MARC III (n = 246) and a Piedmontese x Angus (n = 209) sire. Traits analyzed were birth, weaning, and yearling weight (kg); preweaning average daily gain (kg/d); postweaning average daily gain (kg/d); hot carcass weight (kg); fat depth (cm); marbling score; longissimus muscle area (cm2); estimated kidney, pelvic, and heart fat (%); USDA yield grade; retail product yield (%); fat yield (%); and wholesale rib-fat yield (%). Meat tenderness was measured as Warner-Bratzler shear force at 3 and 14 d postmortem. The effect of the myostatin gene was removed using phase information from six microsatellite markers flanking the locus. Interactions of the myostatin gene with other loci throughout the genome were also evaluated: The objective was to use markers in each family, scanning the genome approximately every 25 to 30 centimorgans (cM) on 18 autosomal chromosomes, excluding 11 autosomal chromosomes previously analyzed. A total of 89 markers, informative in both families, were used to identify genomic regions potentially associated with each trait. In the family of Belgian Blue inheritance, a significant QTL (expected number of false-positives = 0.025) was identified for marbling score on chromosome 3. Suggestive QTL for the same family (expected number of false-positives = 0.5) were identified for retail product yield on chromosome 3, for hot carcass weight and postweaning average daily gain on chromosome 4, for fat depth and marbling score on chromosome 8, for 14-d Warner-Bratzler shear force on chromosome 9, and for marbling score on chromosome 10. Evidence suggesting the presence of an interaction for 3-d Warner-Bratzler shear force between the myostatin gene and a QTL on chromosome 4 was detected. In the family of Piedmontese and Angus inheritance, evidence indicates the presence of an interaction for fat depth between the myostatin gene and chromosome 8, in a similar position where the evidence suggests the presence of a QTL for fat depth in the family with Belgian Blue inheritance. Regions identified underlying QTL need to be assessed in other populations. Although the myostatin gene has a considerable effect, other loci with more subtle effects are involved in the expression of the phenotype.  相似文献   

2.
The objective of the present study was to detect quantitative trait loci for economically important traits in a family from a Bos indicus x Bos taurus sire. A Brahman x Hereford sire was used to develop a half-sib family (n = 547). The sire was mated to Bos taurus cows. Traits analyzed were birth (kg) and weaning weights (kg); hot carcass weight (kg); marbling score; longissimus area (cm2); USDA yield grade; estimated kidney, pelvic, and heart fat (%); fat thickness (cm); fat yield (%); and retail product yield (%). Meat tenderness was measured as Warner-Bratzler shear force (kg) at 3 and 14 d postmortem. Two hundred and thirty-eight markers were genotyped in 185 offspring. One hundred and thirty markers were used to genotype the remaining 362 offspring. A total of 312 markers were used in the final analysis. Seventy-four markers were common to both groups. Significant QTL (expected number of false-positives < 0.05) were observed for birth weight and longissimus area on chromosome 5, for longissimus area on chromosome 6, for retail product yield on chromosome 9, for birth weight on chromosome 21, and for marbling score on chromosome 23. Evidence suggesting (expected number of false-positives < 1) the presence of QTL was detected for several traits. Putative QTL for birth weight were detected on chromosomes 1, 2, and 3, and for weaning weight on chromosome 29. For hot carcass weight, QTL were detected on chromosomes 10, 18, and 29. Four QTL for yield grade were identified on chromosomes 2, 11, 14, and 19. Three QTL for fat thickness were detected on chromosomes 2, 3, 7, and 14. For marbling score, QTL were identified on chromosomes 3, 10, 14, and 27. Four QTL were identified for retail product yield on chromosomes 12, 18, 19, and 29. A QTL for estimated kidney, pelvic, and heart fat was detected on chromosome 15, and a QTL for meat tenderness measured as Warner-Bratzler shear force at 3 d postmortem was identified on chromosome 20. Two QTL were detected for meat tenderness measured as Warner-Bratzler shear force at 14 d postmortem on chromosomes 20 and 29. These results present a complete scan in all available progeny in this family. Regions underlying QTL need to be assessed in other populations.  相似文献   

