首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
AIM: To evaluate the efficacy of a programme using oestradiol benzoate, progesterone and the prostaglandin-F2 (PG) analogue, cloprostenol, to synchronise oestrus and ovulation in dairy cows, compared with a programme using a gonadotropinreleasing hormone (GnRH) agonist, buserelin, and cloprostenol. METHODS: Twenty non-lactating dairy cows, at random stages of the oestrus cycle, were randomly assigned to 1 of 2 treatments. In Treatment 1 ( OPPG; n=10), cows were injected with 2 mg oestradiol benzoate intramuscularly (IM) plus 200 mg progesterone subcutaneously (SC) on Day 0, followed by 500 microg cloprostenol IM on Day 9 and 1 mg oestradiol benzoate on Day 10. In Treatment 2 (GPG; n=10), cows were injected with 10 microg buserelin IM on Day 0, 500 microg cloprostenol IM on Day 7 and 10 microg buserelin on Day 9. The ovaries of all cows were examined by ultrasonography, using an 8 MHz probe, from 5 days before the initial treatment until ovulation. Cows were observed for oestrus 3 times daily for 7 days after cloprostenol treatment. Blood samples were collected daily for determination of progesterone, and 6-hourly for 36 h after the second oestradiol or buserelin injection for the determination of follicle stimulating hormone (FSH) and luteinising hormone (LH) concentrations. RESULTS: The percentage of cows observed in oestrus was higher in the OPPG group than in the GPG group (100% vs 55.6%, p=0.018). Treatment with either short-acting progesterone plus oestradiol benzoate or buserelin was followed by atresia or ovulation of the dominant follicle. Emergence of a new follicular wave occurred earlier (p>0.001) in the GPG group (2.2+/-0.2 days) than in the OPPG group (3.6+/-0.2 days). There was no significant difference between treatment groups in the variation of time of follicular wave emergence or size of the largest follicles at either the time of initial treatment (10.8+/-1.4 mm vs 11.1+/-0.8 mm), cloprostenol treatment (13.8+/-0.7 mm vs 14.0+/-1.3 mm) or of ovulation (15.4+/-0.7 mm vs 17.6+/-1.1 mm; p=0.10). The LH surge occurred sooner after the second injection of buserelin (4.0+/-1.0 h) than after the second injection of oestradiol benzoate (22.8+/-1.2 h; p>0.001). The interval between the second injection of oestradiol benzoate or buserelin and ovulation did not differ significantly between treatment groups (1.7+/-0.3 days vs 1.6+/-0.2 days; p=0.69). CONCLUSIONS: The use of short-term progesterone treatment, combined with oestradiol benzoate for follicular wave synchronisation, and cloprostenol to cause lysis of residual luteal tissue, is a promising alternative to established methods of oestrus synchronisation in cows.  相似文献   

2.
Ablation of follicles ≥  6 mm in diameter and treatment with PGF2α 10 days after ovulation were used to induce the development of ovulatory waves. Comparisons were made between induced waves with one (33 waves, 72%) and multiple (13 waves, 28%) ovulatory follicles. Diameter deviation was defined as the separation of follicles into dominant and subordinate categories. Multiple ovulatory follicles were preceded by more (p < 0.001) follicles ≥ 20 mm at the beginning of deviation, higher LH preceding deviation (approached significance, p < 0.08), lower (p < 0.05) concentrations of FSH on the day of deviation and thereafter, and higher (p < 0.0003) oestradiol by 2 days after deviation. During the peri-ovulatory period, systemic hormone concentrations for waves with multiple ovulations involved higher oestradiol before ovulation (approached significance, p < 0.07), lower FSH (p < 0.04) before and after ovulation, and both higher progesterone (p < 0.05) and lower LH (p < 0.05) beginning the day after ovulation. Results indicated that by the beginning of deviation there were more follicles ≥  20 mm and subsequently greater oestradiol production in waves that led to the development of multiple ovulatory follicles, and during the peri-ovulatory period differences between one and multiple ovulations were consistent with the negative effects of the ovarian hormones on the gonadotropins.  相似文献   

