首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
The growth, aboveground biomass production and nutrient accumulation in black alder (Alnus glutinosa (L.) Gaertn.), silver birch (Betula pendula Roth.) and Scots pine (Pinus sylvestris L.) plantations during 7 years after planting were investigated on reclaimed oil shale mining areas in Northeast Estonia with the aim to assess the suitability of the studied species for the reclamation of post-mining areas. The present study revealed changes in soil properties with increasing stand age. Soil pH and P concentration decreased and soil N concentration increased with stand age. The largest height and diameter of trees, aboveground biomass and current annual production occurred in the black alder stands. In the 7-year-old stands the aboveground biomass of black alder (2100 trees ha−1) was 2563 kg ha−1, in silver birch (1017 trees ha−1) and Scots pine (3042 trees ha−1) stands respective figures were 161 and 1899 kg ha−1. The largest amounts of N, P, K accumulated in the aboveground part were in black alder stands. In the 7th year, the amount of N accumulated in the aboveground biomass of black alder stand was 36.1 kg ha−1, the amounts of P and K were 3.0 and 8.8 kg ha−1, respectively. The larger amounts of nutrients in black alder plantations are related to the larger biomass of stands. The studied species used N and P with different efficiency for the production of a unit of biomass. Black alder and silver birch needed more N and P for biomass production, and Scots pine used nutrients most efficiently. The present study showed that during 7 years after planting, the survival and productivity of black alder were high. Therefore black alder is a promising tree species for the reclamation of oil shale post-mining areas.  相似文献   

2.
Considerable research efforts have been devoted to determining what forest management practices most affect stream ecosystems, and how those impacts might be mitigated. Recent studies have stressed the relevance of litter decomposition to assess the conditions of headwater streams affected by riparian and upland forest harvest. Here we specifically examined whether litter decomposition can detect ecological effects of clearcutting to stream edges on headwater streams eight years after logging and if large (30 m) and narrow (10 m) riparian reserves (8-year post-harvest), and selection logging at 50% removal of basal area of riparian trees (1-year post-harvest), are effective protection measures for streams. We measured decomposition rates of red alder (Alnus rubra) leaf litter in sixteen stream reaches, including reference reaches in a 70-year-old forest. We further examined assemblages of two main litter consumer groups, shredder invertebrates in riffles and aquatic hyphomycete fungi developing on decaying alder leaves. Alder decay rate was significantly lower in clearcut reaches than in reference reaches, and we found no evidence that any alternative riparian management practices examined in this study were able to mitigate against such an effect of logging. In unlogged reaches, rapid litter decomposition (0.0050–0.0118 day−1) was associated with high density and diversity of shredders (up to ten taxa). Slower litter decomposition in wide and narrow reserve reaches (0.0019–0.0054 day−1) and clearcut reaches (0.0024–0.0054 day−1) was attributed to lower density and richness of shredders. By contrast, the low decay rate in recently established thinned reaches (0.0031–0.0049 day−1) was not associated with a numerical response of shredders. Smothering of submerged leaves by sediments may have caused the reduction in alder decay rate in thinned reaches. Across all forest treatments fungal biomass or diversity remained fairly similar. Our findings suggest that stream ecosystems are extremely sensitive to small changes in riparian and upland forest cover. We propose that litter decomposition as a key ecosystem function in streams could be incorporated into further efforts to evaluate and improve forestry best management practices.  相似文献   

3.
We examined the effects of competition from red alder (Alnus rubra Bong.) and paper birch (Betula papyrifera Marsh.) on the growth of western redcedar (Thuja plicata Donn), western hemlock (Tsuga heterophylla Sarg.), and Douglas-fir (Pseudotsuga menziesii Franco) at a site near Maple Ridge, British Columbia, Canada. At this site, the three coniferous species and two broadleaf species had been planted in 1999 as part of a long-term experiment examining effects of broadleaf density on conifer growth. Red alder and paper birch were planted alone and as a 50:50 mixture at four densities (0, 277, 556, and 1150 stems ha−1).  相似文献   

