首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract.— In South Carolina, studies have been conducted to develop rearing techniques for southern flounder Paralichthys lethostigma a candidate for aquaculture development and stock enhancement programs. To help define environmental tolerances, a variety of salinity studies were conducted with the early life stages of this species. Eggs were buoyant at 32 ppt and sank at 29 ppt with salinities of 30–31 ppt providing varying levels of suspension in the water column. Eggs incubated at 0 and 5 ppt all died, whereas 82.5% hatched at 10 ppt but larvae died shortly thereafter. At 63 h post-fertilization, there were no differences in hatch level for eggs incubated at salinities of 15 to 35 ppt (mean hatch level 98.5%). In a 72-h study, fish 3 wk post-metamorphosis (13.7 mm TL, 50-d-old) were acclimated to seven salinities ranging from 0–30 ppt. Fish held at 0 ppt salinity exhibited a statistically (P < 0.05) lower survival (20.0%) than those exposed to 5–30 ppt salinity concentrations. No differences were detected in survival (mean 99.1%) among fish held in the higher salinities. A second study examined the tolerance of older juveniles to lower salinities. Juvenile flounder (95.2 mm TL, 220-d-old) were acclimated to 0, 1,5 and 10 ppt salinities and reared for 2 wk. Results showed that fish could tolerate salinities of 0–10 ppt (100% survival). These data indicate that salinity tolerance of southern flounder increases with age. In addition to the short duration studies, a replicated 11-mo duration tank grow-out study was conducted at mean salinity 5.4 ppt and mean temperahue 22.6 C with an all male population. Flounder grew from a mean length of 100 mm to 213 mm TL and weight from 8.9 to 104.3 g. Growth of the cultured fish approximated that observed among male flounders in the wild.  相似文献   

2.
Abstract.— Spawning behavior and development of spotted sand bass Paralabrax maculatofasciatus were studied in the laboratory. Captive fish (15–20 cm standard length) spawned in 100-L aquaria at 24 C and 35 ppt salinity with a controlled photoperiod (13 h light: 11 h dark). Distinct courtship coloration and displays were observed. Courtship began near noon and continued all afternoon. Spawning occurred toward the surface during late afternoon. Development from fertilization to 3 d after hatching is described. Hatching occurred in 24–25 h at 24 C. Larvae were reared in 100-L aquaria with microalgae, rotifers, and Artemia . First feeding occurred 3 d after hatching, and 5.3% survival was obtained at 17 d (4.1-mm mean notochord length, 1.7–5.5 mm range). On a diet of minced clams and fish, first maturity was reached at 7.5 mo (19.5 g mean weight, 8.3–37.9 g range and 90 mm mean standard length, 66–116 mm range).  相似文献   

3.
Cobia Rachycentron canadum juveniles (119.7 mm TL, weight 8.5 g) were reared for 10 wk at three salinity levels: 5 ppt, 15 ppt. and 30 ppt. Growth and survival were determined through biweekly sampling. Blood samples obtained at termination of the study were analyzed to determine hematocrit, blood osmolality, and total protein. Results indicated that the overall growth of fish was significantly affected by salinity. Mean (± SE) total length (TL) and weight of fish reared at a salinity of 30 ppt were 201.7 ± 2.6 mm and 47.6 ± 1.9 g, respectively, followed by fish reared at 15 ppt (182.2 ± 1.7 mm, 34.1 ± 1.6 g). and 5 ppt (168.3 ± 5.8 mm TL, 28.3 ± 2.3 g). Differences in specific growth rates among treatments for the 10-wk period were also significant. No differences were detected in mean survival among fish reared at salinities of 5, 15, and 30 ppt (84, 94, and 94%, respectively). However, fish reared at salinity 5 ppt appeared to be in poor health as skin lesions, fin erosion, and discoloration were evident. Analysis of blood revealed that, while no differences existed among treatments with respect to plasma total protein, fish reared at a salinity of 5 ppt exhibited significantly reduced hematocrit (25% vs. > 30%) and plasma osmolality values (318 vs. > 353 mmolkg) relative to fish reared at higher salinities. Cobia can tolerate exposure to low salinity environments for short periods of time without mortality; however, moderate to high salinities are required for sustained growth and health of this species.  相似文献   