3.
A primary genomic screen for quantitative trait loci (QTL) affecting carcass and growth traits was performed by genotyping 238 microsatellite markers on 185 out of 300 total progeny from a Bos indicus x Bos taurus sire mated to Bos taurus cows. The following traits were analyzed for QTL effects: birth weight (BWT), weaning weight (WW), yearling weight (YW), hot carcass weight (HCW), dressing percentage (DP), fat thickness (FT), marbling score (MAR), longissimus muscle area (LMA), rib bone (RibB), rib fat (RibF), and rib muscle (RibM), and the predicted whole carcass traits, retail product yield (RPYD), fat trim yield (FATYD), bone yield (BOYD), retail product weight (RPWT), fat weight (FATWT), and bone weight (BOWT). Data were analyzed by generating an F-statistic profile computed at 1-cM intervals for each chromosome by the regression of phenotype on the conditional probability of receiving the Brahman allele from the sire. There was compelling evidence for a QTL allele of Brahman origin affecting an increase in RibB and a decrease in DP on chromosome 5 (BTA5). Putative QTL at or just below the threshold for genome-wide significance were as follows: an increase in RPYD and component traits on BTA2 and BTA13, an increase in LMA on BTA14, and an increase in BWT on BTA1. Results provided represent a portion of our efforts to identify and characterize QTL affecting carcass and growth traits.  相似文献   

4.
Postweaning growth, feed efficiency, and carcass traits were analyzed on 1,422 animals obtained by mating F1 cows to F1 (Belgian Blue x British breeds) or Charolais sires. Cows were obtained from mating Hereford, Angus, and MARC IIIHereford, 1/4 Angus, 1/4 Pinzgauer, and 1/4 Red Poll) dams to Hereford or Angus (British breeds), Tuli, Boran, Brahman, or Belgian Blue sires. Breed groups were fed in replicated pens and slaughtered serially in each of 2 yr. Postweaning average daily gain; live weight; hot carcass weight; fat depth; longissimus area; estimated kidney, pelvic, and heart fat (percentage); percentage Choice; marbling score; USDA yield grade; retail product yield (percentage); retail product weight; fat yield (percentage); fat weight; bone yield (percentage); and bone weight were analyzed in this population. Quadratic regressions of pen mean weight on days fed and of cumulative ME consumption on days fed were used to estimate gain, ME consumption and efficiency (Mcal of ME/kg of gain) over time (0 to 200 d on feed), and weight (300 to 550 kg) intervals. Maternal grandsire breed was significant (P < 0.01) for all traits. Maternal granddam breed (Hereford, Angus, or MARC III)was significant (P < 0.05) only for fat depth, USDA yield grade, retail product yield, fat yield, fat weight, and bone yield. Sire breed was significant (P < 0.05) for live weight, hot carcass weight, longissimus area, and bone weight. Sex class was a significant (P < 0.001) source of variation for all traits except for percentage Choice, marbling score, retail product yield, and fat yield. Interactions between maternal grandsire and sire breed were nonexistent. Sire and grandsire breed effects can be optimized by selection and use of appropriate crossbreeding systems.  相似文献   

5.
The objective of this study was to estimate parameters required for genetic evaluation of Simmental carcass merit using carcass and live animal data. Carcass weight, fat thickness, longissimus muscle area, and marbling score were available from 5,750 steers and 1,504 heifers sired by Simmental bulls. Additionally, yearling ultrasound measurements of fat thickness, longissimus muscle area, and estimated percentage of intramuscular fat were available on Simmental bulls (n = 3,409) and heifers (n = 1,503). An extended pedigree was used to construct the relationship matrix (n = 23,968) linking bulls and heifers with ultrasound data to steers and heifers with carcass data. All data were obtained from the American Simmental Association. No animal had both ultrasound and carcass data. Using an animal model and treating corresponding ultrasound and carcass traits separately, genetic parameters were estimated using restricted maximum likelihood. Heritability estimates for carcass traits were 0.48 +/- 0.06, 0.35 +/- 0.05, 0.46 +/- 0.05, and 0.54 +/- 0.05 for carcass weight, fat thickness, longissimus muscle area, and marbling score, respectively. Heritability estimates for bull (heifer) ultrasound traits were 0.53 +/- 0.07 (0.69 +/- 0.09), 0.37 +/- 0.06 (0.51 +/- 0.09), and 0.47 +/- 0.06 (0.52 +/- 0.09) for fat thickness, longissimus muscle area, and intramuscular fat percentage, respectively. Heritability of weight at scan was 0.47 +/- 0.05. Using a bivariate weight model including scan weight of bulls and heifers with carcass weight of slaughter animals, a genetic correlation of 0.77 +/- 0.10 was obtained. Models for fat thickness, longissimus muscle area, and marbling score were each trivariate, including ultrasound measurements on yearling bulls and heifers, and corresponding carcass traits of slaughter animals. Genetic correlations of carcass fat thickness with bull and heifer ultrasound fat were 0.79 +/- 0.13 and 0.83 +/- 0.12, respectively. Genetic correlations of carcass longissimus muscle area with bull and heifer ultrasound longissimus muscle area were 0.80 +/- 0.11 and 0.54 +/- 0.12, respectively. Genetic correlations of carcass marbling score with bull and heifer ultrasound intramuscular fat percentage were 0.74 +/- 0.11 and 0.69 +/- 0.13, respectively. These results provide the parameter estimates necessary for genetic evaluation of Simmental carcass merit using both data from steer and heifer carcasses, and their ultrasound indicators on yearling bulls and heifers.  相似文献   

