首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we report molecular investigation of an ectomycorrhizal fungi (EMF) community of European larch (Larix decidua Mill.) seedlings grown in a bare-root nursery. In total, we surveyed 32 nurseries that were each active in supplying planting stocks to restock forests and for afforestation of post-agricultural land. Sequence-based approach was used to identify EMF taxa, quantify EMF richness, and document differences in the relative abundance of individual taxa. We identified seven fungal species that might contribute to the mycorrhizal community structure of 1 to 3-year-old L. decidua seedlings. The species richness in the examined larches varied between one and four fungal taxa, depending on both the nursery stock samples (NSS) and age class of the seedlings. The average was 1.4 for 1-year-old seedlings and 2.3 for 2- and 3-year-old plants. The dominance of Ascomycota over Basidiomycota and the prevalence of two species, Wilcoxina mikolae and Suillus grevillei, as EMF partners were characteristic features of nursery-grown L. decidua seedlings. S. grevillei was the only one basidiomycetes colonized roots of tested seedlings. The rest of the mycorrhizal pool from forest nurseries was typically dominated by pioneer fungal ascomycetes. W. mikolae was the most common mycorrhizal ascomycete present at a high frequency on NSS from both age classes and with very high abundance (average 90%) on 1-year-old seedlings. Some other ascomycetes (Pezizales 1, Pezizales 2 and Pezizales 3) appeared on tested larches at a low frequency, but sometimes in high abundance. Tuber spp. appeared at a low frequency and low abundance. The relative abundance of S. grevillei was positively correlated with the age of seedlings, while W. mikolae was negatively correlated with age. Tuber sp. 1 and 2, Pezizales 2, and W. mikolae were positively associated with the basic soil pH values. However, forward selection of the environmental variables showed that only the age of the larch seedlings contributed significantly (F = 11.45, P = 0.02) to the variance in the ECF community.  相似文献   

2.
Land-use and land cover strongly influence carbon (C) storage and distribution within ecosystems. We studied the effects of land-use on: (i) above- and belowground biomass C, (ii) soil organic C (SOC) in bulk soil, coarse- (250–2000 μm), medium- (53–250 μm) and fine-size fractions (<53 μm), and (iii) 13C and 15N abundance in plant litter, bulk soil, coarse-, and medium- and fine-size fractions in the 0–50 cm soil layer in Linaria AB, Canada between May and October of 2006. Five adjacent land-uses were sampled: (i) agriculture since 1930s, (ii) 2-year-old hybrid poplar (Populusdeltoides × Populus × petrowskyana var. Walker) plantation, (iii) 9-year-old Walker hybrid poplar plantation, (iv) grassland since 1997, and (v) an 80-year-old native aspen (Populus tremuloides Michx.) stand. Total ecosystem C stock in the native aspen stand (223 Mg C ha−1) was similar to that of the 9-year-old hybrid poplar plantation (174 Mg C ha−1) but was significantly greater than in the agriculture (132 Mg C ha−1), 2-year-old hybrid poplar plantation (110 Mg C ha−1), and grassland (121 Mg C ha−1). Differences in ecosystem C stocks between the land-uses were primarily the result of different plant biomass as SOC in the 0–50 cm soil layer was unaffected by land-use change. The general trend for C stocks in soil particle-size fractions decreased in the order of: fine > medium > coarse for all land-uses, except in the native aspen stand where C was uniformly distributed among soil particle-size fractions. The C stock in the coarse-size fraction was most affected by land-use change whilst the fine fractions the least. Enrichment of the natural abundances of 13C and 15N across the land-uses since time of disturbance, i.e., from agriculture to 2- and then 9-year-old hybrid poplar plantations or to grassland, suggests shifts from more labile forms of C to more humified forms of C following those land-use changes.  相似文献   

