首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the long-term effects of different deficit irrigation (DI) options on tree growth, shoot and leaf attributes, yield determinants and water productivity of almond trees (Prunus dulcis, cv. Marta) grown in a semiarid climate in SE Spain. Three partial root-zone drying (PRD) irrigation treatments encompassing a wide range of water restriction (30%, 50% and 70% of full crop requirements, ETc) and a regulated deficit irrigation treatment (RDI, at 50% ETc during kernel-filling) were compared over three consecutive growth seasons (2004–2006) to full irrigation (FI). The results showed that all deficit irrigation treatments have a negative impact on trunk growth parameters. The magnitude of the reduction in trunk growth rate was strongly correlated through a linear relationship with the annual volume of water applied (WA) per tree. Similarly, a significant relationship was found between WA and the increase in crown volume. In contrast, leaf-related attributes and some yield-related parameters (e.g., kernel fraction) were not significantly affected by the irrigation treatments. Except in PRD70, individual kernel weight was significantly reduced in the deficit irrigated treatments. Kernel yield, expressed in percent of the maximum yield observed in the FI treatment, showed a linear decrease with decreasing WA and a slope of 0.43, which implies that a 1% decrease in water application would lead to a reduction of 0.43% in yield. Water productivity increased drastically with the reduction of water application, reaching 123% in the case of PRD30. Overall, our results demonstrate the prevalence of direct and strong links between the intensity of the water restriction under PRD – i.e., the total water supply during the growing season – and the main parameters related to tree growth, yield and water productivity. Noteworthy, the treatments that received similar annual water volumes under contrasted deficit irrigation strategies (i.e., PRD70 and RDI) presented a similar tree performance.  相似文献   

2.
This study assesses the long-term suitability of regulated (RDI) and sustained deficit irrigation (SDI) implemented over the first six growing seasons of an almond [Prunus dulcis (Mill.) D.A. Webb] orchard grown in a semiarid area in SE Spain. Four irrigation treatments were assessed: (i) full irrigation (FI), irrigated to satisfy maximum crop evapotranspiration (100% ETc); (ii) RDI, as FI but receiving 40% ETc during kernel-filling; (iii) mild-to-moderate SDI (SDImm), irrigated at 75–60% ETc over the entire growing season; and (iv) moderate-to-severe SDI (SDIms), irrigated at 60–30% ETc over the whole season. Application of water stress from orchard establishment did not amplify the negative effects of deficit irrigation on almond yield. Irrigation water productivity (IWP) increased proportionally to the mean relative water shortage. SDIms increased IWP by 92.5%, reduced yield by 29% and applied 63% less irrigation water. RDI and SDImm showed similar productive performances, but RDI was more efficient than SDImm to increase fruiting density and production efficiency (PE). We conclude that SDIms appears to be a promising DI option for arid regions with severe water scarcity, whereas for less water-scarce areas RDI and SDImm behaved similarly, except for the ability of RDI to more severely restrict vegetative development while increasing PE.  相似文献   