4.
Litter quality and environmental effects on Scots pine (Pinus sylvestris L.) fine woody debris (FWD) decomposition were examined in three forestry-drained peatlands representing different site types along a climatic gradient from the north boreal (Northern Finland) to south (Southern Finland) and hemiboreal (Central Estonia) conditions. Decomposition (percent mass loss) of FWD with diameter ≤10 mm (twigs) and FWD with diameter >10 mm (branches) was measured using the litter bag method over 1–4-year periods. Overall, decomposition rates increased from north to south, the rate constants (k values) varying from 0.128 to 0.188 year−1 and from 0.066 to 0.127 year−1 for twigs and branches, respectively. On average, twigs had lost 34%, 19% and 19%, and branches 25%, 17% and 11% of their initial mass after 2 years of decomposition at the hemiboreal, south boreal and north boreal sites, respectively. After 4 years at the south boreal site the values were 48% for twigs and 42% for branches. Based on earlier studies, we suggest that the decomposition rates that we determined may be used for estimating Scots pine FWD decomposition in the boreal zone, also in upland forests. Explanatory models accounted for 50.4% and 71.2% of the total variation in FWD decomposition rates when the first two and all years were considered, respectively. The variables most related to FWD decomposition included the initial ash, water extractives and Klason lignin content of litter, and cumulative site precipitation minus potential evapotranspiration. Simulations of inputs and decomposition of Scots pine FWD and needle litter in south boreal conditions over a 60-year period showed that 72 g m−2 of organic matter from FWD vs. 365 g m−2 from needles accumulated in the forest floor. The annual inputs varied from 5.7 to 15.6 g m−2 and from 92 to 152 g m−2 for FWD and needles, respectively. Each thinning caused an increase in FWD inputs, up to 510 g m−2, while the needle inputs did not change dramatically. Because the annual FWD inputs were lowered following the thinnings, the overall effect of thinnings on C accumulation from FWD was slightly negative. The contribution of FWD to soil C accumulation, relative to needle litter, seems to be rather minor in boreal Scots pine forests.  相似文献   

5.
Although much is known about drivers of productivity in Douglas-fir and red alder stands, less is known about how productivity may relate to stand transpiration and water use efficiency. We took advantage of a 15-year-old experiment involving Douglas-fir (Pseudotsuga menziesii) and red alder (Alnus rubra) in the western Cascade Range of western Oregon to test the following hypotheses: (a) more productive stands transpire more water, (b) the relationship between productivity and transpiration differs between species, and (c) the relationship between productivity and transpiration differs between sites varying in soil moisture and fertility. Furthermore, the experimental design included alder, a facultative nitrogen-fixing species, which could also affect fertility. Fixed area plots (20 × 20 m) were planted as monocultures of each species or in mixtures at a common density (1100 trees ha−1) in a randomized-block design. Transpiration of Douglas-fir and red alder was measured using heat dissipation sensors installed in eight trees per plot and scaled to the plot level based on sapwood basal area for each species. Although up to 53% of the variability in tree transpiration was explained by basal area, irrespective of species or site conditions, the two stands with the highest biomass and sapwood basal area did not transpire the most. Instead of more productive stands transpiring more water, the greatest variability in both productivity and transpiration was determined by site conditions and to a lesser degree, species composition. For example, 70% of the variation in tree biomass increment (TBI) was determined by leaf area index, which was much higher at the site with higher fertility and soil moisture (p < 0.05). Despite marked phenological and physiological differences, Douglas-fir and red alder performed similarly. Only 19% of annual water use of Douglas-fir occurred between October and March when alder was leafless. Also, there was no evidence of a fertilization effect of the nitrogen-fixing red alder on the Douglas-fir: the nitrogen concentration and N-isotopic ratio of Douglas-fir needles did not differ whether trees were grown in monoculture or in mixtures with red alder. We conclude that lower soil fertility and contrasting microclimate at one site relative to the other suppressed NPP while maintaining higher transpiration, thus reducing water use efficiency.  相似文献   

