首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bird species’ community responses to land use in the suburbanizing Twin Cities, Minnesota, USA, were contrasted among reserves, rural lands, and suburbs. For each land use type, bird composition, diversity, and abundance were recorded for 2 years in ≈99 plots in three sampling units (each ≈4500 ha). A habitat gradient defined by canopy structure (grasslands to savannas to forests) was influenced by land use, so ≈300 plots were used to characterize simultaneous variation in bird communities along land use and habitat gradients. At broad scales (aggregate of 33 plots covering ≈4500 ha) suburbs supported the lowest bird richness and diversity and rural landscapes the most, with reserves slightly below rural. Although reserves were like rural lands in diversity of bird communities, they supported more species of conservation concern, particularly of grasslands and savannas. Differences among land use types varied with habitat structure. Suburbs, rural lands, and reserves had similar forest bird communities, but differed in grassland and savanna bird communities. The extensive rural forests are important for the region’s forest birds. Suburban grasslands and savannas had low shrub abundance, low native bird richness and high non-native bird richness and abundance. However, total bird richness and diversity were as high in suburban as in rural and reserve plots because high native richness in suburban forests and high non-native species richness in suburban grasslands and savannas compensated for lower native richness in suburban grasslands and savannas. Bird conservation here and in the Midwest USA should protect rural forests, expand grasslands and savannas in reserves, and improve habitat quality overall.  相似文献   

2.
Despite the fact that Madagascar is classified a biological `hotspot' due to having both high levels of species endemism and high forest loss, there has been no published research on how Madagascan bird species respond to the creation of a forest edge or to degradation of their habitat. In this study, we examined how forest bird communities and different foraging guilds were affected by patch habitat quality and landscape context (forest core, forest edge and matrix habitat) in the threatened littoral forests of coastal southeastern Madagascar. We quantified habitat use and community composition of birds by conducting 20 point counts in each landscape contextual element in October and November 2002. We found that littoral forest core habitats had significantly (p<0.01) more bird species than forest edge and matrix habitats. Thirty-one (68%) forest dependent species were found to be edge-sensitive. Forest edge sites had fewer species, and a higher representation of common species than forest interior sites. Twenty-nine species were found in the matrix habitat, and the majority of matrix-tolerant forest species had their greatest abundance within littoral forest edge habitats. Guild composition also changed with landscape context. Unlike other tropical studies with which we are familiar, we found that frugivorous species were edge-sensitive while sallying insectivores were edge-preferring. The majority of canopy insectivores (n=15, 88%), including all six endemic vanga species, were edge-sensitive. When habitat quality was assessed, the distributions of nine edge-sensitive species were significantly (p<0.01) affected by changes in habitat complexity and vegetation vertical structure in core or edge point counts. Therefore, we believe that changes in vegetation structure at the edge of littoral forest remnants may be a key indicator of mechanisms involved in edge sensitivity of forest dependent species in these forests. Our findings indicate that habitat fragmentation and degradation affect Madagascan bird communities and that these processes threaten many species. With continued deforestation and habitat degradation in Madagascar, we predict the further decline of many bird species.  相似文献   

3.
Rivers and streams lined by narrow forest strips are common in the lowland countryside of south-western Costa Rica. We studied the importance of these gallery forests for understorey birds, especially forest species. Using mist-nets, we captured 1110 birds belonging to 90 species between June and September 2007 at 16 sites spread equally over four habitat types: forest interior, forest margin, gallery forest connected to closed forest, and isolated gallery forest. Though isolated gallery forests had the greatest number of expected species in total, they supported the lowest number of forest-specialist species, lower even than connected gallery forests. Granivorous birds showed an increase from forest to isolated gallery forest, all other feeding guilds however showed no change. The studied habitats differed from each other in their faunal composition. Assemblages of three species groups categorised by their habitat preferences (forest specialists, forest generalists, non-forest species) showed nested distribution patterns across the four habitats. There was no significant difference in the proportion of birds with brood patches or of recaptures across the studied habitat types, leading to the assumption that birds not only use gallery forests for movement and foraging but also for reproduction. Though of limited conservation value for most forest understorey birds, at least for a small fraction of forest species gallery forests constitute an important secondary habitat. More significantly, they can form corridors or stepping stones that allow movements within the matrix of human-dominated habitats, and represent an important landscape component benefiting total bird species richness in the Costa Rican countryside.  相似文献   

