首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
为了探讨再生水地下滴灌条件下土壤脲酶活性和硝态氮的关系,通过2a再生水地下滴灌试验,研究了滴灌带埋深和灌水量对玉米生育期0~50cm深度土壤脲酶活性和硝态氮分布的影响。灌水量设置灌溉需水量的70%、100%和130%3个水平,滴灌带埋深设置0、15和30cm 3个水平。结果表明,再生水地下滴灌提高了0~50cm脲酶活性。灌水量和滴灌带埋深均对土壤脲酶活性和硝态氮含量产生了显著影响,硝态氮随灌水量和滴灌带埋深的增大运移深度增加,0~10cm深度脲酶活性以70%灌溉需水量和埋深0cm较高,10~50cm深度脲酶活性以130%灌溉需水量和埋深30cm较高。相关分析表明,硝态氮含量和脲酶活性在玉米生育期内由极显著正相关向负相关转变。  相似文献   

2.
为研究红壤区域蓄水渗灌关键参数变化对水氮分布的影响,试验设灌水量和灌水器埋深两个因素,每个因素设3个水平,共9个处理.分析影响各因素对土壤入渗率、湿润体内含水率和硝态氮分布影响.结果表明:入渗达到稳定之前灌水量对入渗率的影大于灌水器埋深,垂向湿润锋运移距离随着灌水器埋深增加而减小,随着灌水量的增加而增加;并随着灌水器埋深加大,湿润体范围向右下方移动.土壤含水率随土壤深度增大再逐渐变小,随着灌水量的增加,土壤湿润范围增加;灌水量增加,促进硝态氮的入渗;土壤硝态氮的分布规律为由灌水器周边至湿润体边缘呈现"低-高-低"的分布态势.对土壤水氮的分布显著影响为:灌水量>灌水器埋深.增加一定的灌水量可以促进蓄水渗灌红壤水氮入渗,而增加灌水器埋深则使得湿润体范围向灌水器右下方移动;在红壤地区脐橙等经济作物灌溉中推荐采用高灌水量与深埋灌水器的方式.  相似文献   

3.
通过土柱模型试验,模拟研究了两种处理等级污水中氮素对农田土壤环境的影响。试验结果表明,采用1级处理污水中铵氮基本不会在土壤各层累积和淋溶,而硝氮和总氮则随着灌水次数的增加,向更深层土壤运移、累积和淋溶。对于2级处理污水,由于其各态氮素浓度均比较低,土壤各层浓度也相对较低,土壤中各态氮素浓度为土壤中原有氮素和污水氮素共同作用的结果;随着灌溉次数增加,硝氮和总氮也有向下淋溶的趋势。试验结果还表明,相对于2级处理污水,长时间采用1级处理污水灌溉,将对土壤环境和地下水环境带来高的污染风险。   相似文献   

4.
渗灌管埋深对土壤硝态氮含量的影响   总被引:3,自引:0,他引:3  
以番茄为供试作物,通过观测渗灌灌水前和灌水后土壤水分剖面以及硝态氮含量的变化.研究了保护地渗灌及其渗灌管埋深对土壤硝态氮运移及积累过程的影响。试验结果表明,在渗灌管埋深为20~40cm范围内,保护地渗灌灌水后土壤硝态氮均表现出明显的表聚特性;土壤含水量与土层深度乘积与土壤硝态氮含量之间存在着极显著相关关系。在不同渗灌管埋深处理中以30cm埋深且渗灌管下有防渗槽的处理,其硝态氮在表层积累最少。  相似文献   