3.
‘Chok Anan’ mangoes are mainly produced in the northern part of Thailand for the domestic fresh market and small scale processing. It is appreciated for its light to bright yellow color and its sweet taste. Most of the fruit development of on-season mango fruits takes place during the dry season and farmers have to irrigate mango trees to ensure high yields and good quality. Meanwhile, climate changes and expanding land use in horticulture have increased the pressure on water resources. Therefore research aims on the development of crop specific and water-saving irrigation techniques without detrimentally affecting crop productivity.The aim of this study was to assess the response of mango trees to varying amounts of available water. Influence of irrigation, rainfall, fruit set, retention rate and alternate bearing were considered as the fruit yield varies considerably during the growing seasons. Yield response and fruit size distribution were measured and WUE was determined for partial rootzone drying (PRD), regulated deficit irrigation (RDI) and irrigated control trees.One hundred ninety-six mango trees were organized in a randomized block design consisting of four repetitive blocks, subdivided into eight fields. Four irrigation treatments have been evaluated with respect to mango yield and fruit quality: (a) control (CO = 100% of ETc), (b) (RDI = 50% of ETc), (c) (PRD = 50% of ETc, applied to alternating sides of the root system) and (d) no irrigation (NI).Over four years, the average yield in the different irrigation treatments was 83.35 kg/tree (CO), 80.16 kg/tree (RDI), 80.85 kg/tree (PRD) and 66.1 kg/tree (NI). Water use efficiency (WUE) calculated as yield per volume of irrigation water was always significantly higher in the deficit irrigation treatments as compared to the control. It turned out that in normal years the yields of the two deficit irrigation treatments (RDI and PRD) do not differ significantly, while in a dry year yield under PRD is higher than under RDI and in a year with early rainfall, RDI yields more than PRD. In all years PRD irrigated mangoes had a bigger average fruit size and a more favorable fruit size distribution.It was concluded that deficit irrigation strategies can save considerable amounts of water without affecting the yield to a large extend, possibly increasing the average fruit weight, apparently without negative long term effects.  相似文献   

4.
This study aims to assess the long-term economic viability of deficit irrigation (DI) strategies in almond trees (cv. Marta) grown in a semiarid area (southeast Spain). A discounted cash flow analysis (DCFA) was performed to determine the profitability of the different irrigation regimes. Four irrigation treatments were evaluated over the first 6 years of an almond plantation: (1) full irrigation (FI); (2) regulated deficit irrigation (RDI) receiving 40 % ETc during kernel-filling and 100 % ETc during the remainder of the growing season; (3) mild-to-moderate sustained deficit irrigation (SDImm), irrigated at 75 % ETc (first half of the experiment) and 60 % ETc (second half of the experiment) over the entire growing season; and (4) moderate-to-severe SDI (SDIms), irrigated at 60 % ETc (first half of the experiment) and 30 % ETc (second half of the experiment) over the whole growing season. Irrigation water profit was mainly determined by the annual volume of irrigation water applied (water costs are around 50 % of variable costs). DCFA indicates that RDI and SDImm are the most economically feasible treatments, whereas FI and SDIms presented a similar degree of profitability over the 6-year period. Simulation outputs derived for the whole useful life of the investment indicate that SDImm would be the most suitable irrigation treatment to be adopted by almond farmers in the study area. We conclude that in a context of water scarcity, DI is a financially feasible alternative to FI.  相似文献   

5.
Partial rootzone drying (PRD) is a water-saving irrigation practice which involves watering only part of the rhizosphere at each irrigation with the complement left to dry to a pre-determined level. The effect of PRD, applied at different phenological stages, on yield, fruit growth, and quality of the processing tomato cv. ‘Petopride’ was studied in this experiment. The treatments were: daily full irrigation (FI) on both sides of the root system considered as the control, and PRD treatments applied at three phenological stages. These were: during the vegetative stage until the first truss was observed (PRDVS–FT), from the first truss to fruit set (PRDFT–FS), and from fruit set to harvest (PRDFS–H). In some occasions, leaf xylem water potential was lower in each PRD period than in FI. Number of fruits, total fresh and dry weight of fruit per plant, harvest index, and fruit growth were lower in PRDFT–FS and PRDFS–H plants than in FI and PRDVS–FT plants. However, irrigation water use efficiency, on a dry weight basis, was the same among the treatments. For PRDFT–FS and PRDFS–H treatments, mean fresh weight of fruit and fruit water content were reduced and dry matter concentration of cortex and total soluble solids concentration of fruit increased compared with FI and PRDVS–FT treatments. Incidence of blossom-end rot was the same among PRDVS–FT, PRDFS–FH, and FI fruit, but it was higher in PRDFT–FS fruit. Fruit skin colour was the same among treatments. Total dry weight of fruit per plant decreased by 23% for PRDFT–FS and by 20% for PRDFS–H relative to FI. Fruit quality improvement in PRDFS–H could compensate for the reduction in total dry weight of fruit where water is expensive for tomato production. But an economical analysis would be needed to substantiate this. PRD from the first truss to fruit set is not recommended because of the high incidence of blossom-end rot. An erratum to this article can be found at  相似文献   