3.
Eucalyptus plantations occupy almost 20 million ha worldwide and exceed 3.7 million ha in Brazil alone. Improved genetics and silviculture have led to as much as a three-fold increase in productivity in Eucalyptus plantations in Brazil and the large land area occupied by these highly productive ecosystems raises concern over their effect on local water supplies. As part of the Brazil Potential Productivity Project, we measured water use of Eucalyptus grandis × urophylla clones in rainfed and irrigated stands in two plantations differing in productivity. The Aracruz (lower productivity) site is located in the state of Espirito Santo and the Veracel (higher productivity) site in Bahia state. At each plantation, we measured stand water use using homemade sap flow sensors and a calibration curve using the clones and probes we utilized in the study. We also quantified changes in growth, leaf area and water use efficiency (the amount of wood produced per unit of water transpired). Measurements were conducted for 1 year during 2005 at Aracruz and from August through December 2005 at Veracel. Transpiration at both sites was high compared to other studies but annual estimates at Aracruz for the rainfed treatment compared well with a process model calibrated for the Aracruz site (within 10%). Annual water use at Aracruz was 1394 mm in rainfed treatments versus 1779 mm in irrigated treatments and accounted for approximately 67% and 58% of annual precipitation and irrigation inputs respectively. Increased water use in the irrigated stands at Aracruz was associated with higher sapwood area, leaf area index and transpiration per unit leaf area but there was no difference in the response of canopy conductance with air saturation deficit between treatments. Water use efficiency at the Aracruz site was also not influenced by irrigation and was similar to the rainfed treatment. During the period of overlapping measurements, the response to irrigation treatments at the more productive Veracel site was similar to Aracruz. Stand water use at the Veracel site totaled 975 mm and 1102 mm in rainfed and irrigated treatments during the 5-month measurement period respectively. Irrigated stands at Veracel also had higher leaf area with no difference in the response of canopy conductance with air saturation deficit between treatments. Water use efficiency was also unaffected by irrigation at Veracel. Results from this and other studies suggest that improved resource availability does not negatively impact water use efficiency but increased productivity of these plantations is associated with higher water use and should be given consideration during plantation management decision making processes aimed at increasing productivity.  相似文献   

4.
We examined the relative susceptibility of four mahogany species, Khaya ivorensis, Khaya anthotheca, Entandrophragma angolense, and E. utile, to Hypsipyla robusta attack. Seeds were obtained from one to three parent trees for each species. The research was conducted in the moist semideciduous forest zone in Ghana and used a randomized complete block design. Tree height and diameter and height to first branch were measured until 24 months after out-planting in the field. H. robusta damage was assessed by counting the numbers of shoots attacked, branches, and dead shoots. Khaya spp. grew better but experienced more attack than Entandrophragma spp. The relative susceptibility to H. robusta attack, from most to least, of the four species was: K. anthotheca > K. ivorensis > E. angolense > E. utile. At 24 months, the mean number of shoots attacked per tree ranged from 1.0 for an E. utile seed source to 3.6 on for a K. anthotheca seed source. At 15 months, K. anthotheca and K. ivorensis started branching at about 1.5 m, but height of clear trunk increased over time due to self-pruning. As K. anthotheca grew taller, the number of H. robusta attacks per tree declined. This suggested that selection of genotypes and species that are tolerant of H. robusta attack based on infestation of young plants may not be appropriate. Genetic factors more completely reflecting the response of different species and genotypes to H. robusta attack may manifest themselves at later growth stages.  相似文献   

5.
The aim of this study was to determine the effect of whole-tree harvesting (WTH) on the growth of Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst.) as compared to conventional stem harvesting (CH) over 10 and 20 years. Compensatory (WTH + CoF) and normal nitrogen-based (CH + F or WTH + F) fertilisation were also studied. A series of 22 field experiments were established during 1977-1987, representing a range of site types and climatic conditions in Finland, Norway and Sweden. The treatments were performed at the time of establishment and were repeated after 10-13 years at 11 experimental sites. Seven experiments were followed for 25 years.Volume increment was on average significantly lower after WTH than after CH in both 10-year periods in the spruce stands. In the pine stands thinned only once, the WTH induced growth reduction was significant during the second 10-year period, indicating a long-term response.Volume increment of pine stands was 4 and 8% and that of spruce stands 5 and 13% lower on the WTH plots than on CH during the first and the second 10-year period, respectively. For the second 10-year period the relative volume increment of the whole-tree harvested plots tended to be negatively correlated with the amount of logging residue. Accordingly, the relative volume increment decreased more, the more logging residue was harvested, stressing the importance of developing methods for leaving the nutrient-rich needles on site.If nutrient (N, P, K) losses with the removed logging residues were compensated with fertiliser (WTH + CoF), the volume increment was equal to that in the CH plots. Nitrogen (150-180 kg ha−1) or N + P fertilisation increased tree growth in all experiments except in one very productive spruce stand. Pine stands fertilised only once had a normal positive growth response during the first 10-year period, on average 13 m3 ha−1, followed by a negative response of 5 m3 ha−1 during the second 10-year period. The fertilisation effect of WTH + F and WTH + CoF on basal area increment was both smaller and shorter than with CH + F.  相似文献   