3.
The effect of the centrally acting α-adrenoceptor agonist, clonidine, on plasma LH and FSH was studied in oestradiol-primed and unprimed ewes and in oestrous ewes. In unprimed anoestrous ewes, clonidine stimulated LH and FSH release after a lag period of 18 h, and noradrenaline intracarotid injection or i.v. infusions immediately stimulated LH release. In oestradiol-infused anoestrous ewes, clonidine produced either a delay or inhibition of the gonadotrophin surge and noradrenaline i.v. infusion advanced the LH surge. In oestrous ewes treated with clonidine, there was marked delay in the LH surge, but the magnitude of the LH and FSH surges were unaffected. Intravenous administration of α-adrenoceptor blockers, phentolamine and phenoxybenzamine, blocked the oestradiol-induced gondotrophin surge in anoestrous ewes. The effect of phenoxybenzamine on gonadotrophin surge was dose dependent in oestrous ewes. Small doses (4 mg/kg i.v.) of phenoxybenzamine delayed the synchronous LH and FSH surges. There was complete blockade of the LH surge and partial blockade of FSH surges in ewes given phenoxybenzamine (8 mg/kg i.v.) before the expected synchronous gonadotrophin surges. After this experiment, the initial rise of plasma progesterone concentrations did not occur until day 6 of oestrous cycle. Administration of phenoxybenzamine before the expected second FSH surge had no effect on the second FSH surge. Gonadotrophin release induced by gonadotrophin-releasing hormone was attenuated by phenoxybenzamine, but not by clonidine. The results suggest that the LH surge is under α-adrenergic control and the first FSH surge is under partial α-adrenergic control, but the second FSH surge is not under α-adrenergic control. The results also suggest oestradiol modulation of α-adrenergic receptor action.  相似文献   

4.
In its first year of commercial availability in the United States, reports from the field indicated that Ovuplant™ (a deslorelin-containing slow-release implant for hastening ovulation in mares) was associated with a delayed return to estrus in mares not becoming pregnant. Supposedly this effect was particularly prevalent in mares subsequently administered PGF to cause luteal regression after embryo collection. The present experiment was conducted 1) to determine if the field observations were repeatable under controlled experimental conditions, and 2) to gather endocrine data that might yield information on the underlying cause(s) of this observation. Twenty-five light horse mares were used. Ovaries of each mare were examined by transrectal ultrasonography daily during estrus until ovulation. Once a follicle >30 mm was detected, the mare received either Ovuplant (treated group; N = 13) at the recommended dosage or a sham injection (controls; N = 12); treatments were administered in a manner to ensure that they were unknown to personnel involved with data collection. On day 7 after ovulation, each mare received a luteolytic injection of PGF. Mares were examined every other day until return to estrus or development of a 30 mm follicle, at which time daily examination was performed until ovulation. Jugular blood samples were collected daily. Two mares receiving Ovuplant did not return to estrus within 30 days and their data were not included in the statistical analyses; in contrast, no control mare exhibited such an extended interovulatory interval. For all other mares receiving Ovuplant, the interval between the first and second ovulations was longer (P = .0001) than that of control mares by an average of 6.2 days. In addition, plasma LH concentrations were lower (P <.05) in the treated mares on days 0 through 4, 9, 11, 18, and 19 after the first ovulation. Plasma FSH concentrations were also lower (P = .017) in treated mares from days 4 to 11 and on days 6 and 5 prior to the second ovulation (P = .005). Differences in progesterone and estradiol were observed but were less consistent than for LH and FSH. Mares receiving Ovuplant had fewer small (P =.026), medium (P = .003) and large (P = .045) follicles prior to the second ovulation. In conclusion, Ovuplant treatment at the recommended dosage decreased follicular activity after ovulation and increased the interovulatory interval in mares short-cycled with PGF. These effects appear to be mediated by a hyposecretion of LH and(or) FSH.  相似文献   

5.
Recent studies (2005–2008) on the interrelationships among the preovulatory follicle and periovulatory circulating hormones are reviewed. Close temporal and mechanistic relationships occur between estradiol/inhibin and follicle-stimulating hormone (FSH), between estradiol and luteinizing hormone (LH), and between progesterone and LH. Estradiol from the dominant follicle forms a surge that reaches a peak 2 days before ovulation. Estradiol, as well as inhibin, has a negative effect on FSH, and estradiol has a negative effect on LH. When estradiol decreases, the negative effect diminishes and accounts for the beginning of an FSH increase and a transition from a slow to rapid increase in LH on the day of the estradiol peak. The decrease in estradiol and the reduction or cessation in the growth of the preovulatory follicle beginning 2 days before ovulation are attributable to the development of a reciprocal negative effect of LH on follicle estradiol production when LH reaches a critical concentration. The LH decrease after the peak of the LH surge on the day after ovulation is related to a negative effect of a postovulatory increase in progesterone. Measurable repeatability within mares between consecutive estrous cycles occurs during the preovulatory period in diameter of the ovulatory follicle and concentrations of LH and FSH. Hormone-laden follicular fluid passes into the peritoneal cavity at ovulation and transiently alters the circulating concentrations of LH and FSH. Double ovulations are associated with greater estradiol concentrations and reduced concentrations of FSH.  相似文献   

