首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The primary aim of this study was to optimize in vitro culture protocols to establish an efficient reproducible culture system for different Brassica interspecific crosses, and to synthesize yellow-seeded Brassica napus (AACC) for breeding and genetical studies. Reciprocal crosses were carried out between three B. rapa L. ssp. oleifera varieties (AA) and five accessions of B. oleracea var. acephala (CC). All the parental lines were yellow-seeded except one accession of B. oleracea. Hybrids were obtained through either ovary culture from crosses B. rapa × B. oleracea, or embryo culture from crosses B. oleracea × B. rapa. A higher rate of hybrid production was recorded when ovaries were cultured at 4–7 days after pollination (DAP). Of different culture media, medium E (MS with half strength macronutrients) showed good response for ovaries from all the crosses, the highest rate of hybrid production reaching 45% in B. rapa (1151) × B. oleracea (T2). In embryo culture, the hybrid rate was significantly enhanced at 16–18 DAP, up to 48.1% in B. oleracea (T3) × B. rapa (JB2). The combinations of optimal DAP for excision and media components increased recovery of hybrids for ovary and embryo culture, and constituted an improved technique for B. rapa × B. oleracea crosses. In addition, yellow seeds were obtained from progenies of two crosses, indicating the feasibility of developing yellow-seeded B. napus through the hybridization between yellow-seeded diploids B. rapa and B. oleracea var. acephala.  相似文献   

2.
N. Inomata 《Plant Breeding》2002,121(2):174-176
In this cytogenetic study the progeny of all crosses were investigated in F1, F2 and backcross (BC1) hybrids. Brassica napus and F1 hybrids between B. napus and B. oleracea, and between B. napus and three wild relatives of B. oleracea (B. bourgeaui, B. cretica and B. montana). Each of the wild relatives has 18 somatic chromosomes. Interspecific F1 hybrids were obtained through ovary culture mean. These had 28 and 37 chromosomes and their mean pollen fertility was 10.7% and 93.0%, respectively. Many F2 and BC1 seeds were harvested from the F1 hybrids with 37 chromosomes after self‐pollination and open pollination of the F1 hybrids, and backcrossing with B. napus. Many aneuploids were obtained in the F2 and BC1 plants. It is evident from these investigations that the F1 hybrids may serve as bridge plants to improve B. napus and other Brassica crops.  相似文献   

3.
Summary Atrazine resistant Brassica napus × B. oleracea F1 hybrids were backcrossed to both parental species. The backcrosses to B. napus produced seeds in both directions but results were much better when the F1 hybrid was the pollen parent. Backcrosses to B. oleracea failed completely but BC1s were rescued by embryo culture both from a tetraploid hybrid (2n = 4x = 37; A1C1CC) and sesquidiploid hybrids (2n = 3x = 8; A1C1C). Progeny of crosses between the tetraploid hybrid and B. oleracea had between 25 and 28 chromosomes. That of crosses between the sesquidiploid hybrid and B. oleracea had between 21 and 27. A few plants that had chromosome counts outside the expected range may have originated from either diploid parthenogenesis, unreduced gametes or spontaneous chromosome doubling during in vitro culture. Pollen stainability of the BC1s ranged from 0% to 91.5%. All the BC1s to B. oleracea were resistant to atrazine.  相似文献   

4.
Summary The possibilities to transfer important traits and in particular resistance to the beet cyst nematode (Heterodera schachtii, abbrev. BCN) from Raphanus sativus to Brassica napus were investigated. For these studies B. napus, R. sativus, the bridging hybrid ×Brassicoraphanus (Raparadish) as well as offspring of the cross ×Brassicoraphanus (Raparadish) ×B. napus were used. Reciprocal crosses between B. napus and R. sativus were unsuccessful, also with the use of embryo rescue. Crosses between ×Brassicoraphanus as female parent and B. napus resulted in a large number of F1 hybrids, whereas the reciprocal cross yielded mainly matromorphic plants. BC1, BC2 and BC3 plants were obtained from backcrosses with B. napus, which was used as the male parent. F1 hybrids and BC plants showed a large variation for morphology and male and female fertility. Cuttings of some F1 and BC1 plants, obtained from crosses involving resistant plants of ×Brassicoraphanus, were found to possess a level of resistance similar to that of the resistant parent. These results and indications for meiotic pairing between chromosomes of genome R with those of the genomes A and/or C suggest that introgression of the BCN-resistance of Raphanus into B. napus may be achieved.  相似文献   