4.
The effects of habitat fragmentation on forest bird assemblages were analysed in 214 holm oak (Quercus ilex) remnants spread across the northern and southern plateaux of central Spain. Bird richness was highly dependent on fragment area for all species regardless of isolation, and barely affected by habitat traits. Geographical location was associated with high differences in richness of bird assemblages, which included 17 species exclusive to northern remnants and one exclusive to southern remnants. This supports the hypothesis that habitat suitability deteriorates sharply from north to south for forest birds in Spain. The species-area relationships of bird assemblages sampled in fragmented forests along a broad continental gradient (from Norway to southern Spain) showed that true forest birds only nest in woodlands >100 ha in southern Spain, whereas the full complement of forest species occurs in much smaller fragments in central-western Europe. Loss of species that are particularly sensitive to habitat fragmentation accounts for these differences between dry Spanish and mesic European woodlands. These results are explained by the low habitat suitability of Spanish woodlands, associated with the restrictive conditions for plant regeneration in the Mediterranean climate and long-standing human usage. There is, therefore, a particular need to develop management strategies that conserve birds, and probably other forest organisms, in Mediterranean regions by preventing habitat deterioration and decreases in fragment size, and by conserving all woods >100 ha.  相似文献   

5.
Changes in land-uses, fire regimes, and climate are expected to promote savanna expansion in the Amazon Basin, but most studies that come to this conclusion fail to define “savanna” clearly or imply that natural savannas of native species will spread at the expense of forest. Given their different conservation values, we sought to differentiate between species-diverse natural savannas and other types of fire-maintained grass-dominated vegetation that replaced tropical forests between 1986 and 2005 in 22,500 km2 of eastern lowland Bolivia. Analysis of Landsat TM and CBERS-2 satellite imagery revealed that, in addition to 1200 km2 (7.1%) of deforestation for agriculture and planted pastures, 1420 km2 (8.4%) of forest was replaced by derived savannas. Sampling in 2008 showed that natural savannas differed from forest-replacing derived savannas floristically, in soil fertility, and in fuel loads. Natural savannas typically occurred on sandy, acidic, nutrient-poor soils whereas most derived savannas were on comparatively fertile soils. Fuel loads in derived savannas were twice those of natural savannas. Natural savannas supported a diversity of grass species, whereas derived savannas were usually dominated by Guadua paniculata (native bamboo), Urochloa spp. (exotic forages), Imperata brasiliensis (native invasive), Digitaria insularis (native ruderal), or the native fire-adapted herb Hyptis suaveolens (Lamiaceae). Trees in derived savannas were forest species (e.g., Anadenanthera colubrina) and fire-tolerant palms (Attalea spp.), not thick-barked species characteristic of savanna environments (e.g., Curatella americana). In addressing tropical vegetation transitions it is clearly important to distinguish between native species-diverse ecosystems and novel derived vegetation of similar structure.  相似文献   

6.
Unlogged buffers are used to ameliorate impacts to riparian areas in timber production forests. One function of these buffers is to protect the biodiversity of riparian areas. We measured bat activity in buffered streams with ultrasonic detectors across four different stream orders in logged, regrowth and mature forests (60 sites). Bat activity, foraging rates and species richness were similar in buffered streams surrounded by logged, regrowth and mature forests, suggesting that riparian areas effectively provide habitat for foraging and commuting bats in selectively logged forests. Vespadelus pumilus was the only species that responded to logging history, with decreased activity in mature forests. We found higher activity on larger rather than smaller order streams, a pattern also not affected by logging history. Bat activity along paired forest trail flyways on upper slopes (60 sites) was measured simultaneously with riparian flyway activity (for a total of 120 sites) to determine the importance of riparian areas relative to other available flyways. Activity was higher on upper slopes than on small streams, but similar to levels on larger streams. Total foraging activity was similar between riparian zones and upper slopes. Upper slopes contained higher species diversity, with Chalinolobus gouldii, Miniopterus schreibersii, Mormopterus norfolkensis, Scotorepens sp., Vespadelus pumilus and, to a lesser extent, Vespadelus darlingtoni detected more often than along streams. Other species (Rhinolophus megaphyllus, Nyctophilus spp. and Miniopterus australis) were not affected by topography. Estimates of total vegetation cover and, in particular, rainforest cover, were negatively associated with bat activity, highlighting the need for management of forest ‘clutter’ in regrowth forests for a suite of bat species. Streams and forest trails provide areas of lower clutter, which assist in maintaining high species diversity in regrowth forests. Our results support the use of riparian buffers, and point to the need for greater recognition of tracks on upper slopes as important habitat.  相似文献   