6.
The objectives of this study were to investigate the effects of full irrigation (FI), deficit irrigation (DI) and partial root-zone drying (PRD) on plant biomass, irrigation water productivity (IWP), nitrogen use efficiency (NUE) of tomato, and soil microbial C/N ratio. The plants were grown in pots with roots split equally between two soil compartments in a climate-controlled glasshouse. During early fruiting stage, plants were exposed to FI, DI, and PRD treatments. In FI, both soil compartments were irrigated daily to a volumetric soil water content of 18%; in PRD, only one soil compartment was irrigated to 18% while the other was allowed to dry to ca. 7-8%, then the irrigation was shifted; in DI, the same amount of water used for the PRD plants was equally split to the two soil compartments. The results showed that, the FI treatment produced significantly higher dry biomasses of leaves, stems, and fresh weight of fruit and water productivity of aboveground dry biomass production than either DI or PRD, however, fruit IWP in DI was 25% higher than that of FI, and harvest index in DI and PRD were 50% and 22% higher than FI, respectively, for the 26% and 23% less water used in the DI and PRD, respectively, than the FI treatment. The DI treatment caused the smallest losses of N and highest N use efficiency by fruit. Both DI and PRD caused a significant increase in the soil microbial C/N ratio, meaning ratio of fungal biomass was high at low soil water contents. The result indicates that more work is needed to link the aboveground N uptake and the underground microbially mediated N transformation under different water-saving irrigation regimes.  相似文献   

7.
World water supplies are limited and water-saving irrigation practices, such as partial rootzone drying (PRD), should be explored. We studied the effects of PRD, applied through furrow and drip irrigation, on plant water relations, yield, and the fruit quality of processing tomato (Lycopersicon esculentum Mill. cv. ‘Petopride’). There were four treatments. The first two were: full irrigation by hand on both sides of the root system which mimicked furrow irrigation (FuI), and half of irrigation water in FuI given alternately only to one side of the root system with each irrigation (PRDFuI). The next two treatments were: full drip irrigation (DrI) to both sides of the root system, and half of irrigation water in DrI given alternately only to one side of the root system with each irrigation (PRDDrI). Leaf water potential was the same among the treatments except for the PRDFuI plants, which had the lowest midday values only in one sampling out of four. Photosynthetic rate was the same among the treatments except for the drip-irrigated plants having the lowest value in one sampling out of four. Number of fruit, mean fruit mass of fruit, total fresh and dry mass of fruit, and harvest index were the same among treatments, but PRD plants had increased irrigation use efficiency compared to fully irrigated plants. There was no incidence of blossom-end rot in any of the treatments. PRDDrI fruit had redder colour and higher total soluble solids concentration. Advancement in fruit maturity and enhancement of quality could be achieved without detrimental effect on fresh and dry mass of fruit by application of PRD. Independent of the irrigation method, PRD treatments improved irrigation use efficiency by ca. 70%. PRD has the potential for use in processing tomato especially in environments with limited water.  相似文献   