5.
【目的】研究红壤区涌泉根灌双点源入渗土壤水氮运移分布规律,为提高涌泉根灌水氮利用效率和灌水器合理埋深提供理论依据。【方法】在大田通过灌水器埋深分别为30、45、60cm的硝酸铵钙溶液入渗试验,研究了灌水器埋深对涌泉根灌双点源交汇入渗土壤的入渗能力、湿润锋运移距离、土壤水分以及铵态氮和硝态氮运移特性的影响,并建立了红壤涌泉根灌土壤累计入渗量及湿润锋运移距离与入渗历时的关系模型。【结果】灌水器埋深分别为30、45和60 cm时,红壤累计入渗量和稳定入渗率分别为18.84 L和0.035 cm/min、17.09 L和0.031 cm/min以及14.37 L和0.024 cm/min,即灌水器埋深越大,土壤的累计入渗量和稳渗率就越小,且累计入渗量与入渗历时之间均符合幂函数关系;灌水器埋深分别为30、45和60 cm时,交汇入渗发生的时间分别为168、187和197 min,交汇发生时间增幅依次为10.16%和5.56%,湿润锋运移距离随埋深的增大而减小,运移距离与入渗历时之间均符合对数函数关系,且竖直向下的运移距离均大于竖直向上;土壤含水率均随着土层深度的增加而先增加后减小,对于同一土层,灌水器处土壤含水率最大,其次为交汇面处,而距离灌水器12.5cm处土壤含水率最小;土壤铵态氮和硝态氮均随土层深度的增加而先增加后减小,在水平方向,距离灌水器越近,铵态氮的质量浓度越大,对于硝态氮而言,灌水器埋深不同,硝态氮的分布存在明显差异。【结论】灌水器埋深对涌泉根灌双点源交汇入渗红壤的水氮运移分布均有显著影响,且埋深超过60 cm时,氮肥淋失风险较大,且对作物吸收不利。  相似文献   

6.
为分析农业生产对农业生态系统和地下水环境的影响,2012-2013年在冶河灌区开展小麦、玉米轮作区农田土壤含水率和硝态氮田间试验,同时对地下水位和水质进行了监测。通过分析试验数据,结果表明:小麦、玉米轮作周期0~300cm土层范围内,土壤含水率变化呈X型。计划灌水定额相同,不同地块灌溉引起土壤含水率明显变化的土层深度不同,其原因是主要受土壤初始含水率和土壤空间异质性的影响;小麦、玉米轮作周期0~300cm土层范围内,土壤剖面硝态氮含量变化呈单调递减曲线。2013年3月土壤硝态氮累积量最高,2013年5月硝态氮的淋洗量最大。在地下水位埋深8~9m,灌水量为900~1 200m3/hm2时,硝态氮运移主要发生在耕层土壤,施肥和降水是土壤硝态氮向深层土壤淋洗、地下水质变化的主要影响因素。  相似文献   

7.
为研究一维条件下灌水量与硝酸盐淋溶损失的关系,采集宁夏日光温室条件下两种类型的土壤(灌淤土、灰钙土)做成1 m土柱,设置两个灌水量(T1:2.25×10~3 t/hm~2、T2:4.50×10~3 t/hm~2)和两个施氮量(N1:450 kg/hm~2、N2:675 kg/hm~2),测定不同处理后土壤剖面水分和硝态氮含量、计算表层累积量及深层淋溶量,并测定不同处理淋溶液硝态氮浓度及其他化学性质。结果表明:①不同土壤类型和施氮量对土壤剖面质量含水量有显著影响。②灌淤土硝态氮含量高于灰钙土;T2处理各层土壤硝态氮含量低于T1处理。4个处理相比,硝态氮的峰值均出现在60~80 cm处,土壤硝态氮含量表层、深层T2N1处理均最低而T1N2处理最高。③T1、T2处理硝态氮累积量相比, T2较T1表层累积量减少33.5%,深层减少17.14%; N1、 N2处理相比,N2较N1表层累积增加48.72%,深层增加28.8%。④土壤类型、灌水、施肥对淋溶液中硝态氮及其他化学性质均有显著影响。由此可见,土壤类型、灌水量及施氮量均对土壤中氮素的累积及损失有显著影响,相比之下影响程度为施氮量灌水量土壤类型。  相似文献   

8.
灌水器埋深对涌泉根灌土壤水氮运移特性的影响   总被引:2,自引:0,他引:2  
为了提高涌泉根灌水肥的利用效率,采用大田入渗试验,探究了不同灌水器埋深条件下涌泉根灌土壤湿润锋运移、土壤水分及氮素分布的规律。结果表明,不同灌水器埋深对湿润锋运移距离以及扩散速率均具有较大的影响。随着灌水器埋深的增加,水平最大湿润峰和垂直湿润峰运移距离均呈递减趋势;湿润锋运移距离与入渗时间有显著的幂函数关系。灌水结束后,在灌水器处铵态氮及硝态氮量最高,距离灌水器越远,氮素量越低;随着再分布进行,铵态氮量逐渐升高,而硝态氮量逐渐降低。  相似文献   