7.
Remnants of native vegetation in regions dominated by agriculture are subject to degradation, especially by livestock grazing and weed invasion. Ground-foraging birds are amongst the most threatened bird groups in Australia, and these agents of degradation might be contributing to their decline by causing a reduction in food availability. We studied the foraging behaviour and microhabitat use of seven species of ground-foraging insectivores in south-eastern Australian buloke woodland remnants with native, grazed and weedy ground-layers. If birds must resort to using more energetically expensive prey-attack manoeuvres, or selectively use substrates and microhabitats that are less available in degraded habitats, then such degradation is likely to be negatively impacting on these species. We found evidence of a negative impact of one or both of these types of degradation on five of the seven bird species. Three species that employ a range of foraging manoeuvres to attack prey used potentially more energetically expensive aerial manoeuvres significantly more frequently in weedy remnants than in remnants with a native or grazed ground layer. Red-capped robins Petroica goodenovii and brown treecreepers Climacteris picumnus both selectively foraged near trees in grazed sites, and hooded robins Melanodryas cucullata, red-capped robins and willie wagtails Rhipidura leucophrys avoided foraging in microhabitats with a high percentage cover of exotic grasses in weedy sites. Brown treecreepers were also less likely to be present in weedy sites that had been protected from grazing than in either grazed or native sites. These results suggest that although grazing appears to have a detrimental impact on foraging habitat of ground-foraging birds, the exclusion of livestock grazing from previously disturbed buloke remnants alone is not adequate to restore habitat values for ground-foraging birds. A conservation strategy for this habitat type should consider the exclusion of heavy grazing from sites with an intact cryptogamic crust and the management of weeds in disturbed remnants, potentially through the use of carefully controlled light grazing.  相似文献   

8.
ABSTRACT

The forest–savanna transition zone, which contains nutrient-poor soils (Oxisols), is found throughout central Africa. To evaluate the effect of deforestation on soil phosphorus dynamics, which regulate the plant growth in this area, we quantified the relationship between phosphorus (P) and carbon (C) in different fractions and compared their relationship to forest and savanna (deforested vegetation) in eastern Cameroon. We analyzed the P, C, and nitrogen (N) contents of soil using the physical fractionation method (0.25–2.0 mm as macro-particulate organic matter [M-POM]; 0.053–0.25 mm as micro-POM; and <0.053 mm as Clay+silt) in different land management (young and old forests and annual and perennial grass savannas at 100-cm soil depth). We found larger soil P stock in forests (4.7–4.9 Mg P ha?1) than that in savannas (3.4–4.0 Mg P ha?1), though soil C and N stocks were similar between the vegetation. We also observed lower soil P stock in the active fraction (M-POM) with its higher C:P and lower C:N ratio in forest surface layer (0–10 cm), indicating that forests have lower available soil P. By using the regression analysis, we found a clear relationship between P and C in the stable fraction (Clay+silt) of the upper layer (0–40 cm) for each land management, and the coefficient of the regression was clearly different between the forest and savanna. It indicates that a more chemically complex organic P form of the stable fraction exists in forest soil than in savanna soil. These results indicate that the deforestation (savannazation) affect the active and stable P dynamics and it should cause the lower soil P stock of the upper layer in savanna than in forest.  相似文献   

9.
Woodpeckers (family Picidae) show promise as indicators of avian diversity in forests because their populations can be reliably monitored, and their foraging and nesting activities can positively influence the abundance and richness of other forest birds. A correlation between woodpecker richness and richness of forest birds is known to exist at the landscape scale, but uncertainty remains whether this correlation occurs at the smaller stand-level spatial scales where forest management activities take place. We used data collected under a diverse range of forest types, harvest treatments, and forest health conditions during a long-term study of bird communities in interior British Columbia, Canada, to examine two basic questions: (1) at the level of individual forest stands, is woodpecker richness correlated with bird richness (measured as richness of all other bird species)? and (2) do woodpecker richness and bird richness have similar habitat correlates? Bird richness was positively correlated with woodpecker richness (β = 0.59, SE = 0.22, 95% CI = [0.14 1.03]). Richness of both woodpeckers and all other birds were positively correlated with tree species richness and negatively correlated with density of pines, and the effect for forest harvest type was similar for both measures of avian richness (uncut < partial harvest < clearcut with reserves). The effect of density of lodgepole pines killed by mountain pine beetles differed between the two richness measures, being positive for woodpecker richness and negative for forest bird richness. We conclude that the richness of woodpeckers is indeed correlated with the richness of other birds at the stand-level, and can serve as a reliable indicator of overall bird richness in most forest stands and conditions, except during insect outbreaks when differential responses by woodpeckers and the rest of the avian community may decouple the relationship between bird richness and woodpecker richness.  相似文献   