8.
The reduction in agricultural water use in areas of scarce supplies can release significant amounts of water for other uses. As improvements in irrigation systems and management have been widely adopted by fruit tree growers already, there is a need to explore the potential for reducing irrigation requirements via deficit irrigation (DI). It is also important to quantify to what extent the reduction in applied water through DI is translated into net water savings via tree evapotranspiration (ET) reduction. An experiment was conducted in a commercial pistachio orchard in Madera, CA, where a regulated deficit irrigation (RDI) program was applied to a 32.3-ha block, while another block of the same size was fully irrigated (FI). Four trees were instrumented with six neutron probe access tubes each, in the two treatments and the soil water balance method was used to determine tree ET. Seasonal irrigation water in FI, applied through a full-coverage microsprinkler system, amounted to 842 mm, while only 669 mm were applied in RDI. Seasonal ET in FI was 1024 mm, of which 308 mm were computed as evaporation from soil (Es). In RDI, seasonal ET was reduced to 784 mm with 288 mm as Es. The reduction in applied water during the deficit period amounted to 147 mm. The ET of RDI during the deficit period was also reduced relative to that of FI by 133 mm, which represented 33% of the ET of FI during the deficit irrigation period. There was an additional ET reduction in RDI of about 100 mm that occurred in the post-deficit period.  相似文献   

9.
The effects of mid-summer regulated deficit irrigation (RDI) treatments were investigated on Clementina de Nules citrus trees over three seasons. Water restrictions applied from July, once the June physiological fruit drop had finished, until mid September were compared with a Control treatment irrigated during all the season to match full crop evapotranspiration (ETc). Two degrees of water restrictions were imposed based on previous results also obtained in Clementina de Nules trees ( [Ginestar and Castel, 1996] and [González-Altozano and Castel, 1999]). During the RDI period, deficit irrigation was applied based on given reductions over the ETc, but also taking into account threshold values of midday stem water potential (Ψs) of −1.3 to −1.5 MPa for RDI-1 and of −1.5 to −1.7 MPa for RDI-2. Results showed that water savings achieved in the RDI-2 treatment impaired yield by reducing fruit size. On the contrary, the RDI-1 strategy allowed for 20% water savings, with a reduction in tree growth but without any significant reduction in yield, fruit size nor in the economic return when irrigation was resumed to normal dose about three months before harvest. Water use efficiency (WUE) in the RDI trees was similar or even higher than in Control trees. RDI improved fruit quality increasing total soluble solids (TSS) and titratable acidity (TA). In conclusion, we suggest that the RDI-1 strategy here evaluated can be applied in commercial orchards not only in case of water scarcity, but also as a tool to control vegetative growth improving fruit composition and reducing costs associated with the crop management.  相似文献   

10.
The use of Regulated deficit irrigation (RDI) in almond, applied during the kernel-filling phase, was evaluated over four consecutive years. To determine the reference optimal irrigation rate, three treatments were applied: T-100, which was irrigated by replacing crop evapotranspiration; T-130, which was irrigated by applying 30% more water than in T-100 and T-70, which received 30% less water than T-100. The RDI treatment received the same irrigation rate as T-100, but during the kernel-filling period irrigation was reduced to 20% of T-100. The optimum yield response was observed in treatment T-100, while T-130 trees never improved on T-100 kernel production over the 4 years of the study. During the first two experimental years, kernel dry matter accumulation did not decrease with drought in the RDI treatment. However, both cropping and kernel growth were reduced during the third and fourth years of the experiment. A possible explanation for this decrease could be found in a hypothetical depletion of the carbohydrate reservoir in RDI trees and also to the negative soil water balance that was evident in the T-70 and RDI treatments during winter and spring of the last 2 years. Although yield reductions for RDI trees were significant (20% with respect to T-100), the water savings obtained (about 60% of that applied with respect to T-100), may help to promote the adoption of RDI in areas, where water availability has been reduced. Bearing in mind the water conservation aspect in almond, RDI, as applied in this case, seemed more interesting than a seasonal sustained deficit irrigation strategy like T-70.  相似文献   