6.
Carcass (n = 854) and longissimus thoracis palatability (n = 802) traits from F1 steers obtained from mating Hereford, Angus, and MARC III cows to Hereford or Angus (HA), Tuli (Tu), Boran (Bo), Brahman (Br), Piedmontese (Pm), or Belgian Blue (BB) sires were compared. Data were adjusted to constant age (444 d), carcass weight (333 kg), fat thickness (1.0 cm), fat trim percentage (21%), and marbling (Small00) end points. Results presented in this abstract are for age-constant data. Carcasses from BB- and HA-sired steers were heaviest (P < 0.05) and carcasses from Bo- and Tu-sired steers were lightest (P < 0.05). Adjusted fat thickness was greatest (P < 0.05) on carcasses from HA-sired steers and least (P < 0.05) on carcasses from BB- and Pm-sired steers. Numerical USDA yield grades were lowest (P < 0.05) for carcasses from Pm- and BB-sired steers and highest (P < 0.05) for carcasses from HA- and Br-sired steers. Marbling scores were highest (P < 0.05) for carcasses from HA- and Tu-sired steers and lowest (P < 0.05) for carcasses from Br-, BB-, and Pm-sired steers. Longissimus thoracis from carcasses of HA-, Pm-, and Tu-sired steers had the lowest (P < 0.05) 14-d postmortem Warner-Bratzler shear force values. Carcasses from HA-sired steers had longissimus thoracis with the highest (P < 0.05) tenderness ratings at 7 d postmortem. Longissimus thoracis from carcasses of Br- and Bo-sired steers had the highest (P < 0.05) Warner-Bratzler shear forces and the lowest (P < 0.05) tenderness ratings at 7 d postmortem. Adjustment of traits to various slaughter end points resulted in some changes in sire breed differences for carcass traits but had little effect on palatability traits. Carcasses from BB- and Pm-sired steers provided the most desirable combination of yield grade and longissimus palatability, but carcasses from HA-cross steers provided the most desirable combination of quality grade and longissimus palatability. Tuli, a breed shown to be heat-tolerant, had longissimus tenderness similar to that of the non-heat-tolerant breeds and more tender longissimus than the heat-tolerant breeds in this study.  相似文献   

7.
A genome-wide scan for chromosomal regions influencing carcass traits was conducted spanning 2.413 morgans on 29 bovine autosomes using 229 microsatellite markers. Two paternal half-sib families of backcross progenies were produced by mating Hereford x composite gene combination (CGC) bulls to both Hereford and CGC dams. Progeny of the first sire (n = 146) were born in 1996 and progeny of the second sire (n = 112) were born in 1997. Each year cattle were fed out and slaughtered serially when they were between 614 and 741 d of age. Phenotypes measured at harvest were: live weight; carcass weight; fat depth; marbling; percentage kidney, pelvic, and heart fat (KPH); and rib eye area. Dressing percentage and USDA Yield Grade were calculated from these data. The phenotypes were adjusted to age-, live weight-, and fat depth-constant endpoints using analysis of covariance. The resulting residuals were analyzed by interval mapping to detect QTL. Within family, nominal significance was established by permutation analysis. Approximate genomewide significance levels were established by applying the Bonferroni correction to the nominal probability levels. Regression and error sums of squares and degrees of freedom were pooled across families when suggestive linkage identified in one family was confirmed in the other. The results indicate promising locations for QTL affecting live weight on BTA 17 and marbling on BTA 2 that segregate in Bos taurus. Also, previously identified linkage between central markers on BTA 5 and USDA Yield Grade was confirmed in one family. Greater marker saturation in these regions coupled with refined methods for data analysis will lead to more precise determination of QTL positions.  相似文献   