10.
In view of the continued decline in tropical forest cover around the globe, forest restoration has become a key tool in tropical rainforest conservation. One of the main - and least expensive - restoration strategies is natural forest regeneration. By aiding forest seed influx both into disturbed and undisturbed habitats, frugivorous birds facilitate forest regeneration. This study focuses on the tolerance of a frugivorous bird community to anthropogenic habitat disturbance within the broader context of natural forest regeneration with conservation purposes. It was carried out in the tropical cloud forest of Costa Rica’s Talamanca Mountains. Bird community response and tolerance to habitat disturbance was assessed by comparing bird presence and densities along a disturbance gradient, ranging from open pastures to closed mature forests. Birds were censused along nine transects applying the variable width line transect procedure. Forty relevant frugivorous bird species were observed during 102 h of survey time. Densities were calculated for 33 species; nine species responded negatively to increasing level of disturbance and nine others positively. Results indicate that large frugivores are generally moderately tolerant to intermediate, but intolerant to severe habitat disturbance, and that tolerance is often higher for medium and small frugivores. It appears that moderately disturbed habitats in tropical cloud forests are highly suitable for restoration through natural regeneration aided by frugivorous birds. Due to a lack of large forest seed dispersers, severely disturbed habitats appear less suitable.  相似文献   

11.
Over the past few decades, the montane forests of Peninsula Malaysia have been severely impacted by the cultivation of exotic crops and urban sprawl. To guide conservation initiatives, montane bird communities were studied to determine their response along a disturbance gradient with the aim of identifying key factors influencing their distribution. Habitat types surveyed included primary and secondary montane forests, a tea plantation, rural, and urban areas in Cameron Highlands and Fraser’s Hill. Response variables included species richness and density quantified via point counts and mistnet surveys. Explanatory variables measured were related to vegetation structure, food abundance and land-use cover. Estimated ‘true’ species richness was higher for pristine and minimally disturbed sites, lower in tea plantation and lowest in heavily developed town centres. Nonmetric multidimensional scaling revealed that both vegetation structure (e.g. canopy density) and land-use cover (e.g. proportion of forest cover) influence species distribution; certain invasive lowland birds were tolerant of extreme development and native montane birds, in general, endured only slight habitat disturbances. A simulation indicated that montane forest dependant species richness started to decline when more than 20% of the canopy cover was lost. Less than a third of the species richness remained when more than 40% of the canopy cover was cleared. The logistic regression model suggested that sensitive species nested lower, were restricted to montane habitats and foraged in mid or high canopy. The dominance of lowland invasives in highly developed urban sites reveals that homogenisation of bird communities can occur even at higher altitudes (>1400 m a.s.l.). The results indicated that native montane birds communities are sensitive to habitat loss and degradation. Thus, any development in the highlands must proceed with minimal disturbance to montane forests, of which, keeping the canopy cover intact should be a crucial consideration.  相似文献   

12.
Singapore Island suffered one of the highest known deforestation rates in the tropics from the mid-to-late 19th century when over 95% of its native lowland forest was cleared. We compared the current bird community structure and composition among three habitat types, i.e., old (>50 years, 7-935 ha) and young (?50 years, 29-49 ha) naturally regenerating secondary forests and abandoned wooded plantations (27-102 ha) dominated by exotic species. Forest patch area had the strongest influence on the current species richness. The overall bird richness was not greater in most mature forest patches, but 20 species were only found in the old secondary forests and five of these were found in <50% of these patches. The rapid decrease in the number of forest species in plantations was offset by an increase in the number of open habitat species. Comparisons with current bird communities in nearby mainland forest sites (Peninsular Malaysia) suggest that the forest avifauna of Singapore is depauperate. The preservation of larger mature and maturing forests is therefore required for conserving the extant forest avifauna in Singapore. Connecting isolated patches can also be envisioned to facilitate movements of forest birds that have low densities and restricted distribution.  相似文献   