6.
The present experiment characterized the pituitary responsiveness to exogenous GnRH in the first 10 d after ovulation following commercially available deslorelin acetate implantation at the normal dosage for hastening ovulation in mares. Twelve mature, cyclic mares were assessed daily for estrus and three times weekly for ovarian activity starting May 1. Mares achieving a follicle at least 25 mm in diameter or showing signs of estrus were checked daily thereafter for ovarian characteristics. When a follicle >30 mm was detected, mares were administered either a single deslorelin acetate implant or a sham injection and then assessed daily for ovulation. On d 1, 4, 7, and 10 following ovulation, each mare was challenged i.v. with 50 microg GnRH, and blood samples were collected to characterize the LH and FSH responses. The size of the largest follicle on the day of treatment did not differ (P = 0.89) between groups. The number of days from treatment to ovulation was shorter (P < 0.001) by 2.0 d for the treated mares indicating a hastening of ovulation. The size of the largest follicle present on the days of GnRH challenge was larger in the treated mares on d 1 (P = 0.007) but smaller on d 10 (P = 0.02). In addition, the interovulatory interval was longer (P = 0.036) in the treated mares relative to controls by 4.4 d. Concentrations of FSH in plasma of the treated mares were lower (P < 0.05) than control concentrations from d 3 to 12; LH concentrations in the treated mares were lower (P < 0.05) relative to controls on d 0 to 5, d 7, and again on d 20 to 23. Progesterone values were the same (P = 0.99) for both groups from 2 d before ovulation though d 23. There was an interaction of treatment, day, and time of sampling (P < 0.001) for LH and FSH concentrations after injection of GnRH. Both the LH and FSH responses were suppressed (P < 0.009) in the treated mares relative to controls on d 1, 4, and 7; by d 10, the responses of the two groups were equivalent. In conclusion, deslorelin administration in this manner increased the interovulatory interval, consistently suppressed plasma LH and FSH concentrations, and resulted in a complete lack of responsiveness of LH and FSH to GnRH stimulation at the dose used during the first 7 d after the induced ovulation. Together, these results are consistent with a temporary down-regulation of the pituitary gland in response to deslorelin administered in this manner.  相似文献   

7.
Data were collected daily from 23 mares during two consecutive interovulatory intervals (IOIs). Several significant (p < 0.05) new observations on temporal relationships were made. The FSH increase that begins before ovulation temporarily plateaued on the day of discharge of follicular fluid into the peritoneal cavity in association with ovulation. During the declining portion of the pre-ovulatory oestradiol surge, an abrupt reduction in the rate of decrease occurred in synchrony with the peak of the LH surge and is consistent with a negative effect of LH on oestradiol. Repeatability within mares was based on the following positive and significant correlations between the two IOIs: (i) length of the interval between ovulations and between ovulation and the beginning of follicle deviation; (ii) diameter of the pre-ovulatory follicle on days -3 to -1; (iii) number of follicles in diameter classes of 2–5 mm (correlation for 22/23 days of the IOI), 5.1–10 mm (18/23 days), 10.1–15 mm (12/23 days) and 15.1–20 mm (12/23 days) and (iv) concentrations of FSH (18/23 days) and LH (22/23 days). The greatest repeatability for the follicle-diameter classes occurred in the 2–5 mm class, and thereafter the repeatability progressively decreased as the diameters for the classes increased. Results demonstrated measurable repeatability within mares for several end points between consecutive IOIs.  相似文献   