8.
Objective of this study was to assess the association of SNP in the diacylglycerol O-acyltransferase 1 (DGAT1), thyroglobulin (TG), and micromolar calcium-activated neutral protease (CAPN1) genes with carcass composition and meat quality traits in Bos indicus cattle. A population of Brahman calves (n = 479) was developed in central Florida from 1996 to 2000. Traits analyzed were ADG, hip height, slaughter weight, fat thickness, HCW, marbling score, LM area, estimated KPH fat, yield grade, retail yield, sensory panel tenderness score, carcass hump height, and cooked meat tenderness measured as Warner-Bratzler shear force at 7, 14, and 21 d postmortem. Single nucleotide polymorphisms previously reported in the TG and DGAT1 genes were used as markers on chromosome 14. Two previously reported and two new SNP in the CAPN1 gene were used as markers on chromosome 29. One SNP in CAPN1 was uninformative, and another one was associated with tenderness score (P < 0.05), suggesting the presence of variation affecting meat tenderness. All three informative SNP at the CAPN1 gene were associated with hump height (P < 0.02). The TG marker was associated with fat thickness and LMA (P < 0.05), but not with marbling score. No significant associations of the SNP in the DGAT1 gene were observed for any trait. Allele frequencies of the SNP in TG and CAPN1 were different in this Brahman population than in reported allele frequencies in Bos taurus populations. The results suggest that the use of molecular marker information developed in Bos taurus populations to Bos indicus populations may require development of appropriate additional markers.  相似文献   

9.
Feedlot and carcass characteristics of 276 steers from five closed lines of Hereford cattle and reciprocal crosses among these lines were studied. The traits studied were initial weight, final weight, 224-d gain, days on test, hot carcass weight, marbling score, longissimus muscle area, fat thickness, yield grade, dressing percentage and shear force. Year of record was a significant source of variation for most traits. Age of dam was a significant source of variation for growth traits but not carcass traits. Line of sire affected initial weight, final weight, 224-d gain, days on test, marbling score and dressing percentage. Significant heterosis was observed only for hot carcass weight. Heterosis estimates were 1.9% for initial weight, 2.2% for final weight, 2.5% for 224-d gain, -2.1% for days on test, .6% for hot carcass weight, -.6% for marbling score, 0 for carcass grade, .6% for longissimus muscle area, 2.3% for backfat thickness, .9% for yield grade, -.9% for dressing percent and -10.9% for shear force. Initial age on test affected only hot carcass weight. Hot carcass weight, dressing percentage, marbling score, longissimus muscle area and fat thickness were affected by slaughter weight. Slaughter age affected dressing percent and marbling score.  相似文献   

10.
Estimates of heritabilities and genetic correlations were obtained for weaning weight records of 23,681 crossbred steers and heifers and carcass records from 4,094 crossbred steers using animal models. Carcass traits included hot carcass weight; retail product percentage; fat percentage; bone percentage; ribeye area; adjusted fat thickness; marbling score, Warner-Bratzler shear force and kidney, pelvic and heart fat percentage. Weaning weight was modeled with fixed effects of age of dam, sex, breed combination, and birth year, with calendar birth day as a covariate and random direct and maternal genetic and maternal permanent environmental effects. The models for carcass traits included fixed effects of age of dam, line, and birth year, with covariates for weaning and slaughter ages and random direct and maternal effects. Direct and maternal heritabilities for weaning weight were 0.4 +/- 0.02 and 0.19 +/- 0.02, respectively. The estimate of direct-maternal genetic correlation for weaning weight was negative (-0.18 +/- 0.08). Heritabilities for carcass traits of steers were moderate to high (0.34 to 0.60). Estimates of genetic correlations between direct genetic effects for weaning weight and carcass traits were small except with hot carcass weight (0.70), ribeye area (0.29), and adjusted fat thickness (0.26). The largest estimates of genetic correlations between maternal genetic effects for weaning weight and direct genetic effects for carcass traits were found for hot carcass weight (0.61), retail product percentage (-0.33), fat percentage (0.33), ribeye area (0.29), marbling score (0.28) and adjusted fat thickness (0.25), indicating that maternal effects for weaning weight may be correlated with genotype for propensity to fatten in steers.  相似文献   