4.
Growth and survival of juvenile black bream (Acanthopagrus butcheri) were determined at salinities from 0 to 60 ppt (in 12-ppt increments) and from 0 to 12 ppt (in 4-ppt increments) in two separate trials of 6 and 4 months duration, respectively. Juvenile black bream were able to survive and grow at salinities ranging from freshwater (0 ppt) to 48 ppt. Osmotic stress was evident at 60 ppt, however, survival was not significantly affected. Fish reared at 24 ppt in trial 1 had a specific growth rate of 2.34±0.03%/day, a rate significantly higher only to those fish reared at 60 ppt (2.16±0.04%/day). Growth was greater at 24 ppt in association with the highest food intake and most efficient FCR. Although both food intake and FCR were not significantly higher than those obtained with fish reared at 12, 36 and 48 ppt, the combination of the two factors being optimised at 24 ppt lead to the greatest growth. Analysis of data from the second trial found no significant difference in the growth rate of black bream reared at salinities ranging from freshwater to 12 ppt, with SGR ranging from 1.92±0.05%/day to 2.05±0.02%/day. Variable results in freshwater between the two trials suggested that total hardness of freshwater may influence survival and/or an ontogenetic change in salinity tolerance may occur.  相似文献   

5.
The effects of culture parameters of tank color and feeding regimes were examined on larval white bass Morone chrysops during 1994–1995. Under high surface illumination (998 lux), dark tank walls were essential for effective prey capture. Larvae reared in clear glass aquaria did not grow and had died by day 6 of the study. In contrast, 48.7% of the larvae reared in black-walled tanks were alive on day 24 and had grown to 17.2 mm total length (TL). In another study, larvae were fed rotifers Brachionus plicatilis and Artemia nauplii in different feeding protocols. In one treatment only rotifers (10/mL) were fed day 1 (4 d post-hatch), rotifers and Artemia (3/mL) were fed days 2–4, and Artemia fed days 5–15. This protocol produced similar growth (mean size 11.7 mm TL) and survival (mean 30.3%) as slower weaning times from rotifers to Artemia . Juveniles (27-day-old, 17.2 mm TL) were converted to a dry crumble diet over a 14-d period by slow transfer from a combination diet consisting of live Artemia nauplii, frozen adult Artemia , plankton flakes and dry crumbles. Survival offish weaned to the dry diet was 64.5%. Most of the mortalities during the weaning period were fish with uninflated swim bladders which were cannibalized by larger fish. Using the above tank culture techniques, white bass were reared to a mean size of 73.2 mm TL (mean weight 5.8 g) over a 73-d period. This essentially closes the life cycle of white bass.  相似文献   

6.
Abstract. This study was conducted to estimate spring hooking mortality of white crappie, Pomoxis annularis Rafinesque, in Buchanan Reservoir, Texas, USA and summer hooking mortality of spotted bass, Micropterus punctulatus (Rafinesque), in Eagle Mountain Reservoir, Texas, USA. Reservoir surface water temperatures averaged 19 and 31°C, during white crappie and spotted bass experiments, respectively. White crappie (mean total length (TL) 267mm, range TL 190–340mm, standard error (SE) TL 6mm) were caught with size 5 single hooks baited with golden shiner, Notemigonus crysoleucas (Mitchill), and spotted bass (mean TL 220mm, range TL 143–326mm, SE TL 7mm) were caught with artificial lures (spinners) fitted with size 4 or 5 treble hooks. Fish were held in cages for 72 h to observe delayed mortality. Four of 43 white crappie (9·3%, 95% one-tail, upper confidence limit (UCL) = 13·7%) died and four of 47 spotted bass (8·5%, UCL = 15·2%) died. One of the white crappie that died was a sublegal-length fish. The relevance of these findings to the management of white crappie and spotted bass sport fisheries is discussed. It is concluded that under any management strategy necessitating release of some portion of the catch of white crappie and spotted bass, high survival of that portion could be expected.  相似文献   