6.
This study was conducted to determine carbon (C) dynamics following forest tending works (FTW) which are one of the most important forest management activities conducted by Korean forest police and managers. We measured organic C storage (above- and below-ground biomass C, forest floor C, and soil C at 50 cm depth), soil environmental factors (soil CO2 efflux, soil temperature, soil water content, soil pH, and soil organic C concentration), and organic C input and output (litterfall and litter decomposition rates) for one year in FTW and non-FTW (control) stands of approximately 40-year-old red pine (Pinus densiflora S. et Z.) forests in the Hwangmaesan Soopkakkugi model forest in Sancheonggun, Gyeongsangnam-do, Korea. This forest was thinned in 2005 as a representative FTW practice. The total C stored in tree biomass was significantly lower (P < 0.05) in the FTW stand (40.17 Mg C ha−1) than in the control stand (64.52 Mg C ha−1). However, C storage of forest floor and soil layers measured at four different depths was not changed by FTW, except for that at the surface soil depth (0–10 cm). The organic C input due to litterfall and output due to needle litter decomposition were both significantly lower in the FTW stand than in the control stand (2.02 Mg C ha−1 year−1 vs. 2.80 Mg C ha−1 year−1 and 308 g C kg−1 year−1 vs. 364 g C kg−1 year−1, respectively, both P < 0.05). Soil environmental factors were significantly affected (P < 0.05) by FTW, except for soil CO2 efflux rates and organic C concentration at soil depth of 0–20 cm. The mean annual soil CO2 efflux rates were the same in the FTW (0.24 g CO2 m−2 h−1) and control (0.24 g CO2 m−2 h−1) stands despite monthly variations of soil CO2 efflux over the one-year study period. The mean soil organic C concentration at a soil depth of 0–20 cm was lower in the FTW stand (81.3 g kg−1) than in the control stand (86.4 g kg−1) but the difference was not significant (P > 0.05). In contrast, the mean soil temperature was significantly higher, the mean soil water content was significantly lower, and the soil pH was significantly higher in the FTW stand than in the control stand (10.34 °C vs. 8.98 °C, 48.2% vs. 56.4%, and pH 4.83 vs. pH 4.60, respectively, all P < 0.05). These results indicated that FTW can influence tree biomass C dynamics, organic C input and output, and soil environmental factors such as soil temperature, soil water content and soil pH, while soil C dynamics such as soil CO2 efflux rates and soil organic C concentration were little affected by FTW in a red pine stand.  相似文献   

7.
The effect of land use type on the dynamics and annual rate of net nitrogen mineralization (NNM) in a naturally generated silver birch stand and in a grassland, both on abandoned agricultural land, was assessed in situ in the upper 0–20 cm soil layer using the method of buried polyethylene bags. Annual NNM rate in the birch stand (156 kg N ha−1 year−1) was higher than in the grassland (102 kg N ha−1 year−1); in both cases NNM covered a major part of the plants annual nitrogen demand. The rate of NNM in the upper 0–10 cm soil layer in the birch stand (99 kg N ha−1 year−1) exceeded the respective rate of NNM in the grassland (51 kg N ha−1 year−1) roughly two times. In the grassland the rates of NNM in the 0–10 and 10–20 cm layers were equal; in the birch stand NNM in the 0–10 cm layer was 1.7 times higher than in deeper 10–20 cm layer. The intensity of daily NNM in the upper 0–10 cm soil layer in the birch stand was the highest in June and in the grassland in May, 776 and 528 mg kg−1 N day−1, respectively. In our study no significant correlation was found between NNM and the environmental factors monthly mean soil temperature, soil moisture content and pH.  相似文献   