11.
The objective of this study was to investigate a potential association of an inactive myostatin allele with early calf mortality, and evaluate its effect on growth and carcass traits in a crossbred population. Animals were obtained by mating F1 cows to F1 (Belgian Blue x British Breed) or Charolais sires. Cows were obtained from mating Hereford, Angus, and MARC III (1/4 Hereford, 1/4 Angus, 1/4 Pinzgauer, and 1/4 Red Poll) dams to Hereford, Angus, Tuli, Boran, Brahman, or Belgian Blue sires. Belgian Blue was the source of the inactive myostatin allele. Myostatin genotypes were determined for all animals including those that died before weaning. Early calf mortality was examined in the F2 subpopulation (n = 154), derived from the F1 sires mated to F1 cows from Belgian Blue sires, to evaluate animals with zero, one, or two copies of inactive myostatin allele. An overall 1:2:1 ratio (homozygous active myostatin allele:heterozygous:homozygous inactive myostatin allele) was observed in the population; however, a comparison between calves dying before weaning and those alive at slaughter showed an unequal distribution across genotypes (P < 0.01). Calves with two copies of the inactive allele were more likely (P < 0.01) to die before weaning. Postweaning growth traits were evaluated in the surviving animals (n = 1,370), including birth, weaning, and live weight at slaughter, and postweaning ADG. Carcass composition traits analyzed were hot carcass weight, fat thickness, LM area, marbling score, USDA yield grade, estimated kidney, pelvic, and heart fat, retail product yield and weight, fat yield and weight, bone yield and weight, and percentage of carcasses classified as Choice. Charolais lack the inactive myostatin allele segregating in Belgian Blue; thus, in the population sired by Charolais (n = 645), only animals with zero or one copy of the inactive myostatin allele were evaluated. Animals carrying one copy were heavier at birth and at weaning, and their carcasses were leaner and more muscled. In the population sired by Belgian Blue x British Breed (n = 725), animals with two copies of inactive myostatin allele were heavier at birth, leaner, and had a higher proportion of muscle mass than animals with zero or one copies. Heterozygous animals were heaviest at weaning and had the highest live weight, whereas animals with zero copies had the highest fat content. The use of the inactive myostatin allele is an option to increase retail product yield, but considerations of conditions at calving are important to prevent mortality.  相似文献   

12.
Pigs from the F(2) generation of a Duroc x Pietrain resource population were evaluated to discover QTL affecting carcass composition and meat quality traits. Carcass composition phenotypes included primal cut weights, skeletal characteristics, backfat thickness, and LM area. Meat quality data included LM pH, temperature, objective and subjective color information, marbling and firmness scores, and drip loss. Additionally, chops were analyzed for moisture, protein, and fat composition as well as cook yield and Warner-Bratzler shear force measurements. Palatability of chops was determined by a trained sensory panel. A total of 510 F(2) animals were genotyped for 124 microsatellite markers evenly spaced across the genome. Data were analyzed with line cross, least squares regression interval, mapping methods using sex and litter as fixed effects and carcass weight or slaughter age as covariates. Significance thresholds of the F-statistic for single QTL with additive, dominance, or imprinted effects were determined on chromosome- and genome-wise levels by permutation tests. A total of 94 QTL for 35 of the 38 traits analyzed were found to be significant at the 5% chromosome-wise level. Of these 94 QTL, 44 were significant at the 1% chromosome-wise, 28 of these 44 were also significant at the 5% genome-wise, and 14 of these 28 were also significant at the 1% genome-wise significance thresholds. Putative QTL were discovered for 45-min pH and pH decline from 45 min to 24 h on SSC 3, marbling score and carcass backfat on SSC 6, carcass length and number of ribs on SSC 7, marbling score on SSC 12, and color measurements and tenderness score on SSC 15. These results will facilitate fine mapping efforts to identify genes controlling carcass composition and meat quality traits that can be incorporated into marker-assisted selection programs to accelerate genetic improvement in pig populations.  相似文献   

13.
A directed search for QTL affecting carcass traits was carried out in the region of growth differentiation factor 8 (GDF8, also known as myostatin) on ovine chromosome 2 in seven Texel-sired half-sib families totaling 927 progeny. Weights were recorded at birth, weaning, ultrasound scanning, and slaughter. Ultrasonic measures of LM cross-sectional dimensions and s.c. fat above the LM were made, with the same measurements made on the LM after slaughter. Following slaughter, linear measurements of carcass length and width were made on all carcasses, and legs and loins from 540 lambs were dissected. Genotyping was carried out using eight microsatellite markers from FCB128 to RM356 on OAR 2 and analyzed using Haley-Knott regression. There was no evidence for QTL for growth rates or linear carcass traits. There was some evidence for QTL affecting LM dimensions segregating in some sire families, although it was not consistent between ultrasound and carcass measures of the same traits. There was strong and consistent evidence for a QTL affecting muscle and fat traits in the leg that mapped between markers BM81124 and BULGE20 for the four sires that were heterozygous in this region, but not for the three sires that were homozygous. The size of the effect varied across the four sires, ranging from 0.5 to 0.9 of an adjusted SD for weight-adjusted leg muscle traits, and ranging from 0.6 to 1.2 of an adjusted SD for weight-adjusted leg fat traits. The clearest effect shown was for multivariate analysis combining all leg muscle and fat traits analyzed across sires, where the -log(10) probability was 14. Animals carrying the favorable haplotype had 3.3% more muscle and 9.9% less fat in the leg relative to animals carrying other haplotypes. There was evidence for a second peak in the region of marker TEXAN2 for one sire group. It seems that a QTL affecting muscle and fat traits exists within the New Zealand Texel population, and it maps to the region of GDF8 on OAR2.  相似文献   

