首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study aims to determine leaf litter preference, consumption rate, growth rate, food conversion efficiency, and quality of fecal pellets of two endemic pill millipedes (Arthrosphaera dalyi and Arthrosphaera davisoni) of the Western Ghats of India by laboratory microcosm experiments. Among seven combinations of three plantation leaf litters offered in 4-day trial, top three preferred combinations were selected for 4-week trial. In 4-week trial, preference of mixed litter diet was higher than single litter diet, which resulted in enhanced growth as well as food conversion efficiency of millipedes. Among Hopea , Pongamia , and Areca litters, A. dalyi preferred Hopea + Pongamia, and its consumption was significantly correlated with contents of organic carbon (P < 0.05; r = –0.97) and nitrogen (P < 0.01; r = 0.99), while growth rate with phosphorus content (P < 0.05; r = 0.97) and food conversion efficiency with contents of organic carbon (P < 0.05; r = 0.98) and calcium (P < 0.01; r = –0.99). Among Areca , Elettaria , and Coffea litters, Areca + Elettaria+ Coffea was most preferred by A. davisoni, which was significantly correlated with organic carbon content (P < 0.05; r = 0.98) and food conversion efficiency with calcium content (P < 0.0001; r = 0.99). The food conversion efficiency, however, was the highest in millipedes fed with Areca  +  Elettaria. The present study demonstrated increased nitrogen and phosphorus contents and decreased phenolic content and C/N ratio in fecal pellets of pill millipedes fed with plantation litter, and thus, these millipedes play an important role in leaf litter mineralization and soil enrichment in plantations Western Ghats.  相似文献   

2.
 Four soil cores (length, 20 cm; diameter, 16 cm) were sampled in a Swiss pre-Alpine meadow with high earthworm abundance (>400 individuals/m2); two cores were taken in October 1993 and the other two cores in April 1994. The cores were described using computer assisted tomography which gives a series of section images every 3 mm. A method for reconstructing the three-dimensional (3D) skeleton of the earthworm burrow system is presented and discussed. This method provides an image of the structural organisation of the burrow system and was found to be adequately sensitive for use in ecological and functional studies. The seasonal variation of these 3D skeletons was investigated using two approaches, i.e. the analysis of: (1) global burrow system characteristics, and (2) individual burrow characteristics. At the scale of the global burrow system no difference was found between seasons (same number of burrows and same total burrow length) except for the vertical segment distribution, which was homogeneous in spring and decreased with depth in the fall. The study of individual burrow characteristics revealed that burrows tended to be more vertical in spring and that their branching intensity was higher in this season. Received: 10 June 1997  相似文献   

3.
 This study was conducted to determine whether separation of particulate organic matter (POM) that is biologically labile from aggregate entrapped material improves the usefulness of POM as an index of soil C and N dynamics. The effects of conventional (CT) and no-tillage (NT) practices on POM were assessed using soils from three 10-year trials in Illinois. Loose and occluded POM in the 0–5 cm depth were separated from 1994 samples. Use of NT practices increased C and N contents at 0–5 cm relative to CT practices and those increases were most apparent in the occluded POM fraction. The correlation between total POM-N and potentially mineralizable N (PMN) was stronger than that between PMN and either the loose or occluded-POM fractions. In 1995, both the microbial biomass, estimated as chloroform-labile C (CFEC), and PMN were correlated with POM-C and N, but the relationship was weak when data (from different tillage and depth combinations) were not treated in aggregate. POM-C and CFEC were most strongly correlated in surface depths and in CT treatments. In NT 0–5 cm samples, PMN contents were similar (≈27 mg N kg–1 soil) at all sites despite notable differences in POM-N concentrations; PMN was not related to POM-N in CT samples. There was no consistent relationship between PMN and POM-N contents in 5–30 cm samples. DRFTIR spectra indicated that carbohydrates were most abundant in POM at 0–5 cm. Relatively low PMN rates and enrichment of polysaccharides in POM in the sicl soil suggest that physical protection of labile organic substrates was more important at that site than at sites with lighter textured soils. Improved fractionation and incubation techniques and alleviation of laboratory artifacts will improve our ability to relate POM quantity, distribution and composition to biologically mediated C and N dynamics occurring in the field. Received: 2 December 1999  相似文献   