8.
We monitored the decomposition of mixed leaf litter (Quercus spp., Carya spp., and Pinusechinata) in a Missouri Ozark forest eight years after experimental harvest. Leaf litter mass losses and changes in carbon chemistry (extractive, acid soluble, and acid insoluble fractions) were measured over 32 months in field incubations to determine the effects of litter composition and stand manipulation on decomposition and nitrogen (N) concentration in the remaining litter. The decay (k) rate over this period ranged between 0.39 (±0.010) and 0.51 (±0.002) year−1 for oak, oak–hickory, and oak–pine litter. There were significant main effects of stand manipulation (p = 0.03) and litter type (p < 0.01) on decay. Mass losses of oak and oak–hickory litter were 7% (p = 0.02) and 4% (p = 0.04) higher on harvested stands than controls, respectively. Mass loss of oak–hickory litter was 3% faster than oak–pine (p = 0.03) and 6% faster than oak (p = 0.02) litter on control stands, whereas the oak–hickory litter mass loss was 5% higher than oak litter on harvested stands (p = 0.01). The decay (k) rate had a linear relationship with initial leaf litter nitrogen content and lignin-to-N ratio. The nitrogen concentration in remaining litter had a nonlinear relationship to cumulative mass loss suggesting an exogenous source of N. In summary, this study demonstrated significant effects of timber harvest and litter mixtures on decomposition and N dynamics in a managed Missouri Ozark forest.  相似文献   

9.
Water temperature has profound effects on stream ecosystems. We studied effects of clear-fell logging Pinus radiata plantations on mid-summer water temperatures and recovery times in streams with 2–12 m wide channels. Post-logging increases were 2–3.8 °C for summer daily means and 4–7.3 °C for summer daily maxima. Rates of recovery of thermal regimes after logging were strongly negatively correlated with stream size, as indexed by catchment area, channel width or baseflow (r2 = 0.80–0.93). Summer daily mean and maximum temperatures declined during the riparian vegetation regrowth phase by 0.18 and 0.47 °C year−1, respectively, for the largest stream and 1.4 and 1.9 °C year−1 in the smallest stream. Thermal regimes were restored in small streams (2–4 m wide channels) about 6–8 years after clearfelling. In medium-sized streams (6–12 m wide channels), we predict this recovery will take 12–16 years.  相似文献   

10.
We estimated water use by the two main oak species of the Lower Galilee region of Israel—Tabor (Quercus ithaburensis) and Kermes (Quercus calliprinos)—to develop management options for climate-change scenarios. The trees were studied in their typical phytosociological associations on different bedrock formations at two sites with the same climatic conditions. Using the heat-pulse method, sap flow velocity was measured in eight trunks (trees) of each species during a number of periods in 2001, 2002 and 2003. Hourly sap flux was integrated to daily transpiration per tree and up-scaled to transpiration at the forest canopy level. The annual courses of daytime transpiration rate were estimated using fitted functions, and annual totals were calculated. Sap flow velocity was higher in Tabor than in Kermes oak, and it was highest in the youngest xylem, declining with depth into the older xylem. Average daytime transpiration rate was 67.9 ± 4.9 l tree−1 d−1, or 0.95 ± 0.07 mm d−1, for Tabor oak, and 22.0 ± 1.7 l tree−1d−1, or 0.73 ± 0.05 mm d−1, for Kermes oak. Differences between the two oak species in their forest canopy transpiration rates occurred mainly between the end of April and the beginning of October. Annual daytime transpiration was estimated to be 244 mm year−1 for Tabor oak and 213 mm year−1 for Kermes oak. Adding nocturnal water fluxes, estimated to be 20% of the daytime transpiration, resulted in total annual transpiration of 293 and 256 mm year−1 by Tabor and Kermes oaks, respectively. These amounts constituted 51% and 44%, respectively, of the 578 mm year−1 average annual rainfall in the region. The two species differed in their root morphology. Tabor oak roots did not penetrate the bedrock but were concentrated along the soil–rock interface within soil pockets. In contrast, the root system of Kermes oak grew deeper via fissures and crevices in the bedrock system and achieved direct contact with the deeper bedrock layers. Despite differences between the two sites in soil–bedrock lithological properties, and differences in the woody structure, annual water use by the two forest types was fairly similar. Because stocking density of the Tabor oak forests is strongly related to bedrock characteristics, thinning as a management tool will not change partitioning of the rainfall between different soil pockets, and hence soil water availability to the trees. In contrast, thinning of Kermes oak forests is expected to raise water availability to the remaining trees.  相似文献   