11.
The effects of deficit irrigation (DI) and partial rootzone drying (PRD) on apple (Malus domestica Borkh. Cv. ‘Fuji’) yield, fruit size, and quality were evaluated from 2001 to 2003 in the semi-arid climate of Washington State. PRD and DI were applied from about 40 days after full bloom until just before (2001, 2002) or after (2003) harvest and compared to a control irrigation (CI). Irrigation was applied once a week using two micro-sprinklers per tree. Soil-water content in CI was maintained above 80% of field capacity using micro-sprinklers on both sides of a tree. The DI and PRD were irrigated at about 50% (2001–2002) and 60% (2003) of the CI, but differed in placement of irrigation. For DI both micro-sprinklers were operated whereas PRD was irrigated using only one micro-sprinkler wetting half the rootzone compared to CI and DI. Wetting/drying sides of PRD trees were alternated every 2–4 weeks (2001, 2002) or when soil-water content on the drying side had reached a threshold value (2003). Seasonal (1 May–31 October) potential evapotranspiration (ET0) was 967, 1002, and 1005 mm for 2001, 2002, and 2003, and rainfall totaled 58, 39, and 21 mm, respectively. Irrigation amounts applied were 596, 839, and 685 mm in the CI; 374, 763, and 575 mm in the DI; and 337, 684, and 513 mm in the PRD for the 2001, 2002, and 2003 seasons. Higher irrigation volumes in 2002 were due to excessive (177–324 mm) irrigations after harvest. No significant differences were found in yield and fruit size among treatments in 2001 and 2003. In 2002, DI had significantly lower yield than CI, while the yield of PRD did not differ from CI and DI. Fruit from DI and PRD were firmer and had higher concentrations of soluble solids than fruit from CI, both at harvest and following short-term storage at 20°C, but differences to CI were significant in 2002 only. Treatment effects on fruit titratable acidity were inconsistent. Additional water was preserved in the soil profile under PRD compared to DI in 2001 and 2003, but no statistical differences were found between PRD and DI in 2002. Approximately 45–50% of irrigation water was saved by implementing newly developed DI and PRD irrigation strategies without any significant impact on fruit yield and size with PRD. However, apple yield was reduced by DI compared to CI in the second year.  相似文献   

12.
Regulated deficit irrigation (RDI) was applied on field-grown pear-jujube trees in 2005 and 2006 and its effects on crop water-consumption, yield and fruit quality were investigated. Treatments included severe, moderate and low water deficit treatments at bud burst to leafing, flowering to fruit set, fruit growth and fruit maturation stages. Different deficit irrigation levels at different growth stages had significant effects on the fruit yield and quality. Moderate and severe water deficits at bud burst to leafing and fruit maturation stages increased fruit yield by 13.2-31.9% and 9.7-17.5%, respectively. Fruit yield under low water deficit at fruit growth and fruit maturation stages was similar to that of full irrigation (FI) treatment. All water deficit treatments reduced water consumption by 5-18% and saved irrigation water by 13-25% when compared to the FI treatment. During the bud burst to leafing stage, moderate and severe water deficits did not have effect on the fruit quality, but significantly saved irrigation water and increased fruit yield. Low water deficit during the fruit growth stage and low, moderate and severe water deficits during the fruit maturation stage had no significant effect on the fruit weight and fruit volume but reduced fruit water content slightly, which led to much reduced rotten fruit percentage during the post-harvest storage period. Such water deficit treatments also shortened the fruit maturation period by 10-15 d and raised the market price of the fruit. Fruit quality shown as fruit firmness, soluble solid content, sugar/acid ratio and vitamin C (VC) content were all enhanced as a result of deficit irrigation. Our results suggest that RDI should be adopted as a beneficial agricultural practice in the production of pear-jujube fruit.  相似文献   

13.
In order to assess the effect of soil water deficit (SWD) during fruit development and ripening, on yield and quality of processing tomato under deficit irrigation in the Mediterranean climate, an open-field experiment was carried out in two sites differing from soil and climatic characteristics, in Sicily, South Italy. Six irrigation treatments were studied: no irrigation following plant establishment (NI); 100% (F = full) or 50% (D = deficit) ETc restoration with long-season irrigation (L) or short-season irrigation up to 1st fruit set (S); and long-season irrigation with 100% ETc restoration up to beginning of flowering, then 50% ETc restoration (LFD). The greatest effect of increasing SWD was the rise in fruit firmness, total solids and soluble solids (SS). A negative trend in response to increasing SWD was observed for fruit yield and size. Tough yield and SS were negatively correlated, the final SS yield under the LD regime was close to that of LF, and 47% water was saved. However, SS seems to be more environmental sensitive than SWD, since it varied more between sites than within site. The variations between sites in fruit quality response to deficit irrigation demonstrate that not only SWD but also soil and climatic characteristics influence the quality traits of the crop.  相似文献   