6.
Plant succession and mycorrhizal fungi both play crucial roles in shaping the development of forest ecosystems. However, despite the strong potential for interactions between them, few studies have examined how patterns of forest succession affect mycorrhizal associations that a majority of plant species depend on to alleviate soil resource constraints. Fire suppression in subalpine forests over the last century has changed successional patterns in ways that may have important implications for mycorrhizal associations of forest tree species. To better understand these relationships we conducted a field and greenhouse study in which we examined mycorrhizal infection along gradients of light intensity and soil nutrient availability that develop as aspen becomes seral to conifers under longer fire return intervals. We examined whether ectomycorrhizal associations of quaking aspen (Populus tremuloides), a shade intolerant, early succession species, were more sensitive to light and soil resource limitations than subalpine fir (Abies lasiocarpa), a shade tolerant, late succession species. In the field study, ectomycorrhizal infection of aspen roots was reduced by 50% in conifer dominated stands relative to aspen stands. In contrast, subalpine fir maintained its EM associations regardless of the successional status of the stand. The greenhouse results were consistent with field results and indicated that light limitation was the driving force behind reductions in EM infection of aspen roots in later stages of succession. These results suggest that nutrient limitations constraining early successional species may be exacerbated by losses in EM associations via light limitations created by late successional species. This is one potential mechanism by which climax forest species create a competitive advantage over early successional species and these results suggest that it is likely exacerbated by longer fire return intervals.  相似文献   

7.
The Warner Mountains of northeastern California on the Modoc National Forest experienced a high incidence of tree mortality (2001–2007) that was associated with drought and bark beetle (Coleoptera: Curculionidae, Scolytinae) attack. Various silvicultural thinning treatments were implemented prior to this period of tree mortality to reduce stand density and increase residual tree growth and vigor. Our study: (1) compared bark beetle-caused conifer mortality in forested areas thinned from 1985 to 1998 to similar, non-thinned areas and (2) identified site, stand and individual tree characteristics associated with conifer mortality. We sampled ponderosa pine (Pinus ponderosa var ponderosa Dougl. ex Laws.) and Jeffrey pine (Pinus jeffreyi Grev. and Balf.) trees in pre-commercially thinned and non-thinned plantations and ponderosa pine and white fir (Abies concolor var lowiana Gordon) in mixed conifer forests that were commercially thinned, salvage-thinned, and non-thinned. Clusters of five plots (1/50th ha) and four transects (20.1 × 100.6 m) were sampled to estimate stand, site and tree mortality characteristics. A total of 20 pre-commercially thinned and 13 non-thinned plantation plot clusters as well as 20 commercially thinned, 20 salvage-thinned and 20 non-thinned mixed conifer plot clusters were established. Plantation and mixed conifer data were analyzed separately. In ponderosa pine plantations, mountain pine beetle (Dendroctonus ponderosae Hopkins) (MPB) caused greater density of mortality (trees ha−1 killed) in non-thinned (median 16.1 trees ha−1) compared to the pre-commercially thinned (1.2 trees ha−1) stands. Percent mortality (trees ha−1 killed/trees ha−1 host available) was less in the pre-commercially thinned (median 0.5%) compared to the non-thinned (5.0%) plantation stands. In mixed conifer areas, fir engraver beetles (Scolytus ventralis LeConte) (FEN) caused greater density of white fir mortality in non-thinned (least square mean 44.5 trees ha−1) compared to the commercially thinned (23.8 trees ha−1) and salvage-thinned stands (16.4 trees ha−1). Percent mortality did not differ between commercially thinned (least square mean 12.6%), salvage-thinned (11.0%), and non-thinned (13.1%) mixed conifer stands. Thus, FEN-caused mortality occurred in direct proportion to the density of available white fir. In plantations, density of MPB-caused mortality was associated with treatment and tree density of all species. In mixed conifer areas, density of FEN-caused mortality had a positive association with white fir density and a curvilinear association with elevation.  相似文献   