13.
To provide sustainable income from forestlands, large areas in the tropics are planted with “agricultural” trees, such as oil palm and rubber, and “industrial” trees, such as Acacia mangium and Gmelina arborea. To examine how native forest birds use such plantations, we surveyed in 2005 the avifauna at Sabah Softwoods, a plantation in southeastern Sabah, Malaysian Borneo. We focused on A. mangium, Albizia (Paraserianthes falcataria), oil palm (Elaeis guineensis), and logged native forest, and compared our results to those of a study conducted at the same plantation in 1982. The number of forest species in the industrial groves did not change dramatically between 1982 and 2005, even though the trees had been cropped several times and the plantation was, by 2005, completely surrounded by cleared land and far removed from primary forest. However, as is common in logged or isolated forests throughout the world, certain primary forest groups (e.g., muscicapine flycatchers) have been extirpated from the entire plantation area. The industrial groves also lacked some larger species of kingfisher, woodpeckers, and canopy frugivores. Nevertheless, numerous primary forest taxa (ca. 50% of species) were found in mature industrial tree groves. Albizia attracted the most species of birds, followed closely by Acacia. Both tree types underpinned relatively complex secondary forests that attracted forest birds. In contrast, younger groves of Acacia and Albizia held mainly open country and scrub species. Oil palm, as a remarkably simple and unusual habitat, attracted few bird species. Sustained occurrence of forest birds in all groves of exotic trees at Sabah Softwoods was substantially enhanced by the relatively rich avifauna of the logged native forest remaining in substantial stands throughout the plantation.  相似文献   

14.
Despite the loss of 83% of native forests in the Philippines, little is known on the effects of this massive habitat loss and degradation on its forest biotas. This is a cause for concern because of the threat posed to the country’s large number of endemic taxa. To investigate the impacts of anthropogenic disturbance, forest birds and butterflies were surveyed in closed and open canopy forests, as well as suburban, rural and urban areas within the Subic Bay Watershed Reserve and Olongapo City in western Luzon. Measures of forest species richness and population densities for both taxa were similar in the two forest types, but showed different patterns in the other habitats. Indirect gradient analysis showed that forest bird species were positively correlated with vegetation variables (i.e., canopy cover, tree density, height to inversion and ground cover), while forest butterflies were not strongly correlated to any of the measured habitat variables. Community composition of birds in forests was distinct from those in modified habitats, while butterfly communities were more similar. A simulation showed that canopy cover of 60% or higher was required by 24 of the 26 bird species that were sensitive to canopy loss. Endemicity and nesting strata were the significant predictors of vulnerability to habitat disturbance for birds, while endemicity and larval hostplant specificity were significant for butterflies. Both taxa were negatively affected by anthropogenic disturbance but may respond to different components in the habitat (i.e., structure and resources), and thus cannot be used as surrogates of each other. Conservation of forests with contiguous canopy cover should be prioritized, and more ecological research is needed to improve the knowledge on the effects of disturbance on Philippine biodiversity.  相似文献   

15.
Unprecedented deforestation is currently underway in Southeast Asia. Since this trend is likely to continue, it is critical to determine the value of human-modified habitats (e.g., mixed-rural habitat) for conserving the regional native forest avifauna. The impacts of ongoing deforestation on the highly endemic avifauna (33%) of Sulawesi (Indonesia) are poorly understood. We sampled birds in primary and secondary forests in the Lore Lindu National Park in central Sulawesi, as well as the surrounding plantation and mixed-rural habitats. Species richness, species density and population density of forest birds showed a consistent decreasing trend in the following order: primary forests > secondary forests > mixed-rural habitat > plantations. Although primary forests contained the highest proportion (85%) of a total of 34 forest species recorded from our point count surveys, 40-yr old secondary forests and the mixed-rural habitat showed high conservation potential, containing 82% and 76% of the forest species, respectively. Plantations recorded only 32% of the forest bird species. Fifteen forest species had the highest abundance in primary forests, while two species had higher abundance outside primary forests. Our simulations revealed that all forest birds that were sensitive to native tree cover could be found in areas with at least 20% continuous native tree cover. Our study shows that although primary forests have the highest conservation value for forest avifauna, the potential of degraded habitats, such as secondary forests and the mixed-rural habitat, for conserving forest species can be enhanced with appropriate land use and management decisions.  相似文献   