8.
Equine chorionic gonadotropin (eCG) is a member of the glycoprotein family of hormones along with LH, FSH and thyroid‐stimulating hormone. In non‐equid species, eCG shows high LH‐ and FSH‐like activities and has a high affinity for both FSH and LH receptors in the ovaries. On the granulosa and thecal cells of the follicle, eCG has long‐lasting LH‐ and FSH‐like effects that stimulate oestradiol and progesterone secretion. Thus, eCG administration in dairy cattle results in fewer atretic follicles, the recruitment of more small follicles showing an elevated growth rate, the sustained growth of medium and large follicles and improved development of the dominant and pre‐ovulatory follicle. In consequence, the quality of the ensuing CL is improved, and thereby progesterone secretion increased. Based on these characteristics, eCG treatment is utilized in veterinary medicine to control the reproductive activity of the cow by i) improving reproductive performance during early post‐partum stages; ii) increasing ovulation and pregnancy rates in non‐cyclic cows; iii) improving the conception rate in cows showing delayed ovulation; and finally, iv) eCG is currently included in protocols for fixed‐time artificial insemination since after inducing the synchrony of ovulation using a progesterone‐releasing device, eCG has beneficial effects on embryo development and survival. The above effects are not always observed in cyclic animals, but they are evident in animals in which LH secretion and ovarian activity are reduced or compromised, for instance, during the early post‐partum period, under seasonal heat stress, in anoestrus animals or in animals with a low body condition score.  相似文献   

9.
Two experiments studied the effects of pretreatment with estradiol benzoate before treatment with a dopamine antagonist on prolactin secretion and reproductive traits in mares during (1) the seasonal anovulatory period and (2) the normal breeding season. Experiment 1 was performed in winter with 17 mares selected for low follicular activity. Nine mares received estradiol benzoate injections every other day for a total of 10 injections; 8 mares received similar injections of vehicle. Ten days after onset of injections, all mares were placed on daily injections of sulpiride (250 mg) for 35 days or until ovulation. Plasma prolactin concentrations were higher (P < .001) in mares receiving estradiol than in controls for all assessments from days 12 through 36. Plasma luteinizing hormone (LH) concentrations were also increased (P < .05) by estradiol treatment from days 14 to 23. Mean day of first ovulation was 73.6 for control mares and 29.0 for estradiol-treated mares (P = .016). Estradiol treatment greatly enhanced prolactin secretion in response to sulpiride and increased LH secretion in seasonally anovulatory mares, which together hastened the date of first ovulation by an average of 45 days. Experiment 2 was designed to assess the efficacy of a long-acting, single-injection microparticle preparation of another dopamine antagonist, domperidone, for increasing prolactin secretion in cyclic mares in the summer. The experimental design and procedures used in experiment 1 were repeated, except that a single 3-g domperidone-microparticle injection was administered on day 11 rather than 45 days of sulpiride injections. Day 0 was the first day of estrus for each mare. Prolactin concentrations were higher (P < .05) in mares receiving estradiol than in control mares from days 12 through 25 and after a thyrotropin-releasing hormone injection on d 21. Estrous cycle traits (time to ovulation and time of luteal regression) were not affected (P > .1) by treatment. Estradiol enhanced the prolactin response to a single injection of 3 g domperidone in cyclic mares in the summer in a manner similar to the estradiol enhancement of prolactin secretion in response to daily sulpiride injections in anovulatory mares in winter. Thus, the single injection of domperidone could possibly replace the daily sulpiride injections used in experiment 1 to induce ovulation in seasonally anovulatory mares; this needs to be tested in future experiments.  相似文献   