9.
【目的】研究新型灌溉模式对农田水氮及小麦产量的影响。【方法】选用鲁麦21为试验对象进行大田试验,采用二因素裂区设计,灌水量为主区,设拔节期和扬花期均测墒补灌至田间持水率的65%(W65)、75%(W75)、85%(W85)3个水平;灌溉方式为副区,设滴灌(D)、微喷灌(WP)和拔节期微喷灌扬花期滴灌(WP+D)共3种灌溉方式,研究灌水量和灌溉方式对土壤水氮分布、小麦产量、水分利用效率及经济效益的影响。【结果】低于田间持水率的灌溉只对0~40 cm土层产生影响,小麦全生育期内40~100 cm土层土壤含水率没有波动,即0~40 cm土层为主要的供水层及持水层,土壤含水率表现为W85处理>W75处理>W65处理;0~60cm土层土壤硝态氮量在W65、W75灌水量及微喷灌模式下较高,且随着灌水量增多硝态氮淋溶风险增大;成熟期,灌水量、灌溉方式及二者交互作用对40~100 cm土层土壤硝态氮量产生了极显著影响...  相似文献   

10.
喷灌小麦土壤氮素分布规律及对地下水影响试验研究   总被引:1,自引:0,他引:1  
探索喷灌条件下冬小麦农田土壤中无机氮含量和分布特征以及对地下水环境影响,对控制农民化肥使用量,保护地下水环境具有重要意义。选择在保定市白庄村冬小麦农田进行灌溉与施肥试验,同时对地下水水位和水质进行了观测。结果表明:喷灌条件下冬小麦生育期内0~100 cm内土层土壤水分含量变化较大呈S型,100 cm以下其值较高且基本保持同一水平。氨氮在土壤剖面中变化受施肥影响较大,之后在氨氮土层中变化稳定。冬小麦生育期200 cm以内土层的硝态氮累积量呈逐渐递减趋势。硝态氮含量主要受化肥施用、灌溉和降雨作用影响,随灌水、降雨垂向迁移较快,灌水后第5 d硝态氮变小,对地下水水质变化影响较大。  相似文献   

11.
水氮耦合对甜瓜氮素吸收与土壤硝态氮累积的影响   总被引:8,自引:0,他引:8  
在西北干旱半干旱地区,设置3个水分水平和3个氮素水平,共9个处理,应用完全随机区组试验设计,研究不同水氮处理组合对温室甜瓜氮素吸收分配、产量及土壤硝态氮分布和累积的影响。试验结果表明:甜瓜成熟期地上部干物质量以及氮素累积量以中水中氮(W2N2)处理为最大,甜瓜采收后各处理硝态氮含量在0~15 cm土层内最高,随土层的加深硝态氮含量逐渐减小。0~60 cm土层内硝态氮累积量随施氮量的增加而增大,随灌水量的增加而减小。甜瓜产量随灌水量和施氮量的增加而提高,但是在高水和高氮条件下略有下降。滴灌施肥的施氮量和灌水量控制在N2(130 kg/hm2)和W2(1.0ETc)时,有利于提高甜瓜产量,是试验地区膜下滴灌条件下温室甜瓜生产中适宜的水氮组合。  相似文献   

12.
为研究不同再生水灌溉水质对玉米生长和氮肥吸收的影响,在2015年进行了玉米滴灌盆栽试验。采用15 N示踪法对比研究了地下水(G)、二级再生水和地下水体积比为4∶2(S67%)和5∶1(S83%)的混合水、二级再生水(S100%)4种灌溉水质对氮肥吸收、残留和损失的影响。结果表明:(1)随灌溉水中再生水所占比例的提高,玉米叶面积指数(LAI)和叶片相对叶绿素含量(SPAD值)均有增大趋势。(2)和地下水灌溉相比,混合水和再生水灌溉均提高了玉米对氮肥的吸收利用。G、S67%、S83%和S100%处理氮肥吸收量分别为1.07、1.17、1.21和1.09g/plant,氮肥利用率分别为61%、67%、69%和62%。另外,随灌溉水中再生水所占比例的提高,氮肥残留量和氮肥损失量均表现为先降低后增加,S100%处理氮肥残留量和氮肥残留率最大,S83%处理氮肥损失量和氮肥损失率最小。(3)综合考虑不同灌溉水质对玉米生长、叶片SPAD值和氮肥吸收利用等指标的影响,再生水滴灌玉米适宜的灌溉水质为S83%处理(再生水和地下水体积比5∶1混合)。  相似文献   