11.
Black cottonwood (Populus trichocarpa Torr. and Gray) is a deciduous tree species that extends from Alaska through coastal regions of western Canada into the northwestern United States and as far south as Baja California. We examined the influence of black cottonwood on soil fertility within a forest dominated by Douglas-fir [Pseudotsuga menziessi (Mirb.) Franco], western hemlock [Tsuga heterophylla (Raf.) Sarg], and western red cedar (Thuja plicata Donn ex. D. Don.). Six circular 0.008 ha plots with a single cottonwood tree in the center of conifers were paired with six conifer plots (of the same size) without cottonwood. Litterfall, litter decomposition, properties of forest floor and mineral soil, and N mineralization were compared between plot types. Cottonwood litter had higher concentrations of almost all elements relative to conifer litter. Mass loss did not differ between cottonwood and fir/hemlock litter on cottonwood sites. Twice the amount of mull-like humus form (vermimull and mullmoder, 56%) was found in cottonwood plots compared to 28% in conifer plots. Higher pH (4.4) was found in the forest floor under cottonwood compared to conifer (3.9). Total N concentration (3.33 g/kg) and base saturation (68%) were higher in the mineral soil under cottonwood compared to conifers (2.98 g/kg total N and 50% base saturation). Net ammonification and net mineralization were both lower under cottonwood. These results suggest a variable effect of cottonwood on soil fertility within coastal western hemlock forests with some soil variables changed in a favourable direction and some in an unfavourable direction.  相似文献   

12.
The Warner Mountains of northeastern California on the Modoc National Forest experienced a high incidence of tree mortality (2001–2007) that was associated with drought and bark beetle (Coleoptera: Curculionidae, Scolytinae) attack. Various silvicultural thinning treatments were implemented prior to this period of tree mortality to reduce stand density and increase residual tree growth and vigor. Our study: (1) compared bark beetle-caused conifer mortality in forested areas thinned from 1985 to 1998 to similar, non-thinned areas and (2) identified site, stand and individual tree characteristics associated with conifer mortality. We sampled ponderosa pine (Pinus ponderosa var ponderosa Dougl. ex Laws.) and Jeffrey pine (Pinus jeffreyi Grev. and Balf.) trees in pre-commercially thinned and non-thinned plantations and ponderosa pine and white fir (Abies concolor var lowiana Gordon) in mixed conifer forests that were commercially thinned, salvage-thinned, and non-thinned. Clusters of five plots (1/50th ha) and four transects (20.1 × 100.6 m) were sampled to estimate stand, site and tree mortality characteristics. A total of 20 pre-commercially thinned and 13 non-thinned plantation plot clusters as well as 20 commercially thinned, 20 salvage-thinned and 20 non-thinned mixed conifer plot clusters were established. Plantation and mixed conifer data were analyzed separately. In ponderosa pine plantations, mountain pine beetle (Dendroctonus ponderosae Hopkins) (MPB) caused greater density of mortality (trees ha−1 killed) in non-thinned (median 16.1 trees ha−1) compared to the pre-commercially thinned (1.2 trees ha−1) stands. Percent mortality (trees ha−1 killed/trees ha−1 host available) was less in the pre-commercially thinned (median 0.5%) compared to the non-thinned (5.0%) plantation stands. In mixed conifer areas, fir engraver beetles (Scolytus ventralis LeConte) (FEN) caused greater density of white fir mortality in non-thinned (least square mean 44.5 trees ha−1) compared to the commercially thinned (23.8 trees ha−1) and salvage-thinned stands (16.4 trees ha−1). Percent mortality did not differ between commercially thinned (least square mean 12.6%), salvage-thinned (11.0%), and non-thinned (13.1%) mixed conifer stands. Thus, FEN-caused mortality occurred in direct proportion to the density of available white fir. In plantations, density of MPB-caused mortality was associated with treatment and tree density of all species. In mixed conifer areas, density of FEN-caused mortality had a positive association with white fir density and a curvilinear association with elevation.  相似文献   