14.
Two hundred beef carcasses were randomly selected by dental classification (zero, two, four, six, or eight permanent incisors) from a population of 11,136 carcasses harvested by a large commercial beef processor. Warner-Bratzler shear force and trained sensory panel evaluations of longissimus thoracis steaks as well as cooking and carcass traits were evaluated for differences among dental classes. No differences in Warner-Bratzler shear force (P = 0.60), sensory panel evaluations (P = 0.64) for tenderness, or percentage of total cooking loss (P = 0.73) were found among the five dental classes. Longissimus muscle color, USDA marbling score, hot carcass weight, adjusted fat thickness, longissimus muscle area, and USDA yield grade did not differ among the five dental classes. A significant dental classification x sex interaction indicated that heifers advanced in skeletal and overall maturity at a much faster rate than steers. An increase of intramuscular fat was associated (P < 0.05) with decreased shear force (r = -0.31), whereas darkening of the lean (r = 0.16), advancing lean maturity (r = 0.21), and increased evaporative cooking loss (r = 0.39) were associated (P < 0.05) with increased shear force values. Warner-Bratzler shear force measurements were not related to sensory panel overall tenderness scores. Carcass traits accounted for a relatively small proportion of the variation in tenderness of longissimus steaks, and dental classification was not related to tenderness.  相似文献   

15.
Data from the first four cycles of the Germplasm Evaluation Program at the U.S. Meat Animal Research Center (USMARC) were used to investigate genetic relationships between mature weight (MW, n = 37,710), mature weight adjusted for body condition score (AMW, n = 37,676), mature height (HT, n = 37,123), and BCS (n = 37,676) from 4- to 8-yr old cows (n = 1,800) and carcass traits (n = 4,027) measured on their crossbred paternal half-sib steers. Covariance components among traits were estimated using REML. Carcass traits were adjusted for age at slaughter. Estimates of heritability for hot carcass weight (HCWT); percentage of retail product; percentage of fat; percentage of bone; longissimus muscle area; fat thickness adjusted visually; estimated kidney, pelvic, and heart fat percentage; marbling score; Warner-Bratzler shear force; and taste panel tenderness measured on steers were moderate to high (0.26 to 0.65), suggesting that selection for carcass and meat traits could be effective. Estimates of heritability for taste panel flavor and taste panel juiciness were low and negligible (0.05 and 0.01, respectively). Estimates of heritability from cow data over all ages and seasons were high for MW, AMW, and HT (0.52, 0.57, 0.71; respectively) and relatively low for BCS (0.16). Pairwise analyses for each female mature trait with each carcass trait were done with bivariate animal models. Estimates of genetic correlations between cow mature size and carcass composition or meat quality traits, with the exception of HCWT, were relatively low. Selection for cow mature size (weight and/or height) could be effective and would not be expected to result in much, if any, correlated changes in carcass and meat composition traits. However, genetic correlations of cow traits, with the possible exception of BCS, with HCWT may be too large to ignore. Selection for steers with greater HCWT would lead to larger cows.  相似文献   