4.
Denitrification plays an important role in N-cycling. However, information on the rates of denitrification from horticultural growing media is rare in literature. In this study, the effects of pH, N, C, and moisture contents on denitrification were investigated using four moderately decomposed peat types (oligotrophic, mesotrophic, eutrophic, and transitional). Basal and potential denitrification rates (20°C, 18 h) from the unlimed peat samples varied widely from 2.0 to 21.8 and from 118.9 to 306.6 μg (N2O + N2)–N L−1 dry peat h−1, respectively, with the highest rates from the eutrophic peat and the lowest from the transitional one. Both basal and potential denitrification rates were substantially increased by 3.6–14- and 1.4–2.3-fold, respectively, when the initial pH (4.3–4.8) was raised to 5.9–6.5 units. Emissions of (N2O + N2)–N from oligotrophic, mesotrophic, and transitional peats were markedly increased by the addition of 0.15 g NO3–N L−1 dry peat but further additions had no effect. Denitrification rates were increased by increasing glucose concentration suggesting that the activity of denitrifiers in all peat types was limited by the low availability of easily decomposable C source. Increasing moisture contents of all peats from 40 to 50% water-filled pore space (WFPS) did not significantly (p > 0.05) increase (N2O + N2)–N emissions. However, a positive effect was observed when the moisture contents were increased from 60% to 70% WFPS in the eutrophic peat, from 70% to 80% in the transitional, from 80% to 90% in the oligotrophic and from 70% to 90% in the mesotrophic peat. It can be concluded that liming, N-fertilization, availability of easily decomposable C, and moist condition above 60% WFPS could encourage denitrification from peats although the rates are greatly influenced by the peat-forming environments (eutrophic > mesotrophic > oligotrophic > transitional types).  相似文献   

5.
The effects of biochar properties on crop growth are little understood. Therefore, biochar was produced from eight feedstocks and pyrolyzed at four temperatures (300°C, 400°C, 500°C, 600°C) using slow pyrolysis. Corn was grown for 46 days in a greenhouse pot trial on a temperate and moderately fertile Alfisol amended with the biochar at application rates of 0.0%, 0.2%, 0.5%, 2.0%, and 7.0% (w/w) (equivalent to 0.0, 2.6, 6.5, 26, and 91 t biochar ha−1) and full recommended fertilization. Animal manure biochars increased biomass by up to 43% and corn stover biochar by up to 30%, while food waste biochar decreased biomass by up to 92% in relation to similarly fertilized controls (all P < 0.05). Increasing the pyrolysis temperature from 300°C to 600°C decreased the negative effect of food waste as well as paper sludge biochars. On average, plant growth was the highest with additions of biochar produced at a pyrolysis temperature of 500°C (P < 0.05), but feedstock type caused eight times more variation in growth than pyrolysis temperature. Biochar application rates above 2.0% (w/w) (equivalent to 26 t ha−1) did generally not improve corn growth and rather decreased growth when biochars produced from dairy manure, paper sludge, or food waste were applied. Crop N uptake was 15% greater than the fully fertilized control (P < 0.05, average at 300°C) at a biochar application rate of 0.2% but decreased with greater application to 16% below the N uptake of the control at an application rate of 7%. Volatile matter or ash content in biochar did not correlate with crop growth or N uptake (P > 0.05), and greater pH had only a weak positive relationship with growth at intermediate application rates. Greater nutrient contents (N, P, K, Mg) improved growth at low application rates of 0.2% and 0.5%, but Na reduced growth at high application rates of 2.0% and 7.0% in the studied fertile Alfisol.  相似文献   