5.
B. Y. Chen  W. K. Heneen 《Euphytica》1992,59(2-3):157-163
Summary Seed colour inheritance was studied in five yellow-seeded and one black-seeded B. campestris accessions. Diallel crosses between the yellow-seeded types indicated that the four var. yellow sarson accessions of Indian origin had the same genotype for seed colour but were different from the Swedish yellow-seeded breeding line. Black seed colour was dominant over yellow. The segregation patterns for seed colour in F2 (Including reciprocals) and BC1 (backcross of F1 to the yellow-seeded parent) indicated that the black seed colour was conditioned by a single dominant gene. Seed colour was mainly controlled by the maternal genotype but influenced by the interplay between the maternal and endosperm and/or embryonic genotypes. For developing yellow-seeded B. napus genotypes, resynthesized B. napus lines containing genes for yellow seed (Chen et al., 1988) were crossed with B. napus of yellow/brown seeds, or with yellow-seeded B. carinata. Yellow-seeded F2 plants were found in the crosses that involved the B. napus breeding line. However, this yellow-seeded character did not breed true up to F4. Crosses between a yellow-seeded F3 plant and a monogenomically controlled black-seeded B. napus line of resynthesized origin revealed that the black-seeded trait in the B. alboglabra genome was possibly governed by two independently dominant genes with duplicated effect. Crossability between the resynthesized B. napus lines as female and B. carinata as male was fairly high. The sterility of the F1 plants prevented further breeding progress for developing yellow-seeded B. napus by this strategy.  相似文献   

6.
Summary Crossability and cytology were examined in F1, F2, B1 and hybridsplants of F1 hybrids of Brassica campestris and three wild relatives of B. oleracea, B. bourgeaui, B. cretica and B. montana, respectively. The F2 plants were obtained after self-and open pollination of the F1 hybrids. The B1 and hybrid plants were produced after the F1 hybrids backcrosses with B. campestris and crossed with B. napus, respectively. After crossing the F1 hybrids, many seeds of the F2, B1 and hybrid plants were harvested. Multivalent formation was high in the chromsome configuration for the PMCs of F2, B1 and hybrid plants, suggesting that crossing over might occur between them. Many different types of aneuploids were obtained in the progenies of the F2, B1 and hybrid plants. It is suggested that different types of normal egg cells may be produced by one-by-one or little-by-little chromosome addition. The possibility is discussed of gene transfer from B. bourgeaui, B. cretica and B. montana, to cultivated plants, B. campestris and B. napus.  相似文献   

7.
N. Inomata 《Euphytica》2005,145(1-2):87-93
Brassica napus (2n = 38) and Diplotaxis harra (2n = 26) were used to investigate gene transfer from D. harra to B. napus. Intergeneric F1 hybrids (dihaploid 2n = 32 chromosomes) were obtained through ovary culture. The chromosome associations in the first meiotic division was (0–2)III + (2–10)II + (12–28)I. Many seeds were harvested in the F1 hybrid after backcrossing with B. napus, and from open pollination of the F1 hybrid. Somatic chromosome numbers of BC1 and hybrid plants varied from 2n = 26 to 52. In the first meiotic division, high frequencies of bivalent association and relatively low pollen fertility were observed. BC2 plants generated from the BC1 plants with 2n = 38 chromosomes, 69.6% showed 2n = 38 chromosomes. Many aneuploids with addition and deletion of chromosomes were also obtained. A bridge plant between B. napus and D. harra with 2n = 32 chromosomes should be valuable material for the breeding of brassica crops.  相似文献   

8.
R. Delourme  F. Eber  A. M. Chevre 《Euphytica》1989,41(1-2):123-128
Summary Intergeneric hybrids (F1) Diplotaxis erucoides (DeDe) x Brassica napus (AACC) and the first backcross to B. napus (BC1) have been obtained through in vitro culture of excised ovaries. The chromosome numbers of F1 and BC1 plants proved the occurrence of unreduced gametes. The study of metaphase I chromosome pairing showed that autosyndesis in De genome and allosyndesis between De and A/C genomes might exist. The male fertility of the F1 plants was low. Some male-sterile plants were found in F1 and BC1 progeny. The possibilities of creating addition lines B. napus-D. erucoides and of obtaining a new cytoplasmic male sterility in B. napus are discussed.  相似文献   