10.
Two experiments were performed to determine the endocrine and ovarian changes in medroxyprogesterone acetate (MAP)-primed ewes after ram introduction. Experiment 1 was performed during the mid-breeding season with 71 ewes primed with an intravaginal MAP sponge for 12 days. While the control (C) ewes (n = 35) were in permanent contact with rams, the ram effect (RE) ewes (n = 36) were isolated for 34 days prior to contact with rams. At sponge withdrawal, all ewes were joined with eight sexually experienced marking Corriedale rams and estrus was recorded over the next 4 days. The ovaries were observed by laparoscopy 4–6 days after estrus. Four weeks later, pregnancy was determined by transrectal ultrasonography. In eight ewes from each group, ovaries were ultrasonographically scanned; FSH, LH, and estradiol-17β were measured every 12 hours until ovulation or 96 hours after estrus. The response to the rams was not affected by the fact that ewes had been kept or not in close contact with males before teasing. No differences were found in FSH, LH, estradiol-17β concentrations, growth of the ovulatory follicle, onset of estrus, ovulation rate, or pregnancy rate. Experiment 2 was performed with 14 ewes during the nonbreeding season. Ewes were isolated from rams for 1 month, and received a 6-day MAP priming. Ovaries were ultrasonographically scanned every 12 hours, and FSH, LH, estradiol-17β, and progesterone were measured. Ewes that ovulated and came into estrus had higher FSH and estradiol-17β levels before introduction of the rams than did ewes that had a silent ovulation. The endocrine pattern of the induced follicular phase of ewes that came into estrus was more similar to a normal follicular phase, than in ewes that had a silent ovulation. The follicle that finally ovulated tended to emerge earlier and in a more synchronized fashion in those ewes that did come into estrus. All ewes that ovulated had an LH surge and reached higher maximum FSH levels than ewes that did not ovulate, none of which had an LH surge. We conclude that (a) the effect of ram introduction in cyclic ewes treated with MAP may vary depending on the time of the breeding season at which teasing is performed; (b) patterns of FSH, and estradiol-17β concentrations, as indicators of activity of the reproductive axis, may be used to classify depth of anestrus; and (c) the endocrine pattern of the induced follicular phase, which is related to the depth of anestrus, may be reflected in the behavioral responses to MAP priming and the ram effect.  相似文献   

11.
Two experiments were performed to determine the endocrine and ovarian changes in medroxyprogesterone acetate (MAP)-primed ewes after ram introduction. Experiment 1 was performed during the mid-breeding season with 71 ewes primed with an intravaginal MAP sponge for 12 days. While the control (C) ewes (n = 35) were in permanent contact with rams, the ram effect (RE) ewes (n = 36) were isolated for 34 days prior to contact with rams. At sponge withdrawal, all ewes were joined with eight sexually experienced marking Corriedale rams and estrus was recorded over the next 4 days. The ovaries were observed by laparoscopy 4-6 days after estrus. Four weeks later, pregnancy was determined by transrectal ultrasonography. In eight ewes from each group, ovaries were ultrasonographically scanned; FSH, LH, and estradiol-17beta were measured every 12 hours until ovulation or 96 hours after estrus. The response to the rams was not affected by the fact that ewes had been kept or not in close contact with males before teasing. No differences were found in FSH, LH, estradiol-17beta concentrations, growth of the ovulatory follicle, onset of estrus, ovulation rate, or pregnancy rate. Experiment 2 was performed with 14 ewes during the nonbreeding season. Ewes were isolated from rams for 1 month, and received a 6-day MAP priming. Ovaries were ultrasonographically scanned every 12 hours, and FSH, LH, estradiol-17beta, and progesterone were measured. Ewes that ovulated and came into estrus had higher FSH and estradiol-17beta levels before introduction of the rams than did ewes that had a silent ovulation. The endocrine pattern of the induced follicular phase of ewes that came into estrus was more similar to a normal follicular phase, than in ewes that had a silent ovulation. The follicle that finally ovulated tended to emerge earlier and in a more synchronized fashion in those ewes that did come into estrus. All ewes that ovulated had an LH surge and reached higher maximum FSH levels than ewes that did not ovulate, none of which had an LH surge. We conclude that (a) the effect of ram introduction in cyclic ewes treated with MAP may vary depending on the time of the breeding season at which teasing is performed; (b) patterns of FSH, and estradiol-17beta concentrations, as indicators of activity of the reproductive axis, may be used to classify depth of anestrus; and (c) the endocrine pattern of the induced follicular phase, which is related to the depth of anestrus, may be reflected in the behavioral responses to MAP priming and the ram effect.  相似文献   

12.
Plasma prolactin (PRL), luteinizing hormone (LH) and follicle stimulating hormone (FSH) were measured by radioimmunoassay in groups of eight gilts sampled every 20 min for 6 h at about 2-wk intervals between 15 and 192 d of age. The PRL levels were high at 15 and 28 d, declined at 40 d just after weaning and then rose slowly until 192 d of age. The number of LH pulses during 6 h was higher between 83 and 125 d than at the other periods. Magnitude of LH pulses was highest at 15 d, constant from 54 to 125 d, fell at 137 d and remained low until 192 d. Plasma FSH was high from 15 to 125 d, with a maximum at 54 d. It declined slowly until 168 d and did not change thereafter. Estrogen excretion was estimated from urine excretion of estrone (E1; conjugated plus nonconjugated E1) per 24 h from 40 d until puberty in three gilts and at 156 and 174 d in two other animals. The E1 excretion increased with age and four levels were described before peak values with the onset of first estrus. The first increase in E1 excretion occurred between 68 and 110 d, when antral follicles appeared in the ovaries. It was subsequent to the highest levels of FSH and concomitant with the increased frequency of LH pulses. The drop in levels of both gonadotropins after 125 d probably corresponded to the development of the negative feedback as a result of greater ovarian activity in these gilts.  相似文献   