8.
Species richness and species composition of ectomycorrhizal (EM) fungi were compared among rehabilitated mine sites and unmined jarrah forest in southwest Western Australia. Species richness, measured in 50 m × 50 m plots, was high. In the wetter, western region, mean species richness per plot in 16-year-old rehabilitated mine sites (63.7 ± 2.5, n = 3) was similar to that of unmined jarrah forest (63.6 ± 9.6, n = 9). In the drier, eastern region, species richness in 12-year-old rehabilitated mine sites (40.3 ± 2.1, n = 3) approached that of nearby forest (52.4 ± 9.3, n = 9). Species composition was analysed by detrended correspondence analysis. Rehabilitated sites of similar age clustered together in the analysis and species composition was closer to the native jarrah forest in the older rehabilitated plots. In unmined forest, species composition of fungal communities in the wetter, western region was different from communities in the drier, eastern region.  相似文献   

9.
Berries and mushrooms are increasingly appreciated products of Finnish forests. Therefore, there is a need to integrate them in silvicultural planning. Bilberry (Vaccinium myrtillus L.) is an economically important wild berry that is widely collected for household consumption and sale in North Karelia, Finland. In this study, bilberry yield models developed recently were included in a stand growth simulator and the joint production of timber and bilberry was optimized by maximizing soil expectation value (SEV) with 3% discounting rate, assuming that 75% of the bilberry yield is harvested. The effect of bilberry production on the optimal stand management increased with increasing bilberry price. With high bilberry prices (4–8 € kg−1) it was optimal to manage the mixed stand of Scots pine, Norway spruce and birch, and the pure stand of Norway spruce so as to promote bilberry production. In the Scots pine stand, where bilberry yields are higher, bilberry production affected optimal stand management already with a price of 2 € kg−1. Compared to timber production, joint production led to longer rotation lengths, higher thinning intensities, more frequent thinnings, and higher share of Scots pine in the mixed stand. The contribution of bilberries to the total SEV increased with increasing bilberry price and discounting rate. In the mixed stand and pine stand the SEV of bilberry production, calculated with 3% discounting rate, exceeded the SEV of timber production when bilberry price was 4 € kg−1.With 4% discounting rate this happened already with bilberry price of 2 € kg−1. It was concluded that forest management which promotes bilberry yields is the most profitable in pine stands where the potential bilberry yields are high.  相似文献   

10.
This study assessed the arbuscular mycorrhizal (AM) status of Boswellia papyrifera (frankincense-tree) dominated dry deciduous woodlands in relation to season, management and soil depth in Ethiopia. We studied 43 woody species in 52 plots in three areas. All woody species were colonized by AM fungi, with average root colonization being relatively low (16.6% – ranging from 0% to 95%). Mean spore abundance ranged from 8 to 69 spores 100 g−1 of dry soil. Glomus was the dominant genus in all study sites. Season had a strong effect on root colonization and spore abundance. While spore abundance was higher (P < 0.001) in the dry season in all three study sites, root colonization showed a more variable response. Root colonization was reduced in the dry season in the site that was least subject to stress, but increased in the dry season in the harshest sites. Management in the form of exclosures (that exclude grazing) had a positive effect on spore abundance in one of the two sites considered. Spore abundance did not significantly differ (P = 0.17) between the two soil depths. Our results show that in this arid region all trees are mycorrhizal. This has profound consequences for rehabilitation efforts of such dry deciduous woodlands: underground processes are vital for understanding species adaptation to pulsed resource availability and deserve increasing attention.  相似文献   