9.
D. J. Bing    R. K. Downey    G. F. W. Rakow 《Plant Breeding》1995,114(6):481-484
The possibility of gene transfer between Brassica napus and Sinapis arvensis was evaluated. Six spring-type cultivars of B. napus and four strains of S. arvensis were reciprocally crossed through controlled crosses. No hybrid was yielded from any cross. However, one hybrid with 28 chromosomes was obtained from B. napus×S. arvensis through ovule culture. The hybrid plant was highly sterile and set no seed on open pollination. Two F2 plants, with 35 and 36 chromosomes respectively, were obtained through self-pollination by hand. Backcross of B. napus produced 23 plants carrying some characteristics of S. arvensis, but backcross to S. arvensis failed to produce a plant. The chromosome counts of the BC1F1 plants indicated that gametes with more than nine chromosomes were favoured during the meiosis. The data demonstrated that gene transfer from S. arvensis to B. napus was very difficult under controlled cross and backcross, while to transfer genes from B. napus to S. arvensis would be extremely remote even under the most favorable conditions.  相似文献   

10.
Summary Meiosis in 14 interspecific F1 hybrids with three chromosomal levels (triploid, tetraploid, hexaploid; 2n=28, 37 and 55) between Brassica napus L. and 2x and 4x cabbage (B. oleracea var. capitata L.) was studied. The oleracea genome from B. napus maintained close homology with the c genome of cabbage while the campestris genome of B. napus showed partial homology with the c genome contained in the hybrids. Genotypic influence on chromosome pairing was indicated. Structural chromosome differences and spontaneous chromosome breakage and reunion were suggested as causes for the abnormalities which related to the unbalance of the genotypes. The divergence of the genomes of B. napus and B. oleracea and the need for the qualification of the term secondary association were discussed.Contribution No. J. 673, Research Station, Agriculture Canada, St. Jean, Québec.  相似文献   

11.
N. Inomata 《Euphytica》2003,133(1):57-64
The cytogenetic study was investigated in the intergeneric F1 hybrid, F2and backcross progenies (BC1). The plants used were Brassica juncea(2n=36) and Diplotaxis virgata(2n=18). Three intergeneric F1 hybrids between two species were produced through ovary culture. They showed 36 chromosomes. It might consist one genome of B. juncea and two genomes of D. virgata. The morphology of the leaves resembled that of B. juncea. The color of the petals was yellow that was like in D. virgata. The size of the petal was similar to that of B. juncea. The mean pollen fertility was15.3% and the chromosome associations in the first meiotic division were(0–1)IV+(0–2)III+(8–12)II+(12–20)I. Many F2 and BC1seeds were harvested after open pollination and backcross of the F1 hybrids withB. juncea, respectively. The F2seedlings showed different chromosome constitutions and the range was from 28 to54 chromosomes. Most seedlings had 38chromosomes followed by 36, 40 and 54. The BC1 seedlings also showed different chromosome constitutions and the range was from 29 to 62. Most seedlings had both 40and 54 chromosomes followed by 36, 46 and52. In the first meiotic division of F2 and BC1 plants, a high frequency of bivalent associations was observed in all the various kinds of somatic chromosomes. Many F3 and BC2 seeds were obtained by self-pollination and open pollination of both F2 and BC1 plants, and by backcrossing both F2 and BC1plants with B. juncea, respectively,especially, three type progeny with 36, 40or 54 chromosomes. The somatic chromosomes of the F3 and BC2 plants were further investigated. The bridge plants between B. juncea and D. virgata with 36 chromosomes may be utilized for breeding of other Brassica crops as well as B. juncea. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
Broadening the genetic base of the C genome of Brassica napus canola by use of B. oleracea is important. In this study, the prospect of developing B. napus canola lines from B. napus?×?B. oleracea var. alboglabra, botrytis, italica and capitata crosses and the effect of backcrossing the F1’s to B. napus were investigated. The efficiency of the production of the F1’s varied depending on the B. oleracea variant used in the cross. Fertility of the F1 plants was low—produced, on average, about 0.7 F2 seeds per self-pollination and similar number of BC1 seeds on backcrossing to B. napus. The F3 population showed greater fertility than the BC1F2; however, this difference diminished with the advancement of generation. The advanced generation populations, whether derived from F2 or BC1, showed similar fertility and produced similar size silique with similar number of seeds per silique. Progeny of all F1’s and BC1’s stabilized into B. napus, although B. oleracea plant was expected, especially in the progeny of F1 (ACC) owing to elimination of the A chromosomes during meiosis. Segregation distortion for erucic acid alleles occurred in both F2 and BC1 resulting significantly fewer zero-erucic plants than expected; however, plants with?≤?15% erucic acid frequently yielded zero-erucic progeny. No consistent correlation between parent and progeny generation was found for seed glucosinolate content; however, selection for this trait was effective and B. napus canola lines were obtained from all crosses. Silique length showed positive correlation with seed set; the advanced generation populations, whether derived from F2 or BC1, were similar for these traits. SSR marker analysis showed that genetically diverse canola lines can be developed by using different variants of B. oleracea in B. napus?×?B. oleracea interspecific crosses.  相似文献   