6.
Background, aim, and scope  Earthworms make a major contribution to decomposition in ecosystems where they are present, mainly acting in the drilosphere, that is, galleries, burrows, casts, and middens. Earthworm middens are hot-spots of microbial activity and nutrient dynamics and represent a suitable model for studying earthworm-mediated influences on soil microbial communities by alteration of the patch structure of the microbial environment. We studied the structure and activity of the microbial communities in the soil system formed by middens of Lumbricus terrestris and the soil below and surrounding them and the role of earthworms in maintaining these structures through time. Material and methods  We set up an experiment in which middens were either left (control) or removed from their original place (translocated) and left in a nearby area free of earthworm activity for 2 months. After 1 and 2 months we sampled middens, soil below them, and surrounding soil. We analyzed the phospholipid fatty acid (PLFA) profiles and measured respiratory fluxes of CO2 and CH4. Results  Microbial communities of middens clearly differed from those of soil below and surrounding soil samples, showing higher bacterial and fungal PLFAs (p < 0.0001 and p < 0.01, respectively); furthermore, changes in microbial communities were stronger in control middens than in translocated middens. Moreover, gram positive and negative bacterial PLFAs were greater in translocated than control middens (p < 0.0001 and p < 0.001, respectively), as well as total organic carbon (p < 0.001). Microbial activity was higher in middens than in soil below and surrounding soil samples both for CO2 (p < 0.0001) and CH4 (p < 0.0001). Discussion  Soil bioturbation by the earthworm L. terrestris was strong in their middens, but there was not any effect on soil below and surrounding soil. Microbial communities of middens maintain their biomass and activity when earthworms were not present, whereas they decreased their biomass and increased their activity when earthworms were present. Conclusions  Earthworms strongly enhanced microbial activity measured as CO2 production in middens, which indicates that there are hot spots for soil microbial dynamics and increasing habitat heterogeneity for soil microorganisms. Moreover, our data strongly support the fact that the impact of this earthworm species in this soil is restricted to their middens and increasing soil heterogeneity. Recommendations and perspectives  Our data indicate that it is not clear if earthworms enhance or depress microbial communities of middens since the microbial activity increased, but did not modify their biomass and this was not dependent on soil organic C content. These results indicate no competence for C pools between this anecic earthworm and microorganisms, which has been found for other earthworm species, mainly endogeics. Conversely, they suggest some type of facilitation due to the release of additional nutrient pools in middens when earthworms are present, through the digestion of middens' material or the addition of casts produced from other food sources.  相似文献   

7.
Leaves of eupatorium and lantana were separately composted in the laboratory in two phases. The first phase was run for 28 days at 50°C inside a hot-air oven and the second phase at room temperature for more than 5 months. After composting, the C/N ratio of the dry matter fell from 13.4 and 12.9 to 8.2 and 9.2 in eupatorium and lantana, respectively. The nitrogen contents of composted materials increased by 43 and 29% in eupatorium and lantana, respectively. In both composts, ammonium contents were much higher than nitrate contents. The light absorbance at 665 nm by acetone extracts decreased by 39% in eupatorium in comparison to 87% in lantana. The total extractable lipid phosphate contents decreased in both composts from about 4 μmol (during the mid-thermophilic phase) to less than 0.5 μmol lipid phosphate g–1 dry matter. After composting, germination bioassays with Chinese cabbage seeds showed nearly complete elimination of allelopathic potentials of both plant materials. However, the germination index of Dia sorghum indicated that eupatorium, but not lantana, compost still retained a significant inhibitory potential. Received: 5 March 1997  相似文献   

8.
The evolution of clay soil porosity is currently demonstrated via the shrinkage curves in a large water content domain spreading from a shrinkage limit to a liquidity limit. In fact, the parallel between in situ profiles and the shrinkage curves in such a large water content range is difficult to obtain because of the lack of earth pressure in the laboratory tests and in situ limited water contents. The vertical distribution of porosity throughout a clay-rich marsh soil profile was studied in a grassland field with samples taken from the soil surface characterized by water contents near their shrinkage limit down to 2.00 m deep saturated sediments over their liquidity limit. The depth of the plasticity limit isolates a soil in a solid state characterized by a vertical prism-like structure from a plastic to pseudo-liquid state in depth. The porosity was calculated from the measurements of the density of intact samples by double weighing and image analysis of 100 cm2 polished sections. The initial structure of clay soil was maintained by impregnation based on water–acetone–resin exchange. An ultraviolet photo luminescent pigment added to the resin allowed the capture of images from which shrinkage cracks and microporosity of the clay matrix were easily separated. The distribution of porosity between the shrinkage crack mesoporosity and the clay matrix microporosity was evaluated after the mathematical decomposition of the grey level curves characteristic of each level. Vertical evolution of the porosity distribution from the soil surface in a solid state to the plastic and pseudo-liquid sediment in depth was presented on the shrinkage curve of the clay material. The measurements point out how the clay matrix microporosity and mesoporosity of shrinkage cracks are complementary and the role of the scale effect on the shrinkage curve. The analysis of images captured on an optical microscope under polarized and analyzed light and the SEM observation of freeze-dried samples demonstrated the isotropic arrangement of the clay particles in typical “honey-comb” architecture in the in situ plastic-to-liquid saturated domain. Eventually the distribution of porosity through the profile results from the evolution of the initial “honey-comb” microstructure of the sediment induced by the desiccation phenomenon. It is governed by the depth of plasticity limit of the clay material and by the depth of the water table.  相似文献   