16.
Our objective was to compare the effects of feeding steam-flaked, high-oil corn with normal steam-flaked corn to which yellow grease was added to equalize dietary fat on performance and carcass characteristics of finishing beef steers, and palatability, retail case life, and fatty acid composition of strip loins. Angus steers (n = 120; initial BW = 288 kg) were allotted to dietary treatments consisting of 1) normal mill-run, steam-flaked corn plus added fat (NMR) or 2) high-oil, steam-flaked corn (HOC) and assigned randomly to pens (12 pens/treatment with 5 steers/pen). Performance (ADG, DMI, and G:F) was measured over time, and cattle were shipped to a commercial abattoir for collection of carcass data after 165 d on feed. Carcass data were collected at 48 h postmortem on all carcasses, and 2 carcasses from each pen were selected randomly for collection of strip loins (IMPS #180A). At 14 d postmortem, 4 steaks (2.54 cm thick) were removed for retail display, trained sensory panel analysis, Warner-Bratzler shear force determination, and fatty acid analysis. Daily BW gain was greater (P = 0.03) and G:F was increased 8.4% (P = 0.01) for steers fed NMR compared with HOC, but DMI was not affected (P > 0.10) by treatment. No treatment differences were observed (P > 0.10) for HCW, 12th-rib fat, KPH, and yield grade. Marbling scores were greater (P = 0.01) for NMR than for HOC, and LM area tended (P = 0.07) to be greater in NMR than in HOC carcasses. The proportion of carcasses grading USDA Choice did not differ (P = 0.77) between treatments, but a greater (P = 0.04) proportion of carcasses graded in the upper two-thirds of Choice for NMR vs. HOC. Trained sensory panel traits and Warner-Bratzler shear force values did not differ between treatments (P > 0.10), and no differences (P > 0.10) were detected for purge loss or fatty acid composition. Overall, ADG and G:F were less and marbling score was decreased, but there were no differences between treatments in beef palatability, retail case life, or concentrations of fatty acids in strip loins.  相似文献   

17.
We studied genetic relationships between age-constant live yearling beef bull growth and ultrasound traits and steer carcass traits with dissected steer carcass lean percentage adjusted to slaughter age-, HCW-, fat depth-, and marbling score-constant end points. Three measures of steer carcass lean percentage were used. Blue Tag lean percentage (BTLean) was predicted from HCW, fat depth, and LM area measurements. Ruler lean percentage (RulerLean) was predicted from carcass fat depth and LM depth and width measurements. Dissected lean percentage (DissLean) was based on dissection of the 10-11-12th rib section. Both BTLean (h2 = 0.30 to 0.44) and DissLean (h2 = 0.34 to 0.39) were more heritable than RulerLean (h2 = 0.05 to 0.14) at all end points. Genetic correlations among DissLean and RulerLean (rg = 0.61 to 0.70), DissLean and BTLean (rg = 0.56 to 0.72), and BTLean and RulerLean (rg = 0.59 to 0.90) indicated that these traits were not genetically identical. Adjusting Diss-Lean to different end points changed the magnitude, but generally not the direction, of genetic correlations with indicator traits. Ultrasound scan-age-constant live yearling bull lean percentage estimates were heritable (h2 = 0.26 to 0.42) and genetically correlated with each other (rg = 0.68 to 0.99) but had greater correlations with DissLean at slaughter age (rg = 0.24 to 0.48) and HCW (rg = 0.16 to 0.40) end points than at fat depth (rg = -0.08 to 0.13) and marbling score (rg = 0.02 to 0.11) end points. Scan-age-constant yearling bull ultrasound fat depth also had stronger correlations with DissLean at slaughter age (rg = -0.34) and HCW (rg = -0.25) than at fat depth (rg = -0.02) and marbling score (rg = -0.03) end points. Yearling bull scan-age-constant ultrasound LM area was positively correlated with DissLean at all endpoints (rg = 0.11 to 0.23). Genetic correlations between yearling bull LM method 1 width (rg = 0.38 to 0.56) and method 2 depth (rg = -0.17 to -0.38) measurements with DissLean suggested that LM shape may be a valuable addition to genetic improvement programs for carcass lean percentage at slaughter age, HCW, and fat depth constant end points. At all end points, steer carcass fat depth (rg = -0.60 to -0.64) and LM area (rg = 0.48 to 0.59) had stronger associations with DissLean than did corresponding live yearling bull measurements. Improved methods that combine live ultrasound and carcass traits would be beneficial for evaluating carcass lean percentage at fat depth or marbling score end points.  相似文献   