11.
The potential benefits of species mixture were investigated using pair-wise comparisons of four timber tree species in northern Viet Nam. Chukrasia tabularis, Canarium album, Michelia mediocris and Eucalyptus urophylla were grown in monocultures and in pair-wise mixtures. The trial was established as a randomized block design with each treatment replicated four times. Volume production gain or loss in mixtures was assessed by calculating a mixture index, which is defined as Relative Yield Total (RYT). At age 48 months, the trial indicated mixed performance with both positive and negative impacts of growing some species in mixtures compared to monocultures. The largest gain was shown in the mixture of a shade-intolerant species, Chukrasia with a more shade-tolerant species, Michelia (47% gain in relative yield), and Eucalyptus with Michelia (45% gain in relative yield) at the first 38 months. The other three mixtures tested, and which were not successful (i.e. had lower relative yields) at 38 months, was the mixture of all shade-intolerant species, including Chukrasia with Canarium, Canarium with Eucalyptus and Chukrasia with Eucalyptus. This suggests that species with different shade tolerances can form complementary pair-wise mixtures, but this changed significantly (P < 0.05) over the following 10 months. At age 48 months the RYT of Chukrasia with Michelia increased by 12%, those of Michelia with Eucalyptus decreased by 20% at 48 months compared to 38 months, suggesting that Eucalyptus should be thinned at around year 5 years. Likewise, the RYT of Michelia with Canarium declined significantly by 23% at 48 months. The RYT of other tested mixtures remained almost unchanged over time.  相似文献   

12.
水分胁迫下外生菌根对马尾松幼苗养分吸收的影响   总被引:2,自引:0,他引:2       下载免费PDF全文
利用接种褐环乳牛肝菌、鸡油菌、彩色豆马勃、土生空团菌的马尾松苗,在温室采用盆栽方法,研究水分胁迫下,不同菌根化苗对养分的吸收情况.结果表明:在水分胁迫下,外生菌根能显著提高马尾松幼苗对N、P、K的吸收.随胁迫加剧,菌根化苗N、P含量和磷酸酶活性均呈先增后降趋势,在中度胁迫时达最大,其中,接种褐环乳牛肝菌l的苗对N、P吸收效果最好,分别比对照增加56.65%和44.32%;接种彩色豆马勃和褐环乳牛肝菌1的马尾松苗的K含量随胁迫的加剧先增后降,在轻度胁迫时达最大,分别比对照增加221.99%和200.00%.N和K主要分布在叶中,而P在根、茎、叶中分布较均匀,菌根的形成有利于马尾松幼苗N、K的上行运输.在轻度和中度胁迫下,接种褐环乳牛肝菌1对提高马尾松苗N、P、K的吸收和含量效果最好,同时也促进了马毛松幼苗生长和抗旱能力的增强.  相似文献   

13.
Allometric equations have been developed for various different vegetation types but have rarely been validated in the field and never for dry tropical forest such as caatinga. In three areas of semi-arid Brazil, with regenerating caatinga vegetation, we measured and weighed twelve hundred individuals of four tree species and used the data to validate equations previously determined in mature caatinga. They and several other equations developed for tropical vegetations overestimate the biomass (B) of trees from the regeneration areas by more than 20%, possibly because these trees have reduced crowns, with lower branch masses. We then determined new allometric equations for them, validating equations for one site against data of the others and pooling the data if they were cross-validated. The best equations were power ones, based on diameter at breast height (D), with little improvement by including height, crown area and/or wood density (Caesalpinia pyramidalis, B = 0.3129D1.8838; Croton sonderianus, B = 0.4171D1.5601; Mimosa ophthalmocentra, B = 0.4369D1.8493; and Mimosa tenuiflora, B = 0.3344D1.9648 and 0.4138D1.7718).  相似文献   