13.
Midcanopy layers are essential structures in “old-growth” forests on the Olympic Peninsula. Little is known about which stand and tree factors influence the ability of midcanopy trees in young-growth forests to respond to release; however, this information is important to managers interested in accelerating development of late-successional structural characteristics. We examined basal area growth response of midcanopy trees following variable-density thinning in an effort to determine the effect of thinning and local environment on the release of western hemlock (Tsuga heterophylla (Raf.) Sarg.) and western redcedar (Thuja plicata ex. D. Don) on the Olympic Peninsula in western Washington. Release was measured as the difference between average annual basal area growth over the 5-year prior to thinning and the 3-to-6 year period following thinning. Results indicate that while growth rates were similar prior to thinning (5.4 cm2 year−1in both thinned and unthinned patches) midcanopy trees retained in a uniformly thinned matrix grew significantly more (8.0 cm2 year−1) than those in unthinned patches (5.4 cm2 year−1) for western hemlock and for western redcedar. Crown fullness and crown crowding affected the release of western hemlock in the thinned matrix. Initial tree size, relative age, local crowding and measures of crown size and vigor affected the release of western redcedar in the thinned matrix. Our results indicate that midcanopy western hemlock and western redcedar retain the ability to respond rapidly with increased growth when overstory competition is reduced and the magnitude of response is related to neighborhood variables (intracohort competition, overstory competition, and tree vigor), thus suggest that variable-density thinning can be an effective tool to create variability in the growth of midcanopy trees in young-growth stands. We expect that this rapid response will produce even greater variability over time.  相似文献   

14.
The main objectives were to study the effect of gap size and canopy openness on the natural regeneration dynamics considering the parameters of sapling growth, recruitment, mortality, density, species composition and above-ground biomass accumulation. The study was carried out in 32 artificial gaps with sizes varying from 100 to 1200 m2 and canopy openness from 10 to 45%, from the second to the twelfth year after gap creation. The gap size was measured using the vertical projection of the tree crowns on the ground (Brokaw's definition), and the canopy openness measurement by hemispherical photography. In the first five years, mean sapling growth (0.54 cm year−1), mortality (3.9% year−1) and AGB (26.2 Mg ha−1 or 8.7 Mg ha−1 year−1) were significantly higher in the gaps than in the forest understorey (0.17 cm year−1, 1.5% year−1 and −0.59 Mg ha−1 year−1 respectively) and positively correlated with gap size and canopy openness. In the same period, recruitment was also significantly higher in the gaps (5.8% year−1) than in the forest understorey (0.4% year−1) but decreased with gap size and negatively correlated with canopy openness. In the first five years, the relative density of pioneer species was higher in the gaps but not significantly correlated with gap size or canopy openness. AGB increased linearly since canopy opening, and twelve years after gap creation it was still higher in larger (121.2 Mg ha−1 or 10.1 Mg ha−1 year−1) rather than smaller (62.5 ha−1 or 5.2 ha−1 year−1) gaps. Twelve years after gap creation there were no significant differences in the parameters of sapling growth, recruitment, and mortality which could be attributed to the original gap size and canopy openness.  相似文献   