18.
An experiment involving crosses among selection and control lines was conducted to partition direct and maternal additive genetic response to 20 yr of selection for 1) weaning weight, 2) yearling weight, and 3) index of yearling weight and muscle score. Selection response was evaluated for efficiency of gain, growth from birth through market weight, and carcass characteristics. Heritability and genetic correlations among traits were estimated using animal model analyses. Over a time-constant interval, selected lines were heavier, gained more weight, consumed more ME, and had more gain/ME than the control. Over a weight-constant interval, selected lines required fewer days, consumed less ME, had more efficient gains, and required less energy for maintenance than control. Direct and maternal responses were estimated from reciprocal crosses among unselected sires and dams of control and selection lines. Most of the genetic response to selection in all three lines was associated with direct genetic effects, and the highest proportion was from postweaning gain. Indirect responses of carcass characteristics to selection over the 20 yr were increased weight of carcasses that had more lean meat, produced with less feed per unit of gain. At a constant carcass weight, selected lines had 1.32 to 1.85% more retail product and 1.62 to 2.24% less fat trim and 10/100 to 25/100 degrees less marbling than control. At a constant age, heritability of direct and maternal effects and correlations between them were as follows: market weight, 0.36, 0.14, and 0.10; carcass weight, 0.26, 0.15, and 0.03; longissimus muscle area, 0.33, 0.00, and 0.00; marbling, 0.36, 0.07, and -0.35; fat thickness, 0.41, 0.05, and -0.18; percentage of kidney, pelvic, and heart fat, 0.12, 0.08, and -0.76; percentage of retail product, 0.46, 0.05, and -0.29; retail product weight, 0.44, 0.08, -0.14; and muscle score, 0.37, 0.14, and -0.54. Selection criteria in all lines improved efficiency of postweaning gain and increased the amount of salable lean meat on an age- or weight-constant basis, but carcasses had slightly lower marbling scores.  相似文献   

19.
Fine mapping of quantitative trait loci (QTL) for 16 ultrasound measurements and carcass merit traits that were collected from 418 hybrid steers was conducted using 1207 SNP markers covering the entire genome. These SNP markers were evaluated using a Bayesian shrinkage estimation method and the empirical critical significant thresholds (α = 0.05 and α = 0.01) were determined by permutation based on 3500 permuted datasets for each trait to control the genome-wide type I error rates. The analyses identified a total of 105 QTLs (p < 0.05) for seven ultrasound measure traits including ultrasound backfat, ultrasound marbling and ultrasound ribeye area and 113 QTLs for seven carcass merit traits of carcass weight, grade fat, average backfat, ribeye area, lean meat yield, marbling and yield grade. Proportion of phenotypic variance accounted for by a single QTL ranged from 0.06% for mean ultrasound backfat to 4.83% for carcass marbling (CMAR) score, while proportion of the phenotypic variance accounted for by all significant (p < 0.05) QTL identified for a single trait ranged from 4.54% for carcass weight to 23.87% for CMAR.  相似文献   

20.
Real time ultrasound (RTU) measures of longissimus muscle area and fat depth were taken at 12 and 14 mo of age on composite bulls (n = 404) and heifers (n = 514). Carcass longissimus muscle area and fat depth, hot carcass weight, estimated percentage lean yield, marbling score, Warner-Bratzler shear force, and 7-rib dissectable seam fat and lean percentages were measured on steers (n = 235). Additive genetic variances for longissimus muscle area were 76 and 77% larger in bulls at 12 and 14 mo than the corresponding estimates for heifers. Heritability estimates for longissimus muscle area were 0.61 and 0.52 in bulls and 0.49 and 0.47 in heifers at 12 and 14 mo, respectively. The genetic correlations of longissimus muscle area of bulls vs heifers were 0.61 and 0.84 at 12 and 14 mo, respectively. Genetic correlations of longissimus muscle area measured in steer carcasses were 0.71 and 0.67 with the longissimus muscle areas in bulls and heifers at 12 mo and 0.73 and 0.79 at 14 mo. Heritability estimates for fat depth were 0.50 and 0.35 in bulls and 0.44 and 0.49 in heifers at 12 and 14 mo, respectively. The genetic correlation of fat depth in bulls vs heifers at 12 mo was 0.65 and was 0.49 at 14 mo. Genetic correlations of fat depth measured in bulls at 12 and 14 mo with fat depth measured in steers at slaughter were 0.23 and 0.21, and the corresponding correlations of between heifers and steers were 0.66 and 0.86, respectively. Live weights at 12 and 14 mo were genetically equivalent (r(g) = 0.98). Genetic correlations between live weights of bulls and heifers with hot carcass weight of the steers were also high (r(g) > 0.80). Longissimus muscle area measured using RTU was positively correlated with carcass measures of longissimus muscle area, estimated percentage lean yield, and percentage lean in a 7-rib section from steers. Measures of backfat obtained using RTU were positively correlated with fat depth and dissectable seam fat from the 7-rib section of steer carcasses. Genetic correlations between measures of backfat obtained using RTU and marbling were negative but low. These results indicate that longissimus muscle area and backfat may be under sufficiently different genetic control in bulls vs heifers to warrant being treated as separate traits in genetic evaluation models. Further, traits measured using RTU in potential replacement bulls and heifers at 12 and 14 mo of age may be considered different from the corresponding carcass traits of steers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号