7.
Abstract.— Growth and feed utilization of the tilapia hybrid Oreochromis mossainbicus × O. niloticus cultured at different salinities under controlled laboratory conditions were studied for 2 mo. Fish (2.32 g mean initial weight) were grown in 113-L aquaria at salinities of 0.5, 17 and 32 ppt at a density of 20 fish per tank. Mean specific growth, food conversion, and food consumption were determined at each salinity. There was no significant difference ( P > 0.05) in growth among the treatments, although feed conversion and feed consumption were significantly improved (P ≤ 0.05) when fish were grown at 17 and 32 ppt.  相似文献   

8.
Abstract.— Tko experiments were conducted to determine the effects of salinity on growth and survival of mulloway Argyrosomus japonicus larvae and juveniles. First, 6-d-old larvae were stocked into different salinities (5, 12.5, 20, 27.5 and 35 ppt) for 14 d. Larvae grew at all salinities, but based on results for growth and survival, the optimum range of salinity for 6-d-old to 20-d-old larvae is 5–12.5 ppt. During this experiment larvae held in all experimental salinities were infested by a dinoflagellate ectoparasite, Amyloodinium sp. Degree of infestation was affected by salinity. There were very low infestation rates at 5 ppt (0.2 parasites/larva). Infestation increased with salinity to 20 ppt (33.1 parasites/larva), then declined with salinity to 35 ppt (1.5 parasites/larva). For the second experiment, juveniles (6.1 ± 0.1 g/fish) were stocked into different salinities (0.6, 5, 10, 20 and 35 ppt) for 28 d. Juveniles were removed from freshwater 3 d after transfer as they did not feed, several fish died and many fish had lost equilibrium. However, when transferred directly to 5 ppt. these stressed fish recovered and behaved normally. Trends in final mean weight and food conversion ratio of juvenile mulloway suggest that fish performed best at 5 ppt. Although salinity (5 to 35 ppt) had no significant ( P > 0.05) effect on growth, survival, or food conversion ratio of juveniles, statistical power of the experiment was low (0.22). Based on these results we recommend that mulloway larvae older than 6 d be cultured at 5 to 12.5 ppt. Optimum growth of juveniles may also be achieved at low salinities.  相似文献   

9.
The aim of this study was to evaluate the growth and survival of pacu, Piaractus mesopotamicus, larvae reared in different salinities and to determine the Artemia nauplii life span in freshwater and in saline water. First feeding 5‐d‐old pacu larvae were reared in freshwater or at 2, 4, 6, 8, 10, 12, and 14 ppt salinities. The larvae were reared in 1.5‐L aquaria at a density of 10 larvae/L with three replicates per treatment. After 10 d of rearing, significant differences (P < 0.05) were observed for growth and survival. Larval growth was higher at 2 and 4 ppt, and survival at 2 ppt was 100%. In freshwater and at 4, 6 and 8 ppt, the survival was 91.1, 93.3, 73.3, and 39.9%, respectively. At higher salinities, there was 100% mortality after 2 h (12 and 14 ppt) and 8 h (10 ppt) of exposure. The slightly saline water of at least 2 ppt increased the Artemia nauplii life span compared to the life span in freshwater. Later, in a second trial, 5‐d‐old pacu larvae were reared in freshwater and at 2 and 4 ppt salinities during the first 5 or 10 d of active feeding, and then the fish were transferred to freshwater. At the end of 15 d, larval growth was lower in freshwater (42 mg) than in treatments 2 and 4 ppt (59–63 mg). The abrupt transfer of fish from freshwater to slightly saline water and the return to freshwater did not affect the survival rates (89–97%). The larvae were able to adapt to these saline environments and handle abrupt changes in salt concentration. We concluded that salinity concentration of 2 ppt can be used for pacu larval rearing, allowing the Artemia nauplii lifetime to last longer and cause faster fish growth.  相似文献   