15.
Greenhouse gas emissions from managed peatlands are annually reported to the UNFCCC. For the estimation of greenhouse gas (GHG) balances on a country-wide basis, it is necessary to know how soil–atmosphere fluxes are associated with variables that are available for spatial upscaling. We measured momentary soil–atmosphere CO2 (heterotrophic and total soil respiration), CH4 and N2O fluxes at 68 forestry-drained peatland sites in Finland over two growing seasons. We estimated annual CO2 effluxes for the sites using site-specific temperature regressions and simulations in half-hourly time steps. Annual CH4 and N2O fluxes were interpolated from the measurements. We then tested how well climate and site variables derived from forest inventory results and weather statistics could be used to explain between-site variation in the annual fluxes. The estimated annual CO2 effluxes ranged from 1165 to 4437 g m−2 year−1 (total soil respiration) and from 534 to 2455 g m−2 year−1 (heterotrophic soil respiration). Means of 95% confidence intervals were ±12% of total and ±22% of heterotrophic soil respiration. Estimated annual CO2 efflux was strongly correlated with soil respiration at the reference temperature (10 °C) and with summer mean air temperature. Temperature sensitivity had little effect on the estimated annual fluxes. Models with tree stand stem volume, site type and summer mean air temperature as independent variables explained 56% of total and 57% of heterotrophic annual CO2 effluxes. Adding summer mean water table depth to the models raised the explanatory power to 66% and 64% respectively. Most of the sites were small CH4 sinks and N2O sources. The interpolated annual CH4 flux (range: −0.97 to 12.50 g m−2 year−1) was best explained by summer mean water table depth (r2 = 64%) and rather weakly by tree stand stem volume (r2 = 22%) and mire vegetation cover (r2 = 15%). N2O flux (range: −0.03 to 0.92 g m−2 year−1) was best explained by peat CN ratio (r2 = 35%). Site type explained 13% of annual N2O flux. We suggest that water table depth should be measured in national land-use inventories for improving the estimation of country-level GHG fluxes for peatlands.  相似文献   

16.
17.
We used pine (Pinus elliottii Engelm.) forests located along a short urban–rural gradient in Nanchang, China to study nitrogen (N) cycling responses to urbanization. Annual average rates of nitrification and net N-mineralization in soils (0–15 cm depth) measured from February 2007 to January 2009 increased from rural (8 and 37 kg ha−1 year−1) to suburban (69 and 79 kg ha−1 year−1) and urban sites (114 and 116 kg ha−1 year−1) (P < 0.05). Soil nitrate and mineral N pools exhibited the same spatial patterns in response to urban location. In comparison to rural sites, urban and suburban sites experienced soil microbial biomass N that increased by 98% and 38%, sucrase activity that increased by 40% and 26%, and urease activity that decreased by 35% and 25%, respectively. Soil microbial biomass C:N and free amino acids varied little along the urban–rural gradient. Foliar N concentrations and N resorption proficiencies were higher in urban (12.3 and 4.8 g kg−1) and suburban (12.3 and 6.2 g kg−1) than in rural (9.9 and 3.6 g kg−1) sites, while N resorption efficiencies (from 58% to 72%) were not statistically different. These results indicate that forests in suburban and especially in urban areas are moving rapidly towards a state of “N saturation” and increased potential N loss most likely attributable to higher N deposition to these sites.  相似文献   

18.
Efforts in Europe to convert Norway spruce (Picea abies) plantations to broadleaf or mixed broadleaf-conifer forests could be bolstered by an increased understanding of how artificial regeneration acclimates and functions under a range of Norway spruce stand conditions. We studied foliage characteristics and leaf-level photosynthesis on 7-year-old European beech (Fagus sylvatica) and pedunculate oak (Quercus robur) regeneration established in open patches and shelterwoods of a partially harvested Norway spruce plantation in southwestern Sweden. Both species exhibited morphological plasticity at the leaf level by developing leaf blades in patches with an average mass per unit area (LMA) 54% greater than of those in shelterwoods, and at the plant level by maintaining a leaf area ratio (LAR) in shelterwoods that was 78% greater than in patches. However, we observed interspecific differences in photosynthetic capacity relative to spruce canopy openness. Photosynthetic capacity (A1600, net photosynthesis at a photosynthetic photon flux density of 1600 μmol photons m−2 s−1) of beech in respect to the canopy gradient was best related to leaf mass, and declined substantially with increasing canopy openness primarily because leaf nitrogen (N) in this species decreased about 0.9 mg g−1 with each 10% rise in canopy openness. In contrast, A1600 of oak showed a weak response to mass-based N, and furthermore the percentage of N remained constant in oak leaf tissues across the canopy gradient. Therefore, oak photosynthetic capacity along the canopy gradient was best related to leaf area, and increased as the spruce canopy thinned primarily because LMA rose 8.6 g m−2 for each 10% increase in canopy openness. These findings support the premise that spruce stand structure regulates photosynthetic capacity of beech through processes that determine N status of this species; leaf N (mass basis) was greatest under relatively closed spruce canopies where leaves apparently acclimate by enhancing light harvesting mechanisms. Spruce stand structure regulates photosynthetic capacity of oak through processes that control LMA; LMA was greatest under open spruce canopies of high light availability where leaves apparently acclimate by enhancing CO2 fixation mechanisms.  相似文献   