14.
The effects of partial root-zone drying (PRD) as compared with deficit irrigation (DI) and full irrigation (FI) on nitrogen (N) uptake and partitioning in potato (Solanum tuberosum L.) were investigated. Potato plants were grown in split-root pots and were exposed to FI, PRD, and DI treatments at tuber bulking stage. Just before onset of the irrigation treatment, each plant received 0.6 g N (in the form of urea) with 5% of which was 15N-labeled. After 4 weeks of irrigation treatments (i.e., one drying/wetting cycles completed in the PRD treatment), the plants were harvested and plant dry mass and N content were determined. The results showed that although the plant dry mass was not affected by the irrigation treatments, due to a reduced water use by the plant, both the PRD and DI treatments significantly increased crop water use efficiency. Compared with the FI and DI plants, PRD plants had significantly higher N contents in the leaves, stems and tubers; whereas, the 15N content in the plant organs was similar for the FI, PRD, and DI plants. It is suggested that not the root N uptake efficiency but the soil N availability was enhanced by the PRD treatment.  相似文献   

15.
Cost-benefit analysis was performed to determine the profitability of producing wine grapes under different irrigation regimes. Vines irrigated by regulated deficit irrigation (RDI) and partial root-zone drying (PRD) were compared with vines grown under full irrigation in a typical vineyard in a semiarid environment with scarce water resources (south-eastern Spain) during three consecutive years. Five irrigation treatments were applied. The Control treatment irrigated at 60% of the ETc (Crop evapotranspiration) throughout the orchard cycle. PRD-1 and RDI-1 provided deficit irrigation from fruit set to harvest (irrigated 30% ETc) and post-harvest (45% ETc). PRD-2 and RDI-2 provided deficit irrigation from fruit set to harvest (irrigated 15% ETc) and post-harvest (45% ETc). From an economic point of view, only the Control, PRD-1 and RDI-1 treatments were economically viable since their profitability indicators were positive, although low, especially PRD-1. The more severe deficit irrigated treatments (PRD-2 and RDI-2) were unviable. The most profitable treatment was the Control which had a Net Margin/total cost ratio (NM/C) (representing the overall profitability of the vineyard) of 25.37% compared with the 1.90% of RDI-1 and 0.57% of PRD-1. The threshold price of water indicates that only the Control remains profitable with higher water prices of up to 0.46 € m−3. When the cost-benefit analysis took into account the extra quality achieved in PRD-2 and RDI-2, it indicated that these treatments, which were otherwise economically unviable, achieved high returns (17 and 16%, respectively) and were close to the Control treatment. Thus, a low or moderate bonus that encourages extra berry quality for premium wine production would make deficit irrigation practices profitable. Moreover, the financial indices estimated suggest that in the present situation, and with our soil and climatic conditions, PRD is less economically profitable (higher installation cost, lower NM/C, and threshold price of water) than RDI under the same conditions.  相似文献   