13.
地下水埋深是影响污灌污染物在土壤-地下水系统中运移特性的主要因素之一。通过室内污水入渗试验,研究了不同地下水埋深条件下污灌污染物NO3--N在土壤中的运移特性及对地下水环境的影响。研究结果表明:地下水埋深的不同导致了土壤内水分分布和NO3--N迁移路径的差异,从而影响了NO3--N在土壤-地下水系统中的运移特性。埋深浅,高土水势能和反硝化潜势制约了污水携带NO3--N向下层土壤迁移淋失的趋势,但高土水势能和短迁移路径使下层土壤基质中的NO3--N易被挤入至地下水中,NO3--N污染地下水风险较大。  相似文献   

14.
针对南疆绿洲灌区224团果树滴灌条件下次生盐渍化的问题,通过在项目区布设观测井,逐月不间断的对地下水的埋深、水位及矿化度进行监测,开展对其变化规律的研究。年度观测结果显示,地下水埋深及水位在果树生育期的灌前及灌后相对较低,灌溉期内最大涨幅接近1m;地下水矿化度灌前、灌后最小,灌溉期内在2~5.8g/L范围内变动,矿化度...  相似文献   

15.
本文分析了气象因素与作物对地下水利用量相关性,不同地下水位对小麦生态、生理和产量的影响。并应用土壤水动力学原理分析小麦各生育期根系吸水规律。提出不同土壤类型地下水适宜埋深,为黄淮平原节水灌溉和排水标准提供依据。  相似文献   

16.
气候变化和人类活动对灌区地下水埋深的影响   总被引:1,自引:0,他引:1  
[目的]探析气候变化和人类活动对灌区地下水埋深的影响.[方法]利用年代波动性分析、突变检验、灰色关联分析、敏感性分析、双累积曲线法和相对贡献率分析了人民胜利渠灌区1952-2013年地下水埋深及其影响因素的变化和突变特征,并识别了地下水埋深与各影响因素间的响应特征.[结果]人民胜利渠灌区地下水埋深呈明显增加趋势(0.8...  相似文献   

17.
土壤盐渍化是制约干旱区农业发展的主要障碍,而浅埋地下水区域的地下水环境是影响土壤盐渍化的直接因素。为调控合理的地下水埋深和矿化度,以防控区域盐渍化,以河套灌区永济灌域为研究区,运用指示Kriging法比较了春灌前和生育期不同阈值条件下土壤表层含盐量、地下水埋深和矿化度的概率分布,从概率空间分布的角度研究了不同时期防治土壤盐渍化的地下水临界埋深和矿化度。结果表明:地下水埋深属于中等变异性,土壤表层含盐量和地下水矿化度属于强变异性。春灌前较生育期土壤表层盐渍化高风险区扩大、浅埋地下水高概率区缩小、地下水矿化高风险区缩小。春灌前永济灌域土壤表层发生轻度、中度盐渍化时的地下水埋深临界值分别为2.6、2.2 m,地下水矿化度临界值分别为2.0、2.5 g/L;生育期土壤表层发生轻度、中度盐渍化时的地下水埋深临界值分别为2.2、1.8 m,地下水矿化度临界值分别为2.5、3.0 g/L,春灌前更易发生土壤盐渍化。春灌前较生育期土壤盐分受外界因素(气象因素和人为因素)影响小,且土壤表层含盐量、地下水埋深和矿化度变异性也相对较小,地下水环境对土壤盐渍化的影响更强烈。研究区北部、东南部和中部小部分区域为地下水埋深小于临界值且大于矿化度临界值的高概率区,是土壤返盐的高风险区,建议进一步完善该地区的排水系统。  相似文献   