10.
Two 12‐wk rearing experiments were conducted to examine the effect of rearing salinities of 10–35 ppt on the growth of 3‐ and 170‐g‐size tiger puffer, Takifugu rubripes. Fish were reared in a closed recirculation system without introducing fresh culture water at 23 C and were fed commercial pellet diet for tiger puffer twice or three times daily to apparent satiation each, almost everyday. Growth of 3‐g‐size fish seemed to increase with decreasing salinity; however, there were no significant differences in the specific growth rate and weight gain among treatments because of differences in initial body weight. Final body weight and length of fish reared at 10 ppt were significantly higher than those for fish reared at 30 ppt although initial sizes were similar. Differences were not found for the feed efficiency (FE) and daily feed consumption. Apparent relationships were not observed between salinity and blood characteristics or proximate compositions of muscle of the cultured fish. Differing from smaller fish, growth of 170‐g‐size fish tended to decrease with decreasing salinity from 30 to 10 ppt and with increasing salinity from 30 to 35 ppt. Similar trends for FE were observed.  相似文献   

11.
Abstract.— Weight gain and metabolic rates, as determined by oxygen consumption rates, were examined in juvenile Australian red-claw crayfish Cherax quadricarinatus exposed to different temperatures (16–32 C in 2 C increments) or salinities (0–30 ppt in 5 ppt increments). Mean weight gain, molting frequency, and survival (%) were dependent on temperature and salinity. In freshwater (0 ppt), maximal weight gain and molting frequency were observed at 28 C with maximal survival observed over the temperature range of 24–30 C. Metabolic rates in freshwater were temperature dependent (mean Q10= 2.44). Maximal weight gain and molting frequency were observed at salinities of 0 and 5 ppt (28 C); however, survival was reduced at salinities ≥ 5 ppt. Metabolic rates were not salinity dependent and did not differ significantly over the salinity range from 0–20 ppt. Growth efficiencies, calculated by dividing weight gain by total metabolic energy expenditure (i.e., weight gain + metabolic rate), were highest at a temperature of 20 C (0 ppt) and at salinities of 0 and 5 ppt (28 C). These data suggest that, at higher culture temperatures, maximal weight gain of red-claw juveniles may be reduced when food resources are limited. Maximal weight gain, at optimal temperatures (28 C) with unlimited food supply, does not appear to be effected by low salinity conditions. Because of the potential commercial value of red-claw, culturists, should be aware of the relationship between environmental condition and metabolic energy requirements to ensure maximal weight gain and survival of juveniles.  相似文献   

12.
The potential for commercial culture of hybrid striped bass is promising in many areas of the United States. While several different striped bass hybrids are candidates for culture, differential performance has not been thoroughly evaluated. Comparative performance of two striped bass hybrids was evaluated in six, 757–1, fiberglass tanks receiving a continuous flow of ambient pond water for 397 d. Three replicate tanks were stocked with 50 fingerlings (66 fish/m3) of either striped bass female × white bass male (mean weight 23 g) or striped bass female × yellow bass male hybrids. Fish were fed a 35% protein ration throughout the study, and weight was recorded for all fish at stocking and at 21-d intervals. White bass hybrids grew significantly faster (0.94 g/d) than yellow bass hybrids (0.59 g/d). Survival to harvest averaged 65% and 44% for yellow bass and white bass hybrids, respectively. A significant difference from the expected 1:1 sex ratio occurred for yellow bass hybrids (100% female), but not for white bass hybrids (56% female). Mean condition factor, 1.63 and 1.39, and fillet percentage, 30.7% and 28.4%, was significantly higher for white bass hybrids compared to yellow bass hybrids.  相似文献   