14.
This study was designed to answer questions about the patterns of understory diversity in managed forests of southern New England, and the factors that appear associated with those patterns. At the landscape-level, we used plot data to answer questions regarding the spatial distribution of forest understory plant species. Data from a combination of fixed area (understory vegetation) and variable radius (overstory trees) plot methods are combined with site variables for the analysis. Univariate and multivariate statistical methods are used to test for understory diversity relationships with overstory cover types and topography separately, and in combination. Analyses also test for relationships between specific understory species and cover types. In general the understory flora is dominated by four common clonal species that occur across the range of forest cover types: wild sarsaparilla (Aralia nudicaulis L.), Canada mayflower (Maianthemum candense Desf.), star flower (Trientalis borealis Raf.), and partridgeberry (Mitchella repens L.). Results also show that over story composition and structure can be used to assess understory species richness. Species richness follows a general trend among cover types of: hardwood ≥ regenerating forest, hardwood–pine, and pine ≥ mixed ≥ hardwood–hemlock > hemlock. Eastern hemlock (Tsuga canadensis L. Carriere) and mountain laurel (Kalmia latifolia L.) (which decreased in dominance from ridge to valley) both showed negative trends with understory species richness. Topographic position also appears associated with understory floristic patterns (particularly for the hardwood cover type), both in terms of species richness and compositional diversity which both increased from ridge, to midslope, to valley. However, overstory composition (covertype) appears to have a higher order influence on vegetation and mediates the role of topography. The results from this study provide foresters with a better understanding for maintaining floristic diversity and composition of the understory in managed forests.  相似文献   

15.
Cedrela odorata (Spanish cedar) is a neotropical broadleaf tree species that is in high demand for furniture and interior fittings. In 1998, seed collections were made from Spanish cedar in the Yucatan Peninsula, Mexico, for genetic conservation and tree improvement projects. Progeny from these collections were established in genetic trials at Bacalar, Noh Bec, and Zoh Laguna in the Yucatan. Survival at 2 years was 73.5% at Bacalar, 72% at Noh Bec, but only 20% after 6 months for several replicates at Zoh Laguna. Mean 2-year height, number of years of Hypsipyla attack on apical shoots (over 2 or 3 years) and total branching over 2 years, were 1.3 m, 0.04 years, and 2.5 branches at Bacalar, and 1.9 m, 0.35 years, and 1.6 branches at Noh Bec. Selection of the three best provenances (Escárcega, Bacalar, and Calakmul) would result in an estimated cross-site gain of 8.6% in 2-year height. Within-provenance, cross-site heritabilities for 2-year height, shoot borer attack, and branching were 0.1 ± 0.02, 0.0 ± 0.02, and 0.0 ± 0.02, respectively. Single-site heritabilities for height at 2 years, shoot borer attack, and branching were 0.09 ± 0.05, 0.02 ± 0.04, and 0.09 ± 0.05 at Bacalar and 0.16 ± 0.07, 0.0 ± 0.06, and 0.0 ± 0.07 at Noh Bec. Given the known advantage of rapid growth to avoid Hypsipyla damage over the long term and the stable performance of provenances across sites for growth traits, we recommend provenance selection over multiple trials to reduce the risk of serious damage by the insect. Good provenances and other suitable seed sources, as well as proper site selection and silvicultural practices, are important tools for increasing yields from plantations of C. odorata.  相似文献   