9.
 The effects of salt type and its concentration on nitrification, N mineralization and N2O emission were examined under two levels of moisture content in Yellow soil and Andosol samples as simulated to agriculture under arid/semi-arid conditions and under heavy application of fertilizer in a glass-house, respectively. The salt mixtures were composed of chlorides (NaCl and NH4Cl) or sulphates [Na2SO4 and (NH4)2SO4] and were added at various concentrations (0, 0.1, 0.2, 0.4 and 0.6 M as in the soil solution). These salts were added to non-saline Yellow soil at different moisture contents (45 or 40 and 65% of maximum water-holding capacity; WHC) and their effects on the changes in mineral N (NH4 +-N and NO3 -N) concentration as well as N2O emission were examined periodically during laboratory incubation. We also measured urease activities to know the effect of salts on N mineralization. Furthermore, Ca(NO3)2 solution was added at various concentrations (0, 0.1, 0.3, 0.5 and 0.8 M as in the soil solution) to a non-saline Andosol taken from the subsurface layer in a glass-house and incubated at different moisture contents (50% and 70% of WHC) to examine their effects on changes in mineral N. Nitrification was inhibited by high, but remained unaffected by low, salt concentrations. These phenomena were shown in both the model experiments. It was considered that the salinity level for inhibition of nitrification was an electric conductivity (1 : 5) of 1 dS m–1. This level was independent of the type of salts or soil, and was not affected by soil moisture content. The critical level of salts for urease activities was about 2 dS m–1. The emission rate of N2O was maximum at the beginning of the incubation period and stabilized at a low level after an initial peak. There was no significant difference in N2O emission among the treatments at different salt concentrations, while higher moisture level enhanced N2O emission remarkably. Received: 29 July 1998  相似文献   

10.
 Long-term experiments on different crop management systems provide essential information about turnover of soil organic matter and changes in microbial properties over a period of time. A long-term field site trial, which was established in 1967 near Vienna, Austria, to document the fate of 14C-labelled manure (straw and farmyard) under different crop management systems (crop rotation, spring wheat and bare fallow), was investigated. Soil samples were taken in 1997 and separated into size fractions (>250 μm, 250–63 μm, 63–2 μm, 2–0.1 μm and <0.1 μm) after aggregate dispersion using low-energy sonication. Organic C, total N and 14C content were measured in the bulk soil and the size fractions and microbial properties were analysed in the bulk soil. Additionally, C mineralization in bulk soil samples was monitored at 20 °C over a period of 28 days, and subsequently 14C-CO2 content was analysed. The distribution of organic C and N within the size fractions was similar between crop rotation and spring wheat; the highest amounts of organic C and N were found in the clay-sized fraction. The amounts of C and N were significantly smaller in the bare fallow, which was depleted of organic matter in the coarse-sized fractions. 14C distribution differed significantly from unlabelled C distribution, labelled C was accumulated in the silt-sized fraction, indicating weak humification of the applied manure C. The highest rate of C mineralization was measured in the crop rotation and spring wheat, whereas the emission rate of the bare fallow was about 40% lower. The higher 14C:C ratio of the bulk soil in comparison to the emitted CO2 indicated that labelled C compounds still remained mineralizable after a period of 30 years. Microbial properties showed a great difference between crop management systems and bare fallow, particularly regarding urease and xylanase activity. Received: 31 May 1999  相似文献   