13.
High concentrations of estrogens in the peripheral circulation during late gestation inhibit synthesis of LH and markedly reduce pituitary content of LH at the end of pregnancy in most domestic species. Because blood concentrations of estrogen peak shortly before mid-gestation in the mare and then gradually decrease until parturition, we hypothesized that pituitary content of LH may increase during late gestation. To test this hypothesis 10 horse mares were challenged with a maximally stimulatory dose (2 micrograms/kg) of GnRH on d 240 and 320 of gestation and d 3 after parturition. A separate group of four mares were treated with GnRH on d 2 or 3 estrus. Blood samples were collected at -2, -1, 0, .25, .5, .75, 1, 1.5, 2, 2.5, 3, 3.5, 4, 5, 6, 7 and 8 h relative to injection of GnRH and serum was analyzed for concentration of LH and FSH. Basal serum concentration and total quantity of LH released after GnRH stimulation (assessed by determining the area under the response curve) were not different on d 240 and 320 of gestation or on d 3 after parturition (12.5 +/- 3.5, 5.7 +/- 1.5 and 29.1 +/- 12.1 ng.min/ml, respectively) and were less (P less than .05) than on d 3 of estrus (311.0 +/- 54.0 ng.min/ml). There was little difference in the basal serum concentration of FSH at any of the time points examined. In contrast, GnRH-induced release of FSH continually decreased (P less than .05) from d 240 of gestation (559.8 +/- 88.9 ng.min/ml) to d 3 of estrus (51.8 +/- 6.2 ng.min/ml).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Chemical castration, that is the reduction of circulating testosterone concentrations to castrate levels by administration of a GnRH-agonist implant, is a popular alternative to surgical castration in male dogs. Detailed information concerning the pituitary-testicular axis following administration of a GnRH-agonist implant is still scarce. Therefore, GnRH-stimulation tests were performed in male dogs, prior to and after surgical and chemical castration. This approach also allowed us to determine plasma concentrations of testosterone and oestradiol in intact male dogs for future reference and to directly compare the effects of surgical and chemical castration on the pituitary-testicular axis. In intact male dogs (n = 42) of different breeds GnRH administration induced increased plasma LH, FSH, oestradiol and testosterone concentrations. After surgical castration basal and GnRH-induced plasma FSH and LH concentrations increased pronouncedly. Additionally, basal and GnRH-induced plasma oestradiol and testosterone concentrations decreased after surgical castration. After chemical castration, with a slow-release implant containing the GnRH-agonist deslorelin, plasma LH and FSH concentrations were lower than prior to castration and lower compared with the same interval after surgical castration. Consequently, plasma oestradiol and testosterone concentrations were lowered to values similar to those after surgical castration. GnRH administration to the chemically castrated male dogs induced a significant increase in the plasma concentrations of LH, but not of FSH. In conclusion, after administration of the deslorelin implant, the plasma concentrations of oestradiol and testosterone did not differ significantly from the surgically castrated animals. After GnRH-stimulation, none of the dogs went to pre-treatment testosterone levels. However, at the moment of assessment at 4,4 months (mean 133 days ± SEM 4 days), the pituitary gonadotrophs were responsive to GnRH in implanted dogs. The increase of LH, but not of FSH, following GnRH administration indicates a differential regulation of the release of these gonadotrophins, which needs to be considered when GnRH-stimulation tests are performed in implanted dogs.  相似文献   