16.
We tested the effects of species and spacing of nurse trees on the growth of Hopea odorata, a dipterocarp tree indigenous to Southeast Asia, in a two-storied forest management system in northeast Thailand. Eucalyptus camaldulensis, Acacia auriculiformis, and Senna siamea were planted as nurse trees in 1987 at spacings of 4 m × 8 m, 2 m × 8 m, 4 m × 4 m, and 2 m × 4 m in the Sakaerat Silvicultural Research Station of the Royal Forest Department, Thailand. Seedlings of H. odorata were planted in the nurse tree stands at a uniform spacing of 4 m × 4 m and in control plots (no nurse trees) in 1990. Stem numbers of some nurse trees were thinned by half in 1994. The stem diameter and height of all trees were measured annually until 1995 and again in 2007. The mean annual increment (MAI) in volume was estimated as 8.2–10.1 m3 ha−1 year−1 for E. camaldulensis and 0.9–1.2 m3 ha−1 year−1 for S. siamea, smaller than reported elsewhere. This suggests that the site properties were not suitable for them. The MAI of A. auriculiformis was 7.9–9.8 m3 ha−1 year−1, within the reported range. Survival rates of H. odorata in the S. siamea stands and the control plots decreased rapidly during the first 2 years but then stayed constant from 1992. In contrast, survival rates of H. odorata in the E. camaldulensis and A. auriculiformis stands were initially high (>70%), but then decreased after 1995. Stem diameter, tree height, and stand basal area of H. odorata were large in both the S. siamea stands and the control plots from then. The growth of H. odorata was largest in the 2 m × 8 m S. siamea stands. In contrast, it was restricted in the E. camaldulensis and A. auriculiformis stands owing to strong shading by their canopies. Thinning by 50% tended to facilitate the growth of H. odorata temporarily in the E. camaldulensis and A. auriculiformis stands. The stand basal areas of nurse trees and of H. odorata showed a trade-off. These results suggest that the growth of H. odorata was maximized in the S. siamea stands. We assume, however, that the growth of H. odorata could be improved even in the E. camaldulensis and A. auriculiformis stands by frequent or heavy thinning.  相似文献   

17.
In regions of Australia of low–medium rainfall (500–800 mm/year), there is growing community and land-owner support for re-planting trees to achieve multiple environmental objectives, particularly amelioration of soil salinity. Sequestration of carbon by newly established trees is not only another important environmental benefit, but also a potential commercial benefit. To obtain estimates of carbon sequestered by species of commercial potential in such regions, we calibrated the carbon (C) accounting model FullCAM to Eucalyptus cladocalyx and Corymbia maculata plantations. This was achieved by harvesting trees of a range in sizes to determine the allometric relationships that most accurately predict biomass and stem density from measures of stem diameter. Predictions of stem diameter were obtained from a forest growth model (3-PG) previously calibrated for these two species. By applying these predictions of changes in stem diameter as the stand matures in our allometric relationships, we estimated changes in partitioning of biomass (between stem, branches, bark, foliage and roots) and stem wood density as the stand matures under scenarios of 500, 600 and 750 mm mean annual rainfall. We found that for both species, regardless of annual rainfall, throughout the rotation 37–50% of carbon sequestered in the total tree biomass was in the stem, 18–27% in both branches and roots, and the remainder in foliage or bark. However, rate of accumulation of carbon was dependent on annual rainfall, with average annual rate of sequestration of carbon in tree biomass and litter during the first rotation of E. cladocalyx (or C. maculata) increasing from 3.68 (or 4.17) to 4.72 (or 4.86) Mg C ha−1 yr−1 as annual rainfall increased from about 500 to 750 mm. Although it was predicted that decomposition negated any accumulation of debris between successive rotations, carbon was predicted to accumulate in sawlog products, given that assumed rates of product decomposition were slightly less than their rate of accumulation. This resulted in a slight increase (<8 Mg C ha−1) in predicted total sequestration of carbon between successive rotations.  相似文献   

18.
We assessed shrew (soricids) response to coarse woody debris (CWD) manipulations in managed upland loblolly pine (Pinus taeda) stands in the upper Coastal Plain of South Carolina over multiple years and seasons. Using a completely randomized block design, we assigned one of the following treatments to 12, 9.3-ha plots: removal (n = 3; all CWD ≥ 10 cm in diameter and ≥60 cm long removed), downed (n = 3; 5-fold increase in volume of down CWD), snag (n = 3; 12-fold increase in standing dead CWD), and control (n = 3; unmanipulated). Therein, we sampled shrews during winter, spring, and summer seasons, 2003–2005, using drift-fence pitfall arrays. During 1680 drift-fence plot nights we captured 253 Blarina carolinensis, 154 Sorex longirostris, and 51 Cryptotis parva. Blarina carolinensis capture rate was greater in control than in snag treatments. Sorex longirostris capture rate was lower in removal than downed and control plots in 2005 whereas C. parva capture rate did not differ among treatments. Overall, the CWD input treatments failed to elicit the positive soricid response we had expected. Lack of a positive response by soricid populations to our downed treatments may be attributable to the early CWD decay stage within these plots or an indication that within fire-adapted pine-dominated systems of the Southeast, reliance on CWD is less than in other forest types.  相似文献   