19.
Seasonal and spatial variability of litterfall and NO3 and NH4+ leaching from the litter layer and 5-cm soil depth were investigated along a slope in a tropical dry evergreen forest in northeastern Thailand. Using ion exchange resin and buried bag methods, the vertical flux and transformation of inorganic nitrogen (N) were observed during four periods (dry, early wet, middle wet, and late wet seasons) at 15 subplots in a 180-m × 40-m rectangular plot on the slope. Annual N input via litterfall and inorganic N leached from the litter layer and from 5-cm depth soil were 12.5, 6.9, and 3.7 g N m−2 year−1, respectively, whereas net mineralization and the inorganic N pool in 0–5-cm soil were 7.1 g N m−2 year−1 and 1.4 g N m−2, respectively. During the early wet season (90 days), we observed 82% and 74% of annual NO3 leaching from the litter layer and 5-cm soil depth, respectively. Higher N input via leaf litterfall in the dry season and via precipitation in the early wet season may have led to higher NO3 leaching rate from litter and surface soil layers during the early wet season. Large spatial variability in both NO3 vertical flux and litterfall was also observed within stands. Small-scale spatial patterns of total N input via litterfall were significantly correlated with NO3 leaching rate from the surface soil layer. In tropical dry evergreen forests, litterfall variability may be crucial to the remarkable seasonal changes and spatial variation in annual NO3 vertical flux in surface soil layers.  相似文献   

20.
Fire managers and researchers need information on fuel deposition rates to estimate future changes in fuel bed characteristics, determine when forests transition to another fire behavior fuel model, estimate future changes in fuel bed characteristics, and parameterize and validate ecosystem process models. This information is lacking for many ecosystems including the Sierra Nevada in California, USA. We investigated fuel deposition rates and stand characteristics of seven montane and four subalpine conifers in the Sierra Nevada. We collected foliage, miscellaneous bark and crown fragments, cones, and woody fuel classes from four replicate plots each in four stem diameter size classes for each species, for a total of 176 sampling sites. We used these data to develop predictive equations for each fuel class and diameter size class of each species based on stem and crown characteristics. There were consistent species and diameter class differences in the annual amount of foliage and fragments deposited. Foliage deposition rates ranged from just over 50 g m−2 year−1 in small diameter mountain hemlock stands to ∼300 g m−2 year−1 for the three largest diameter classes of giant sequoia. The deposition rate for most woody fuel classes increased from the smallest diameter class stands to the largest diameter class stands. Woody fuel deposition rates varied among species as well. The rates for the smallest woody fuels ranged from 0.8 g m−2 year−1 for small diameter stands of Jeffrey pine to 126.9 g m−2 year−1 for very large diameter stands of mountain hemlock. Crown height and live crown ratio were the best predictors of fuel deposition rates for most fuel classes and species. Both characteristics reflect the amount of crown biomass including foliage and woody fuels. Relationships established in this study allow predictions of fuel loads to be made on a stand basis for each of these species under current and possible future conditions. These predictions can be used to estimate fuel treatment longevity, assist in determining fuel model transitions, and predict future changes in fuel bed characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号