11.
The sorption of four endocrine disruptors, bisphenol A (BPA), estrone (E1), 17β-estradiol (E2), and 17α-ethinylestradiol (EE2) in tropical sediment samples was studied in batch mode under different conditions of pH, time, and sediment amount. Data obtained from sorption experiments using the endocrine disruptors (EDs) and sediments containing different amounts of organic matter showed that there was a greater interaction between the EDs and organic matter (OM) present in the sediment, particularly at lower pH values. The pseudosecond order kinetics model successfully explained the interaction between the EDs and the sediment samples. The theoretical and experimentally obtained q e values were similar, and k values were smaller for higher SOM contents. The k F values, obtained from the Freundlich isotherms, varied in the ranges 4.2–7.4 × 10−2 (higher OM sediment sample, S2) and 1.7 × 10−3–3.1 × 10−2 (lower OM sediment sample, S1), the latter case indicating an interaction with the sediment that increased in the order: EE2 > > E2 > E1 > BPA. These results demonstrate that the availability of endocrine disruptors may be directly related to the presence of organic material in sediment samples. Studies of this kind provide an important means of understanding the mobility, transport, and/or reactivity of this type of emergent contaminant in aquatic systems.  相似文献   

12.
 A detailed size separation of particulate organic matter (POM) from soils amended with straw from Hordeum vulgare or Vicia sativa revealed that the loss of C during the first 56 days of incubation mainly occurred from particles >2,000 μm, without a concomitant reduction in the size of these large particles. Preliminary studies of POM from non-amended soil had shown that the stable heavy (>1.4 g cm–3) POM fraction was mainly (>80%) composed of particles <400 μm, whereas the light fraction was dominated by larger particles (>80%). Therefore we decided to compare the POM <1.4 g cm3 with POM >400 μm. There was a very close relationship between POM>400 μm and POM <1.4 g cm–3 with regard to amounts of C and N, as well as the appearance of these fractions under the microscope. Similarly there was a close relationship between changes in the C content of the POM fractions and the CO2 respired, and this was also the case when comparing changes in POM-N with net N mineralization. This indicated that the biological activity during decomposition was actually localized in the POM. Due to the lighter workload and lower expenditure for reagents in connection with size separation of POM, we recommend the size separation procedure in connection with studies of residue decomposition in arable systems. Received: 23 May 2000  相似文献   

13.
Historic alterations in land use from forest to grassland and cropland to forest were used to determine impacts on carbon (C) stocks and distribution and soil organic matter (SOM) characteristics on adjacent Cambisols in Eastern Germany. We investigated a continuous Norway spruce forest (F-F), a former cropland afforested in 1930 (C-F), and a grassland deforested in 1953 (F-G). For C and N stocks, we sampled the A and B horizons of nine soil pits per site. Additionally, we separated SOM fractions of A and B horizons by physical means from one central soil pit per pedon. To unravel differences of SOM composition, we analyzed SOM fractions by 13C-CPMAS NMR spectroscopy and radiocarbon analysis. For the mineral soils, differences in total C stocks between the sites were low (F-F = 8.3 kg m−2; C-F = 7.3 kg m−2; F-G = 8.2 kg m−2). Larger total C stocks (+25%) were found under continuous forest compared with grassland, due to the C stored within the organic horizons. Due to a faster turnover, the contents of free particulate organic matter (POM) were lower under grassland. High alkyl C/O/N-alkyl C ratios of free POM fractions indicated higher decomposition stages under forest (1.16) in relation to former cropland (0.48) and grassland (0.33). Historic management, such as burning of tree residues, was still identifiable in the subsoils by the composition and 14C activity of occluded POM fractions. The high potential of longer lasting C sequestration within fractions of slower turnover was indicated by the larger amounts of claybound C per square meter found under continuous forest in contrast to grassland.  相似文献   