15.
Ovarian function in 91 dairy cows with cystic ovarian disease was assessed by rectal palpation and by plasma hormone analysis before and after treatment. Plasma analysis showed that 84% of the cysts were correctly classified clinically and only these cows are considered further. Luteinised cysts occurred in 59 cows whereas only 18 had non-luteinised cysts. The mean plasma concentrations of luteinising hormone (LH), follicular stimulating hormone (FSH), progesterone, oestradiol and testosterone were not significantly different when compared with values at relevant stages of the oestrous cycle in normal cows. Success of treatment with progesterone, a synthetic prostaglandin, human gonadotrophin (HCG), or gonadotrophin releasing hormone (GnRH) was not dependent upon prior hormone concentrations, except for the prostaglandin which required active luteal tissue. LH and FSH concentrations in cows with luteinised cysts were not significantly different before and after successful treatment with GnRH or progesterone. Normal luteal function was not always established after treatment of non-luteinised cysts with GnRH.  相似文献   

16.
A GnRH antagonist (Acyline) was used to study the role of FSH in early development of a follicular wave in 61 mares. In Experiment 1, a single dose of 3 mg per mare, compared with 0 and 1 mg, suppressed both the FSH and follicle responses to exogenous GnRH. In Experiment 2, high concentrations of FSH were induced by two successive ablations of all follicles ≥ 6 mm on days 10 and 13 (day 0 = ovulation). A single treatment with Acyline resulted in significantly greater suppression of plasma concentrations of FSH than a single treatment with charcoal-extracted follicular fluid (source of inhibin) or oestradiol. Suppression of FSH was not significantly different between the group treated with Acyline alone and a group treated with a combination of Acyline, inhibin and oestradiol. In Experiment 3, all follicles were ablated on day 10 to induce an FSH surge and a new follicular wave. Acyline treatment on day 10 resulted in an immediate decrease in FSH, without a significant effect on day of emergence of a new wave or growth of follicles from 7 to 11 mm on days 11–13. Treatment on day 15, a day before expected follicle deviation and after the peak of the wave-stimulating FSH surge, resulted in an immediate decrease in FSH and cessation of follicle growth. Results indicated that growth of follicles for about 2 days after wave emergence was independent of FSH. In contrast, during the decline in the wave-stimulating FSH surge and before follicle deviation, growth of follicles was dependent on FSH.  相似文献   

17.
Changes in the diameters of individual follicular structures on ovaries were measured by transrectal ultrasonography for 29 to 40 days and the plasma concentrations of luteinising hormone (LH), follicle-stimulating hormone (FSH), progesterone and oestradiol 17β were determined in four cows with ovarian cysts. When these structures decreased in size, new follicular structures appeared and developed into cysts. Progesterone concentrations in plasma were below 1·0 ng ml−1 during the experimental periods. Plasma concentrations of oestradiol-17β fluctuated. The mean concentration of oestradiol-17β in plasma differed (P<0·01) depending on the stage of the cyst. No preovulatory surges of LH were detected during the developmental stage of the cysts.  相似文献   

18.
To test for the re‐establishment of the positive feedback of oestradiol (E2) during anoestrus in the dog, the hypothalamo–pituitary–ovarian axis of five beagle bitches was challenged by treatments with oestradiol benzoate (EB), mimicking the course of the pro‐oestric E2 secretion. Treatments in anoestrus started 7 days following the decline of progesterone (P) <1 ng/ml; they were repeated in 5 week intervals until onset of pro‐oestrus; another treatment was performed during dioestrus 50 days after onset of the preceding pro‐oestric bleeding. Each dog served as its own control by receiving vehicle‐treatments in one of the following cycles. Each observation period covered a time window of 168 h and blood samples were collected for the determination of luteinizing hormone (LH), follicle‐stimulating hormone (FSH) and E2 in 6 (0–24 h) and 8 h (24–168 h) intervals. In the control periods and as indicated by the parameters area under curve (AUC), basal and maximal values, the availability of LH, FSH and E2 decreased from dioestrus to early anoestrus to increase again during the course of anoestrus (p < 0.05), indicating a gradual desensitization of the hypothalamus towards the negative feedback of oestradiol. At all times treatments with EB lowered the availability of FSH (decreased AUC and basal levels). A delay in the occurrence of the first LH peak after treatments with EB (p < 0.001) and decreased maximal values (p < 0.001) indicated a suppression of the LH‐release. In no case treatment with EB led to a pre‐ovulatory like LH‐surge. In each dog the last trial with EB in anoestrus passed over into pro‐oestrus/oestrus, with a reduced AUC and peak value of the pre‐ovulatory LH‐surge being the only differences to the control group. The observed differences in the response of LH and FSH to treatments with EB point towards subtle differences in the mechanisms controlling the release of these two hormones during anoestrus. From the data obtained, it may be concluded that the time window for E2 to act via a positive feedback seems to be very small and restricted to the end of anoestrus, and that full follicular function is a pre‐requisite to allow for this phenomenon.  相似文献   