13.
Abstract. Dorsal fin condition was evaluated in two groups of hatchery-reared steelhead trout, Oncorhynchus mykiss (Walbaum), and compared to wild fish. Hatchery fish were reared either in nursery tanks with baffles or in isolation (1 fish/rearing space). Evaluations were conducted to determine differences in dorsal fin condition between these groups and to monitor the progression and severity of fin damage. Isolated hatchery and wild steelhead trout maintained perfect dorsal fins with characteristic white margins. Hatchery fish reared in nursery tanks with baffles experienced dorsal fin erosion that started when the fish were about 40mm total length (30 days after being on feed). This erosion continued until dorsal fin length averaged only 2·3 mm in fish 161–200 mm total length in contrast to an average dorsal fin length of 20·9mm in wild fish of the same size.  相似文献   

14.

We evaluated whether bearing tetrodotoxin (TTX) affects salinity stress in the juvenile tiger puffer Takifugu rubripes. Juveniles of hatchery-reared non-toxic T. rubripes [body weight (BW): 1.7?±?0.2 g, n?=?120] were divided into six tanks and acclimatized to salinity (8.5 ppt) that is equivalent to blood osmolality. Fish in three tanks were fed non-toxic diet, and those in the other three tanks were fed a TTX-containing diet (356 ng/g diet) three times a day until satiation. In each diet treatment, salinity of one tank was kept at 8.5 ppt, and the other two tanks were adjusted to either 1.7 or 34.0 ppt, and fish were reared for another 33 days. Then, we compared survival, growth, TTX accumulation, plasma osmolality, plasma cortisol, and glucose levels among treatments. We detected TTX only in the fish in the TTX-diet groups. Survival was highest at 8.5 ppt (70%) and lowest at 1.7 ppt in the TTX-diet group (20%). The BW was greater at 8.5 ppt, and plasma osmolality was significantly higher at 34.0 ppt than at any other salinities. Plasma cortisol level was significantly higher but glucose level was lower at 1.7 ppt. Possessing TTX at a low salinity may be lethal to tiger puffer juveniles.

  相似文献   

15.
Juvenile largemouth bass Micropterus salmoides , trained to accept artificial diets, were stocked into six 0.04-ha ponds at stocking densities of either 6,175 or 12,350 fish/ha. Fish were fed a floating custom-formulated diet, containing 44% protein, once daily to satiation for 12 mo (May 1994–May 1995). At final harvest, the total yield of fish was significantly greater (P < 0.05) and feed conversion ratio (FCR) was significantly lower, for bass stocked at the higher density (4,598 kg/ha and 2.3, respectively) than when stocked at the lower density (2,354 kg/ha and 3.3, respectively). There was no significant difference (P > 0.05) in average weight, length, or survival of bass stocked at the two densities. Averaged over the study period, there were no significant differences (P > 0.05) in total ammonia-nitrogen (TAN), nitrite-nitrogen, or un-ionized ammonia concentrations in ponds in which bass were stocked at the two densities. These data indicate that largemouth bass of the size used in this study are amenable to pond culture at densities of at least 12,350 fish/ha and that higher stocking densities may be possible.  相似文献   