14.
 A study was conducted to determine mineralization rates in the field and in different soil layers under three grassland managements (viz. a reseeded sward, a permanent sward with a conventional N management, and a long-term grass sward with 0 N (0-N) input). Potential mineralization rates of soil particles (sand, silt and clay) and macro-organic matter fractions of different sizes (i.e. 0.2–0.5, 0.5–2.0 and >2 mm) were also determined in the laboratory. In the reseeded plots, net mineralization was unchanged down to 40 cm depth. In the undisturbed conventional-N swards, mineralization rates were substantially higher in the top layer (0–10 cm) than in the deeper layers. In plots which had received no fertilizer N, mineralization was consistently low in all the layers. There was more macro-organic matter (MOM) in the 0-N plots (equivalent to 23 g kg–1 soil for 0–40 cm) than in the two fertilized plots (i.e. conventional-N and reseeded) which contained similar amounts (ca. 15 g kg–1 soil). C and N contents of separated soil particles did not differ amongst the treatments, but there were large differences with depth. Potential mineralization in the bulk soil was greatest in the 0–10 cm layers and gradually decreased with depth in all the treatments. Separated sand particles had negligible rates of potential mineralization and the clay component had the highest rates in the subsurface layers (10–40 cm). MOMs had high potential rate of mineralization in the surface layer and decreased with soil depth, but there was no clear pattern in the differences between different size fractions. Received: 17 November 1997  相似文献   

15.
 The effect of land use and different soil tillage systems on CH4 oxidation was tested in a laboratory incubation study. Intact soil cores were collected from the topsoil (0–12 cm) of a field site with ploughed, direct-drilled and set-aside treatments, and from an adjacent undisturbed forest site. CH4 oxidation rates were 4.5 to 11 times higher in the direct-drilled than in the continuously ploughed treatment, in the set-aside soil they were intermediate. The oxidation rates in the forest soil were 11 times the highest rate measured at the field site, pointing to a distinct land use effect. Vertical profiles of CH4 oxidation activity revealed a very clear zonation in all treatments. CH4 oxidation increased significantly below the plough layer (0–25 cm), and showed a subsurface maximum under direct-drilling (5–15 cm) and under forest (5–10 cm). The vertical zonation under set-aside was comparable to that under ploughing. Generally, the maximum CH4 oxidizing activity was in the zone nearest to the soil surface, unless various constraints prevented this. Received: 1 December 1997  相似文献   

16.
This work was undertaken to study the influence of soil type and its physical and chemical properties on uranium sorption and bioavailability, in order to reduce the uncertainty associated with this parameter in risk assessment models and safe food production. The tests were conducted on three types of Serbian soils: alluvium, chernozem, and gajnjaca, from which 67 samples were taken. Dominant factors of uranium mobilisation: the specific content of total/available form of uranium and phosphorus, the degree of acidity (pHKCl), and humus content and their correlation, were analysed. Content of available uranium form, according to the type of soil decreases in the following order: gajnjaca > alluvium > chernozem. It was found the medium correlation between pH values and available content of uranium in chernozem and gajnjaca, statistically significant at the level of significance of 99% and the alluvium at the level of significance of 95%. Correlation coefficients in all cases were negative, indicating that the reduction in pH increases the mobility of uranium and thus its availability for the adoption of the plants. Soil pH was the only dominant factor that significantly controlled the uranium value with no further significant contribution of other soil parameters.  相似文献   

17.
 The vertical distribution of native earthworm species from natural and disturbed savannas in the Oxisols of the Colombian Llanos was assessed in a native savanna and in a 17-year-old grazed grass-legume pasture during a period of 17 months. Different patterns of vertical stratification were observed for all species with a strong migration of populations to deeper layers in the dry season. The correlation between the size of the earthworms and the average depth at which they were found was not significant (P>0.05), despite the fact that bigger species are located deeper in the soil. The living habits and adaptive strategies of the smallest species, Ocnerodrilidae n. sp., found in both ecosystems studied are responsible for this pattern. This endogeic species is associated with organic pools generated by an anecic species and further studies should assess the role of this species in ecosystem functioning. Mature worms of one anecic species were located deeper than immature ones in the soil (P<0.01). Soil moisture had an important effect on the vertical distribution of earthworms, although differences between immature and mature worms of the anecic Martiodrilus carimaguensis are likely to be of biotic origin. New data on the biology and ecology of these Neotropical species are shown. Received: 24 November 1999  相似文献   