16.
Gas exchange was measured in potatoes (cv. Folva) grown in lysimeters (4.32 m2) in coarse sand, loamy sand, and sandy loam and subjected to full (FI), deficit (DI), and partial root-zone drying (PRD) irrigation strategies. PRD and DI as water-saving irrigation treatments received 65% of FI and started after tuber bulking and lasted for six weeks until final harvest. Midday photosynthesis rate (An) and stomatal conductance (gs) of fully irrigated (FI) plants were lowest in coarse sand and mean An of diurnal measurements in FI, PRD and DI tended to be lower in this soil as compared with the loamy sand and sandy loam. The results revealed that diurnal values of An and gs in PRD and DI were consistently lower than FI without reaching significant differences in accordance with findings that xylem [ABA] in PRD was significantly higher than FI, and tended to be higher than in DI. Diurnal measurements showed that An reached peak values during mid-morning and midday, while gs were highest during the morning. Intrinsic water use efficiency (An/gs) correlated linearly well with the leaf to air vapor pressure deficit (VPD) and the slope of the line revealed the rate of An/gs increase per each kPa increase in VPD, i.e. approximately 10 μmol mol−1. Transpiration efficiency (An/T) of PRD was higher than DI, which shows slightly better efficient water use than DI. The slope of the linear relationship between transpiration efficiency and VPD decreased from −2.03 to −1.04 during the time course of the growing season, indicating the negative effect of leaf ageing on photosynthesis and thus on plant water use efficiency. This fact shows the possibility to save water during last growth stages through applying water-saving irrigations without much effect on transpiration efficiency.  相似文献   

17.
Agriculture is a big consumer of fresh water in competition with other sectors of the society. Within the EU-project SAFIR new water-saving irrigation strategies were developed based on pot, semi-field and field experiments with potatoes (Solanum tuberosum L.), fresh tomatoes (Lycopersicon esculentum Mill.) and processing tomatoes as model plants. From the pot and semi-field experiments an ABA production model was developed for potatoes to optimize the ABA signalling; this was obtained by modelling the optimal level of soil drying for ABA production before re-irrigation in a crop growth model. The field irrigation guidelines were developed under temperate (Denmark), Mediterranean (Greece, Italy) and continental (Serbia, China) climatic conditions during summer. The field investigations on processing tomatoes were undertaken only in the Po valley (North Italy) on fine, textured soil. The investigations from several studies showed that gradual soil drying imposed by deficit irrigation (DI) or partial root zone drying irrigation (PRD) induced hydraulic and chemical signals from the root system resulting in partial stomatal closure, an increase in photosynthetic water use efficiency, and a slight reduction in top vegetative growth. Further PRD increased N-mineralization significantly beyond that from DI, causing a stay-green effect late in the growing season. In field potato and tomato experiments the water-saving irrigation strategies DI and PRD were able to save about 20-30% of the water used in fully irrigated plants. PRD increased marketable yield in potatoes significantly by 15% due to improved tuber size distribution. PRD increased antioxidant content significantly by approximately 10% in both potatoes and fresh tomatoes. Under a high temperature regime, full irrigation (FI) should be undertaken, as was clear from field observations in tomatoes. For tomatoes full irrigation should be undertaken for cooling effects when the night/day average temperature >26.5 °C or when air temperature >40 °C to avoid flower-dropping. The temperature threshold for potatoes is not clear. From three-year field drip irrigation experiments we found that under the establishment phase, both potatoes and tomatoes should be fully irrigated; however, during the later phases deficit irrigation might be applied as outlined below without causing significant yield reduction:
Potatoes
°
After the end of tuber initiation, DI or PRD is applied at 70% of FI. During the last 14 days of the growth period, DI or PRD is applied at 50% of FI.
Fresh tomatoes
°
From the moment the 1st truce is developed, DI is applied at 85-80% of FI for two weeks. In the middle period, DI or PRD is applied at 70% of FI. During the last 14 days of the growth period, DI or PRD is applied at 50% of FI.
Processing tomatoes
°
From transplanting to fruit setting at 4th-5th cluster, the PRD and DI threshold for re-irrigation is when the plant-available soil water content (ASWC) equals 0.7 (soil water potential, Ψsoil = −90 kPa). During the late fruit development/ripening stage, 10% of red fruits, the threshold for re-irrigation for DI is when ASWC = 0.5 (Ψsoil = −185 kPa) and for PRD when ASWC (dry side) = 0.4 (Ψsoil, dry side = −270 kPa).
The findings during the SAFIR project might be used as a framework for implementing water-saving deficit irrigation under different local soil and climatic conditions.  相似文献   