16.
Stress induced by severe confinement in cages and by simulated transport was evaluated in reciprocal white bass × striped bass hybrids (Morone chrysops × M. saratilis) after acclimation to various calcium concentrations in freshwater (5, 10, 20, 40, and 80 mg/L calcium) and various salinities (1, 8, 16, and 24%o) at 25 C. Survival was monitored in both confinement and transport events. In confinement events, changes in plasma osmolality were used as an indicator of osmoreg-ulatory dysfunction. After 6 h of severe confinement in cages, survival was significantly affected by treatments in both freshwater (FW) and saltwater (SW) events. Survival was greatest in 80 mg/L calcium in FW treatments and 8%o in the SW treatments. Simultaneous analysis of both FW and SW confinement data revealed that, after compensating for fish weight, survival increased as environmental ionic content increased (up to 8%o) then decreased with increasing salinity. Plasma osmolality decreased significantly from baseline levels with respect to confinement time in all FW treatments. Significant differences in plasma osmolality were observed among SW treatments: plasma osmolality of fish confined in 1%o decreased while those confined in salinities of 16 and 24%o increased. The plasma osmolality offish confined in 8%o remained near baseline levels. Almost no mortality (<5% in all treatments) occurred during (12 h) and after (5 d) transport in both FW and SW. Fish were in good condition and acclimated to transport water quality prior to transport events which may have been a major reason for high survival. Results from this study indicate that detrimental effects due to handling and transporting hybrid striped bass are reduced in FW environments that provide sufficient calcium and in SW environments which are near isoosmotic with the plasma.  相似文献   

17.
Growth of juvenile Florida red tilapin (1.57 g average weight) spawned and sex-reversed (monosex male) at salinities of 4 ppt and 18 ppt was compared at rearing salinities of 18 ppt and 36 ppt in 200 L aquaria under controlled photoperiod (12 L:12 D) and temperature (28 C). Growth was significantly higher for progeny spawned at 18 ppt than those spawned at 4 ppt under both rearing salinities with no difference observed between 18 ppt and 36 ppt.
In another experiment, growth of juvenile progeny (0.98 g average weight) spawned and sex-reversed at salinities of 2 ppt and 18 ppt was compared in 24 m3 outdoor pools at 36 ppt. When water temperatures exceeded 27 C, growth and survival were not significantly different between these groups. However, when temperatures fell below 25 C, growth and survival were significantly higher among progeny spawned at 18 ppt.
The results showed that progeny spawned and reared through early ontqenetic development in brackishwater are better adapted for growth in brackish and seawater and suggested that these fish may have higher resistance to cold-stress in seawater than progeny spawned in freshwater.  相似文献   

18.
Along the Atlantic coast black sea bass occur from the Gulf of Maine to Florida and support important commercial and recreational fisheries. Interest in commercial production of black sea bass has increased in recent years due to high demand and limited seasonable availability. Efforts towards large-scale production have been hampered by a high incidence of early larval mortality. Two of the most important environmental variables affecting hatchery production of marine finfish larvae are temperature and salinity. In the wild, larval black sea bass are found in waters with temperatures of 12–24 C and salinity levels of 30–35 ppt. Studies were conducted to define the temperature and salinity ranges that support growth and development of black sea bass during early life stages. Three developmental phases were investigated: 1) fertilization to hatch: 2) hatch through yolk sac absorption: and 3) during the initial exogenous feeding stage (5–14 days post hatch: DPH). Fertilized eggs were obtained by manual spawning of fish following administration of LHRHa. Fertilized eggs were transferred to 300-mL glass Petri dishes or 500-mL beakers to assess the effects of salinity and temperature through hatch and yolk sac absorption, respectively. To determine environmental effects on growth and survival during initial exogenous feeding 400 actively feeding larvae were cultured in green water and fed enriched rotifers for a 9-d period. For investigation of the effect of salinity, sea water (35 ppt) was diluted gradually to 15, 20, 25, and 30 ppt and maintained at 21 C. For examination of the effect of temperature, seawater was adjusted from 21 C to 12, 15, 21, 27, or 30 C at a rate of 3 C/h. No eggs hatched at 12 C or when salinity was maintained at 0 or 5 ppt. Hatching was uniformly high (≥ 85%) at temperatures between 15 and 27 C and at salinities ≥ 15 ppt. Survival through yolk sac absorption was greatest at temperatures between 18 and 27 C and at salinities ≥ 20 ppt. Survival through first feeding stage was highest at temperatures ≥ 18 C and 30 ppt salinity. Larval growth through first feeding was not significantly affected by salinity level but did increase with rearing temperature. The results indicate that survival and development of black sea bass during early life stages are most favorable at temperatures >18 C with salinity levels approaching full strength seawater.  相似文献   