18.
The effects of cow manure vermicompost on plant growth, metabolite contents, and antioxidant activities of Chinese cabbage were investigated in pot cultures. Five treatments were designed by mixing vermicompost and soil at ratio of 0:7, 1:7, 2:7, 4:7, 7:0 (w/w). Marketable weight of Chinese cabbage was significantly (p < 0.05) higher in the 2:1 treatment than in the other treatments, while plants grown in the full soil treatment (0:7) showed the lowest marketable weight (Fig. 1a). Vermicompost application significantly increased the nutrient content of Chinese cabbage leaves (p < 0.05), especially in the 4:7 treatment, with increases in the contents of soluble sugar (Fig. 2a), soluble protein (Fig. 2b), vitamin C (Fig. 3a), total phenols (Fig. 3b), and total flavonoids (Fig. 3c) by 62%, 18%, 200%, 25%, and 17% compared to the full soil treatment, respectively. The antioxidant activities expressed by 2, 2-Dipenyl-1-picrylhydrazyl-scavenging activity (Fig. 4a), hydroxyl (OH)-scavenging activity (Fig. 4b), and iron (Fe2+)-chelating activity (Fig. 4c) were higher by 92%, 40%, and 36% in the 4:7 than 0:7 the treatment, respectively. Vermicompost application significantly increased (p < 0.05) the plant contents of 16 essential amino acids (Table 1); the total amino acid content showed the greatest increase in the 4:7 treatment, 90% compared to the full soil treatment.  相似文献   

19.
Two of 187 fungal isolates (Aspergillus niger 1B and 6A) displaying superior phosphate (P) solubilization and hydrolytic enzyme secretion were studied using P forms of calcium (Ca-P), iron (Fe-P), and aluminum (Al-P). Phosphate solubilization in a sucrose-basal salt (SB) broth was increased and pH decreased by both isolates. In Ca-P medium, solubilization for 6A was approximately 322 μg P mL−1 and pH decreased by 4.2 units to 2.3 in 72 h. However, when pH value of the SB broth was lowered to 2.5 using HCl, 65.3  ±  0.4 μg mL−1 of P was released from Ca-P, whereas trace amounts of P were released from Fe-P and Al-P. Both isolates displayed enhanced Al-P solubilization using NH4Cl rather than KNO3 as the N source; final pH values were not significantly different. With Ca-P, gluconic acid was predominantly produced by 1B and 6A, whereas oxalic acid predominated with Fe-P and Al-P. Addition of gluconic acid (final concentration of 8.5 μmol mL−1) to Ca-P-supplemented SB lowered pH (2.9) and solubilized phosphate (146.0 ± 1.0 μg mL−1). Similarly, addition of oxalic acid (final concentration 6.6 μmol mL−1) to Ca-P- and Fe-P-amended media solubilized P (60.2 ± 0.9 and 21.6 ± 2.1 μg mL−1, respectively), although these quantities were significantly lower than those detected in unamended SB. The presence of unidentified P solubilized compound(s) in the dialyzed (MW>500) supernatant warrants further study. In pot experiments, significant increases in plant (Brassica chinensis Linn.) dry weight and N and P contents were observed with the addition of isolate 6A, when a small amount of organic fertilizer together with either rock phosphate (South African apatite) or Ca-P served as the main P sources.  相似文献   

20.
 The effects of a composted organic amendment and solarization on the organic matter (OM) of a sandy soil were determined by means of particle-size fractionation and analysis of carbon and nitrogen contents. After 2 years, total soil carbon increased under organic fertilization but did not significantly change with solarization. As a consequence of the climatic conditions in the greenhouse, the carbon concentrations (g kg–1 fraction) of the particle-size fractions were lower than those found for temperate soils and closer to those for tropical soils. The carbon amounts (g kg–1 soil) and carbon:nitrogen ratios, which were highest in fractions >200 μm, reflected the short-term influence of the industrially processed organic amendment, rich in composted coarse plant debris. In contrast, the characteristics of the OM associated with each fraction were not significantly affected by solarization. In comparison with other coarse-textured temperate or tropical soils, carbon concentrations in fine silt (2–20 μm) and clay (0–2 μm) fractions were very low. This suggests a "greenhouse effect", together with a high rate of carbon mineralization affecting fine silt and clay fractions. Received: 19 November 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号