18.
A four-year study was conducted on young Olea europaea L. trees to investigate the effect of deficit irrigation starting from the onset of fruit production. Subsurface drip irrigation was used to supply 100% (FI), 46–52% (DI), or 2–6% (SI) of tree water needs. Tree growth was reduced by deficit irrigation, whereas, return bloom was not. Per tree fruit yield of DI trees was 68% that of FI, but fruit yield efficiency based on tree size was similar between treatments. Fruit set and the number of fruits of FI trees were similar to those of DI trees and significantly higher than in SI trees. No significant differences in fruit fresh weight were found between FI and DI. The oil yield and oil yield efficiency of the DI treatment were 82 and 110% that of FI trees, respectively. A level of about 50% deficit proved sustainable to irrigate trees for oil production.  相似文献   

19.
The effects of sustained and regulated deficit irrigation (SDI and RDI) on “Mollar de Elche” pomegranate tree performance were investigated in a field trial conducted over three consecutive seasons. In the RDI regimes, severe water restrictions were applied during one of three phases: flowering and fruit set, fruit growth, or the final phase of fruit growth and ripening. In another approach, SDI was applied by watering trees at 50 % of the estimated crop water needs (ETc) during the entire season. Results showed that even after three consecutive seasons of water restrictions, similar yield levels were obtained in SDI and Control trees watered at 100 % ETc. This was because a 22 % reduction in average fresh fruit weight recorded in the SDI treatment was compensated by an increase in 28 % in the quantity of fruit collected per tree. This was most likely due to a reduction in the fall of the reproductive organs. However, the SDI strategy led to a reduction in 28 % in the yield value when fruits are sold for fresh fruit markets. Water restrictions applied only during flowering and fruit set also resulted in an increase in the quantity of fruit collected per tree, with only a slight reduction in fruit weight and without affecting the yield value. On the other hand, severe water restrictions applied during the summer (i.e., mid-phase of fruit growth) led to 24 % water savings with only a 7 % reduction in fruit weight. Fruit cracking was very low in all treatments and seasons (2–6 % over the total quantity fruit collected per tree). Only the RDI regime with restrictions during the summer increased cracking in one out of the three seasons. It is concluded that RDI can be used as a measure to cope with water scarcity and high water prices. Among all the RDI explored, the one with restrictions applied early in the season (during flowering and fruit set) was the most convenient strategy.  相似文献   

20.
Irrigation scheduling based on the daily historical crop evapotranspiration (ETh) data was theoretically and experimentally assessed for the major soil-grown greenhouse horticultural crops on the Almería coast in order to improve irrigation efficiency. Overall, the simulated seasonal ETh values for different crop cycles from 41 greenhouses were not significantly different from the corresponding values of real-time crop evapotranspiration (ETc). Additionally, for the main greenhouse crops on the Almería coast, the simulated values of the maximum cumulative soil water deficit in each of the 15 consecutive growth cycles (1988–2002) were determined using simple soil-water balances comparing daily ETh and ETc values to schedule irrigation. In most cases, no soil-water deficits affecting greenhouse crop productivity were detected, but the few cases found led us to also assess experimentally the use of ETh for irrigation scheduling of greenhouse horticultural crops. The response of five greenhouse crops to water applications scheduled with daily estimates of ETh and ETc was evaluated in a typical enarenado soil. In tomato, fruit yield did not differ statistically between irrigation treatments, but the spring green bean irrigated using the ETh data presented lower yield than that irrigated using the ETc data. In the remaining experiments, the irrigation-management method based on ETh data was modified to consider the standard deviation of the inter-annual greenhouse reference ET. No differences between irrigation treatments were found for productivity of pepper, zucchini and melon crops.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号