19.
The southern flounder, Paralichthys lethostigma, is an important commercial and recreational marine flatfish that inhabits estuaries and shelf waters in the south Atlantic, from North Carolina through the Gulf coasts, with the exception of south Florida. Because juvenile and adult fish are highly euryhaline, it is a prime candidate for aquaculture. Methods for captive spawning of southern flounder are well developed; however, information on optimal culture requirements of the early larval stages is required for reliable mass production of juveniles.To determine the optimal photoperiod and salinity conditions for culture from hatching to day 15 post-hatching (d15ph), embryos were stocked into black 15-l tanks (75 l−1) under four photoperiods (24L:0D, 18L:6D, 12L:12D, and 6L:18D) and two salinities (25 and 34 ppt) in a 4×2 factorial design. Temperature was 18 °C, light intensity was 150 lx, and aeration was 50 ml min−1. Significant (P<0.05) effects of photoperiod and salinity on growth (notochord length, wet and dry weights) were obtained. Growth increased with increasing photoperiod and salinity and was significantly greater at 24L and 18L than at 12L or 6L, and at 34 than at 25 ppt. On d11ph and d15ph, significant interactive effects between photoperiod and salinity on growth (wet and dry weights) were also evident. Growth of larvae reared at 25 ppt increased with increasing photoperiod to a maximum at 24L, while growth of larvae at 34 ppt reached a plateau at 18L. While there were no significant photoperiod effects on these parameters, larval survival, body water percentage, and larval osmolality on d15ph were significantly higher at 34 than at 25 ppt (41% vs. 16% survival; 322 vs. 288 mosM kg−1; and 84% vs. 76% water, respectively), suggesting stress and nonadaptation to 25 ppt, a salinity more nearly isoosmotic than full-strength seawater. Since larvae from both salinity treatments were neutrally or positively buoyant at 34 ppt, but negatively buoyant at 25 ppt, larvae reared at 25 ppt probably allocated energy to maintain vertical positioning, compromising growth and survival.The results demonstrate that growth and survival of early-stage southern flounder larvae are maximized under long photoperiods of 18–24L and in full-strength seawater. Longer photoperiods probably extend the time larvae have for feeding, while full-strength seawater salinity optimizes buoyancy and vertical positioning, conserving energy. The results show that early larval stage southern flounder larvae are not entirely euryhaline, which involves not only the ability to osmoregulate, but to conserve energy under reduced buoyancy. This is consistent with suboptimal vs. maximal growth of larvae reared at 25 and 34 ppt, respectively, under 18L (i.e., photoperiod×salinity interaction). This is also consistent with other reports that tolerance to lower salinities in these euryhaline flatfish increases post-metamorphosis when transition from a pelagic to benthic existence alleviates the need to counteract reduced buoyancy.  相似文献   

20.
Optimising Denil fishways for passage of small and large fishes   总被引:1,自引:0,他引:1  
Abstract  An 8-m long experimental fishway was trialled at three different slopes [8.3% (1:12), 14.3% (1:7) and 20% (1:5)] to examine the potential of the single-plane Denil fishway for the passage of small- and large-bodied native fishes in Australia. Fish between 45 and 630 mm ascended the fishway. The lowest slope enabled the full size range of bony herring Nematalosa erebi (Günther), from 45 to 350 mm fork length, to ascend the fishway successfully as well as a higher numerical proportion; 88% at the 8.3% slope compared with 31% at the 20% slope (fish numbers per trial = 33–3936). These results dispel the notion that Denil fishways are inherently poor for small fishes. Manipulating the design parameters of slope, length, width and possibly depth-over-breadth ratio enables Denil fishways to pass a wide size range of fish, which may greatly extend their present application and enable them to make a greater contribution to the rehabilitation of diverse fish communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号