13.
Cultivars in Brassica napus var. oleifera, a self‐pollinating, self‐compatible species, have traditionally been developed as open‐pollinated lines or populations. Significant yield gains in this species have been realized through the exploitation of heterosis. Commercial hybrid production has been possible as a result of the development of a number of pollination control systems. Self‐incompatibility was transferred from B. oleracea var. italica to B. napus var. oleifera through interspecific hybridization. The response to interspecific pollination, as measured by pod elongation and initial stages of ovule development, was genotype dependent, and two highly responsive B. napus genotypes were identified. Embryo rescue was used to produce the interspecific hybrids. Isoelectric focusing of stigma proteins was used to identify S‐alleles in the interspecific hybrids to facilitate backcrossing. Segregation of the S‐locus through a series of back‐crosses to B. napus was complicated by aneuploidy; however, the S‐locus was found to segregate as a single gene. Usefulness of B. oleracea as a source of S‐alleles for pollination control in B. napus is discussed.  相似文献   

14.
Summary F1 hybrids of triazine resistant Brassica napus and triazine susceptible B. oleracea were morphologically intermediate to the parent species. Of 49 hybrids examined, 44 had 28 chromosomes, two had 37, one had 38 and two had 56. The 38-chromosome plant was thought to be a matromorph, the others, A1C1C (28), A1C1CC (37) or A1A1C1C1CC (56) type hybrids. Pollen stainability averaged 9.0% in the sesquidiploid, 32.0% in the tetraploids and 89.5% in the hexaploids. All the interspecific hybrids were resistant to 1.0×10-4 mol L-1 atrazine. The sesquidiploid hybrids produced gametes with chromosome numbers ranging from 9 to 17 and the tetraploid hybrid gametes had chromosome numbers from 15 to 22. Most hybrids produced self-seed. The partial fertility of these hybrids may permit their backcrossing to one or both parents.  相似文献   

15.
Genetic analysis of four self-incompatible lines in Brassica napus   总被引:3,自引:0,他引:3  
G. S. Yang    C. B. Chen    G. L. Zhou    C. N. Geng    C. Z. Ma    J. X. Tu  T. D. Fu 《Plant Breeding》2001,120(1):57-61
Reciprocal hybridization between four self-incompatible lines of Brassica napus: 271, 181, 184 and ‘White Flower’, revealed incompatibility. The reciprocal F1s obtained by bud pollination showed self-incompatible reactions, and no segregation for self-incompatibility was observed in all the reciprocal F2 populations, indicating that lines 271, 181, 184 and ‘White Flower’ were genetically identical with regard to self-incompatibility. Observations of self-incompatibility in 17 hybrids from crosses between line 271 and 17 varieties of B. napus showed 10 of the F1 hybrids to be self-compatible, while four were partially self-compatible and three were self-incompatible. Genetic analysis based on F2 and BC1 populations from five self-compatible F1 hybrids and two self-incompatible F1 hybrids suggested the existence of at least two loci controlling the self-incompatibility of line 271: one is the S locus, with dominant and recessive relationships between the S alleles, and the other is the suppressor (sp) of the S locus. The sp locus is genetically different from the S locus, and also shows dominant and recessive relationships between the sp alleles.  相似文献   