19.
Levels of luteinizing hormone (LH), follicle stimulating hormone (FSH), progesterone and estradiol-17 beta were measured in five Polled Hereford cows. Blood samples were collected once or twice daily for 5 d, then every 6 h from 1 d before weaning (d 28 to 38 postpartum) until 10 d after the second postweaning estrus. Blood samples were again collected at daily intervals until the third postweaning estrus. All cows exhibited estrus within 4 d after weaning, a second estrus 8 to 10 d after the first and a third estrus 16 to 23 d after the second. All cows had peaks in serum concentrations of LH during the first (22.6 to 81.7 ng/ml) and second (4.4 to 149.0 ng/ml) postweaning estrus. Mean levels of LH in serum during the peak and the area under the LH curve during the first and second postweaning estrus did not differ. Serum levels of LH and FSH during the first 4 d of the short cycle did not differ from LH and FSH levels the first 4 d of the subsequent normal cycle. Levels of LH in serum for 4 d before the first LH surge, associated with the first postweaning estrus, did not differ from levels of LH found 4 d before the second Lh surge, associated with the second postweaning estrus. However, serum levels of FSH during the 4 d before the first ovulatory LH surge were lower (P = .05) than those observed during the 4-d period before the second ovulatory surge of LH. Progesterone levels were similar the first 6 d after the first and second estrous periods, but were lower after d 6 of the first (short) cycle than after d 6 of the second (normal) cycle. Estradiol peaks of 1.2 to 2.8 pg/ml were detected during the first postweaning estrus and 1.4 to 12.5 pg/ml during the second postweaning estrus, but due to the variability among cows mean levels of estradiol during first estrus did not differ from second estrus. These data agree with previous reports that postpartum anestrous cows had short cycles if they exhibit estrus in response to weaning. The early decline of progesterone after the first estrus apparently did not stem from lack of LH in serum, but the lower levels of FSH observed before this first ovulation may have been an important factor contributing to the reduced life span of the subsequent corpus luteum.  相似文献   

20.
The objective of Experiment 1 was to determine a dose and frequency of gonadotropin-releasing hormone (GnRH) antagonist administration to effectively suppress serum luteinizing hormone (LH) concentration and to delay ovulation when administered to mares. The objectives of Experiment 2 were 1) to determine the effects of subcutaneous or intravenous administration of a GnRH antagonist or oral altrenogest on serum LH concentration in the estrual mare; and 2) to determine the effectiveness of human chorionic gonadotropin (hCG) in inducing ovulation in mares with suppressed LH concentrations. In Experiment 1, mares (N = 20) were randomly assigned and treated with either 5% mannitol (control, single subcutaneous injection, 1 mL, at time 0; n = 5); low-dose GnRH antagonist (single subcutaneous injection, 0.01 mg/kg, at time 0; n = 5); frequent low-dose GnRH antagonist (subcutaneous injections, 0.01 mg/kg, at 0, 6, 18, and 24 hours; n = 5); or high-dose GnRH antagonist (single subcutaneous injection, 0.04 mg/kg, at time 0; n = 5). Both the frequent low-dose and high-dose GnRH antagonist treatments resulted in significantly lower LH concentrations compared with controls at 90, 102, and 114 hours after treatment (P < .05). In Experiment 2, mares (N = 38) were randomly assigned and treated with subcutaneous sterile saline (control), altrenogest (oral), subcutaneous GnRH antagonist, or intravenous GnRH antagonist. LH concentration for the altrenogest group was lower than the control group at 3, 4, 18, and 30 hours after treatment (P < .05). LH concentration for both the subcutaneous and intravenous GnRH antagonist groups were lower compared with the control group at several time points (P < .05). Based on these data, dose but not frequency of administration of a GnRH antagonist lowered LH concentration in the estrous mare but did not delay ovulation. In addition, serum LH concentrations can be lowered and ovulation effectively postponed in mares treated with altrenogest followed by administration of hCG. This indicates that serum LH concentrations can be lowered and ovulation effectively postponed in mares treated with altrenogest followed by administration of hCG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号