18.
为探究东北黑土区不同灌溉模式下稻田温室气体排放和土壤矿质氮特征,于2019年在黑龙江省庆安国家灌溉试验重点站测坑内进行了试验观测,按照不同的灌溉模式设置了控制灌溉(KG)、间歇灌溉(JG)和湿润灌溉(CI)3个试验处理,以当地常规的插秧淹灌(CK)为对照,研究了不同处理的稻田温室气体甲烷(CH4)和氧化亚氮(N2O)排放量、全球增温潜势值、以产量为基准的全球变暖潜势值及0~60cm土壤NH+4N含量和NO-3N含量的变化过程,以及0~20cm土层土壤温度和矿质氮含量与CH4和N2O排放量的相关关系。结果表明,随着水稻生长发育进程的推进,各处理稻田土壤各土层温度均呈先升高后降低的变化趋势;各处理CH4和N2O排放量均呈先增加后减少的倒“V”形变化趋势,CH4和N2O的排放峰值分别出现在拔节孕穗期和抽穗开花期。从时间上来看,CK、JG、CI处理的稻田土壤NH+4N含量拐点在分蘖中期和抽穗开花期,KG处理拐点在拔节孕穗期和乳熟期,而所有处理的土壤NO-3N含量最大值均出现在分蘖前期;从空间上来看,不同处理稻田土壤NH+4N平均含量随着土层深度增加而逐渐减少,而NO-3N平均含量CK处理随土层深度逐步增加,其余各处理为先减少再增加变化趋势。土壤温度与CH4排放量有显著相关性,而与N2O排放量相关性不显著;各处理土壤NH+4N含量与CH4和N2O排放量呈正相关,而土壤NO-3N含量与CH4和N2O排放量呈负相关。各处理稻田CH4累积排放量由大到小依次为CK、JG、KG、CI,N2O累积排放量由大到小依次为CI、KG、JG、CK,各处理CH4和N2O累积排放量均与CK处理差异显著(P<0.05),从单位产量温室效应(GWPy)来看,KG、JG、CI处理分别较CK处理降低24.98%、27.69%和24.06%。研究结果可为东北黑土区稻田减排和提高土壤矿质氮利用率提供理论依据和技术支撑。  相似文献   

19.
[目的]探究引黄春灌对区域浅层地下水动态及地下水理化性质的影响.[方法]通过监测试验区盐碱地春灌前后地下水位、八大离子(Na+、K+、Ca2+、Mg2+、HCO3-、Cl-、SO42-、CO32-)质量浓度、地下水EC值、pH值、土壤电导率等指标,运用数理统计和水文地球化学分析的方法,分析春灌前后地下水动态及春灌后地下...  相似文献   

20.
【目的】探讨华北地区夏玉米-冬小麦轮作体系下氮肥减施与地下水埋深的交互作用。【方法】借助大型地中渗透仪和Logistic作物生长模型,采用二因素完全随机区组设计:地下水埋深(G1:2.0 m、G2:3.0 m、G3:4.0 m),施氮量(N1:减氮20%、N2:常规施氮),以及不施氮不控水作为对照(WN),研究了华北地区地下水埋深和施氮水平组合对夏玉米生长、干物质量积累和硝态氮量的影响。【结果】所有处理夏玉米叶面积指数(LAI)在灌浆期最大,成熟期相同施氮水平,G1处理LAI显著高于G2、G3处理;N2水平下,G1处理玉米株高快速生长时间较G2、G3处理分别增加了3.99%、12.91%,但最大增长速率相对降低了9.69%、14.65%;N1水平下,G1处理籽粒干物质量显著高于G2和G3处理,N2水平下,G3处理籽粒干物质量显著高于G1和G2处理;N2水平下,G1处理硝态氮增量显著高于G2、G3处理,0~20 cm分别高出75.92%、90.03%,20~40 cm分别高出30.56%、130.95%。同一地下水埋深下,成熟期LAI表现为N2处理显著高于N1处理;0~20 cm与20~40 cm土层N2处理下硝态氮增量是N1处理的1.4~5.3倍和2.4~11.2倍;在G1水平下,N2处理株高快速生长期较N1处理增加了7.52%,而N1处理单株籽粒干物质量显著高于N2处理,高出9.13%;Person相关性分析表明,N2水平下,随着地下水埋深变化,0~40 cm土层硝态氮增量与产量显著负相关,R2为0.827~0.883。【结论】高氮与较浅地下水埋深组合促进了玉米营养生长,不利于玉米生殖生长和产量形成;低氮与浅地下水埋深组合有利于产量形成和减氮增效。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号