19.
Diversionary winter feeding of browsing ungulates is an increasingly common management practice although evidence for its efficacy to reduce excessive browsing remains ambiguous. Moreover, comparative estimates on changes in browsing pressure (proportion of available shoots browsed) following long-term winter feeding are currently lacking. We quantified spatiotemporal changes in browsing pressure of moose (Alces alces L.) on commercial and non-commercial tree species around 30 feeding stations after 15–20 years of winter feeding. The results were compared with browsing pressure indices recorded at the same feeding stations 10 years previously. We expected leader stem and lateral twig browsing to have increased over time at a fine spatial scale (≤200 m from feeding station) and to have increased in spatial extent away from feeding stations. Furthermore, we tested whether moose browsing patterns conformed to central-place foraging theory. Despite 2–3-fold higher faecal pellet group numbers in the vicinity of feeding stations, leader stem browsing increased only on the commercially valuable Norway spruce (Picea abies (L.) Karst), a species normally avoided by moose. Lateral twig browsing largely decreased within 200 m of feeding stations while at a broader scale (≤1 km from feeding stations), leader stem browsing was high on most tree species (ca. 60% of available stems browsed) as expected, Peak browsing on lateral twigs of Scots pine (Pinus sylvestris L.) occurred further from feeding stations after 15–20 years of winter feeding than 10 years earlier. Browsing pressure on active feeding stations (n = 18) was comparable to that on inactive feeding stations (n = 12), suggesting the occurrence of rebrowsing. The ability of central-place foraging theory to explain fine-scale browsing patterns around feeding stations decreased as diversionary feeding continued over time. Long-term diversionary winter feeding of moose in unproductive boreal forests has serious implications for the intensity of fine-scale browsing pressure, which may lead to resource depletion close to feeding stations followed by high browsing pressure at distances further away from feeding stations. Our study emphasizes the importance of considering the longevity of a winter feeding programme at its inception.  相似文献   

20.
Greenhouse gas emissions from managed peatlands are annually reported to the UNFCCC. For the estimation of greenhouse gas (GHG) balances on a country-wide basis, it is necessary to know how soil–atmosphere fluxes are associated with variables that are available for spatial upscaling. We measured momentary soil–atmosphere CO2 (heterotrophic and total soil respiration), CH4 and N2O fluxes at 68 forestry-drained peatland sites in Finland over two growing seasons. We estimated annual CO2 effluxes for the sites using site-specific temperature regressions and simulations in half-hourly time steps. Annual CH4 and N2O fluxes were interpolated from the measurements. We then tested how well climate and site variables derived from forest inventory results and weather statistics could be used to explain between-site variation in the annual fluxes. The estimated annual CO2 effluxes ranged from 1165 to 4437 g m−2 year−1 (total soil respiration) and from 534 to 2455 g m−2 year−1 (heterotrophic soil respiration). Means of 95% confidence intervals were ±12% of total and ±22% of heterotrophic soil respiration. Estimated annual CO2 efflux was strongly correlated with soil respiration at the reference temperature (10 °C) and with summer mean air temperature. Temperature sensitivity had little effect on the estimated annual fluxes. Models with tree stand stem volume, site type and summer mean air temperature as independent variables explained 56% of total and 57% of heterotrophic annual CO2 effluxes. Adding summer mean water table depth to the models raised the explanatory power to 66% and 64% respectively. Most of the sites were small CH4 sinks and N2O sources. The interpolated annual CH4 flux (range: −0.97 to 12.50 g m−2 year−1) was best explained by summer mean water table depth (r2 = 64%) and rather weakly by tree stand stem volume (r2 = 22%) and mire vegetation cover (r2 = 15%). N2O flux (range: −0.03 to 0.92 g m−2 year−1) was best explained by peat CN ratio (r2 = 35%). Site type explained 13% of annual N2O flux. We suggest that water table depth should be measured in national land-use inventories for improving the estimation of country-level GHG fluxes for peatlands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号