16.
Brassica napus is an important oil species with short history and narrow genetic background. Interspecific hybrids from crosses between B. oleracea and different B. rapa were obtained. We found the hybrids with white petal resembling B. oleracea, the flavonoid and phenolic content decreased in hybrids, agreeing with the expressional changes of flavonoid biosynthesis genes. Seed coat of hybrids resembled diploid parents, or partly resembled to each parent with a clear outline. The palisade layer in hybrids was thicker than parents, with similar pigment accumulation as B. oleracea but more than B. rapa. Differentially sized protein bodies (PBs) were found in hybrids. The radical and inner cotyledon of all hybrids were identified with larger but less PBs than parents. The average size of PBs in outer cotyledon of resynthesized B. napus was also larger than parents, but the number of PBs was not significantly reduced. The phenotypic and seed structural variations after polyploidization of B. napus would be interesting for genetic broadening and breeding of rapeseed.  相似文献   

17.
The presence of high levels of sinigrin in the seeds represents a serious constraint for the commercial utilisation of Ethiopian mustard (Brassica carinata A. Braun) meal. The objective of this research was the introgression of genes for low glucosinolate content from B. juncea into B. carinata. BC1F1 seed from crosses between double zero B. juncea line Heera and B. carinata line N2-142 was produced. Simultaneous selection for B. carinata phenotype and low glucosinolate content was conducted from BC1F2 to BC1F4 plant generations. Forty-three BC1F4 derived lines were selected and subject to a detailed phenotypic and molecular evaluation to identify lines with low glucosinolate content and genetic proximity to B. carinata. Sixteen phenotypic traits and 80 SSR markers were used. Eight BC1F4 derived lines were very close to N2-142 both at the phenotypic and molecular level. Three of them, with average glucosinolate contents from 52 to 61 micromoles g−1, compared to 35 micromoles g−1 for Heera and 86 micromoles g−1 for N2-142, were selected and evaluated in two additional environments, resulting in average glucosinolate contents from 43 to 56 micromoles g−1, compared to 29 micromoles g−1 for Heera and 84 micromoles g−1 for N2-142. The best line (BCH-1773), with a glucosinolate profile made up of sinigrin (>95%) and a chromosome number of 2n = 34, was further evaluated in two environments (field and pots in open-air conditions). Average glucosinolate contents over the four environments included in this research were 42, 31 and 74 micromoles g−1 for BCH-1773, Heera and N2-142, respectively. These are the lowest stable levels of glucosinolates reported so far in B. carinata.  相似文献   

18.
Summary Wide hybridizations between M. arvensis and Brassica amphidiploid species (B. napus and B. juncea) were carried out in order to incorporate desirable traits of M. arvensis into Brassica crops. Crossing barriers between them were present without the use of in vitro techniques. F1 hybrids have been produced through ovary culture, when M. arvensis were used as a female parent. Higher hybrid embryo productivity (3.07 embryos per pollination) was obtained in the cross of M. arvensis x B. napus than in that of M. arvensis x B. juncea (0.79 embryos). The hybridity was confirmed by morphology, cytology, isozyme and Southern analyses. The first backcrossing progenies and open pollinated ones were produced.  相似文献   

19.
Summary The first backcross and F2 progenies from triploid F1 and tetraploid F1 hybrids between B. napus and 2x and 4x B. oleracea ssp. capitata (cabbage) were studied for their general morphology, resistance to race 2 of the clubroot pathogen, chromosome number and meiotic chromosome behavior. No linkage was apparent between resistance and the major morphological characters. Unreduced gametes played a large part in the successful formation of seed of the B1 and F2 progeny. B1 plants with low chromosome numbers were selected for use in recurrent backcrosses. The potential use of anther culture to extract gametic progenies from resistant B1 and F2 plants with higher chromosome numbers was suggested. The presence of homoeologous pairing observed in all the plants is considered advantageous for selecting suitable progeny in later generations.  相似文献   

20.
Interspecific hybrid plants and backcross 1 (BC1) progeny were produced through sexual crosses and embryo rescue between Brassica carinata accession PI 360883 and B. oleracea cvs Titleist’and‘Cecile’to transfer resistance to powdery mildew to B. oleracea. Four interspecific hybrids were obtained through application of embryo rescue from crosses with B. carinata as the maternal parent, and their interspecific nature confirmed through plant morphology and random amplified polymorphic DNA (RAPD) analysis. Twenty‐one BC1 plants were obtained through sexual crosses and embryo rescue although embryo rescue was not necessary to produce first backcross generation plants between interspecific hybrids and B. oleracea. All interspecific hybrids and eight of the BC1 plants were resistant to powdery mildew.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号