16.
Tree height selection and use of the available foliage by birds were examined in two mixed-coniferous forests in the White Mountains, Arizona, USA, during 1973 and 1974. A comparison of avian habitat use between a natural forest and one which had recently undergone a moderately heavy overstory removal form of timber harvesting, revealed that in both areas tall and moderately tall trees were preferred. Comparisons were made for the composite avian community and, in particular, for the yellow-bellied sapsucker Sphyrapicus varius, mountain chickadee Parus gambeli, ruby-crowned kinglet Regulus calendula, yellow-rumped warbler Dendroica coronata, and dark-eyed (= grey-headed) junco Junco hyemalis caniceps. Taller trees provided substantially more foliage and substrate for nesting and foraging than did shorter ones.Foliage use by birds in the unharvested plot suggested that foliage was being used in approximately the proportion in which it was available. This was not true in the modified plot where quaking aspen Populus tremuloides—the only tree species not logged—comprised 53·1% of the total available foliage volume. The biggest discrepancy between bird use and foliage volume occurred between 9 and 21 m from the ground. Within this height interval aspen represented 63·8% of the total volume. The subsequently derived bird use curve reflected the reduced desirability of aspen for most avian species.  相似文献   

17.
Tropical rainforests are disappearing at a rapid rate. Although several studies have revealed the detrimental effects of forest fragmentation on tropical birds, the ecological mechanisms facilitating the decline of populations have been poorly documented. In the tropical rainforests of Africa and America, ant-following birds track the massive swarm raids of army ants and prey on animals which are flushed by the ants. We analyzed the persistence of five species of ant-following birds along a habitat fragmentation gradient in western Kenya and tested if bird populations are limited by the abundance of army ant colonies in forests. Abundances of four of five ant-followers declined by 52–100% in forest fragments 113 ha. Multi-model Bayesian inference suggests that the decline of the three most specialized ant-followers is facilitated by a decrease in the abundance of the army ant Dorylus wilverthi in small forest fragments. Our data suggests that a second, fragmentation-tolerant army ant species, Dorylus molestus, does not functionally compensate for the decline of D. wilverthi because, first, of a higher affinity of birds to D. wilverthi raids (found for one species). Second, because the daytime activity of D. molestus is dependent on high humidity conditions, a pattern which was not found for D. wilverthi. Consequently, specialized ant-followers in small fragments, where D. wilverthi is missing, probably suffer from food scarcity due to a cease of army ant foraging in the dry season. Our results suggest that a subtle alteration of army ant communities caused by habitat fragmentation may have large ecological consequences.  相似文献   

18.
Breeding bird density and vegetation structure were determined during three breeding seasons in 14 plots on power-line corridors through forests in East Tennessee. The purpose was to describe the corridor bird community and to relate bird density and diversity to a number of environmental variables. The relative abundance of forbs, blackberry Rubus ssp., saplings, and areas of planted grasses varied significantly among plots. Thirteen bird species appeared to be attracted to the corridors. Seven of these species were classified as brush species, three as edge species, and three as generalist species, depending on their relative abundance in corridor, edge, and forest, respectively.Control of bird community density on the corridors was complex because individual species densities correlated significantly with several different variables. These variables were Rubus density and patchiness, sapling density and patchiness, corridor width, length of coniferous or deciduous forest edge, coverage of planted grasses, and number of years following vegetation maintenance by cutting.Bird community density varied among plots from 210 to 750 pairs km?2, and increased asymptotically with Rubus density. Rubus density explained most of the variation and Rubus patchiness explained a significant additional portion. Species number varied little. Within plots, birds were registered significantly less often in grass-dominated areas than in forb-Rubus-dominated areas.  相似文献   

19.
Many studies have reported increased numbers of certain synanthropic species in urbanizing landscapes, but few have evaluated if urban habitats constitute ecological traps for these species. The Northern cardinal (Cardinalis cardinalis) was used as a model species to evaluate if urban riparian forests might act as ecological traps for understory-nesting birds. Cardinals were surveyed within 2-ha riparian forest plots within rural (n = 6) and urban (n = 6) landscapes in Ohio USA during breeding and non-breeding seasons 2003-2005. Cues used by cardinals to select habitats were identified based on measurements surrounding 219 nests and in 106 randomly-located plots and 96 systematically-located plots. Productivity of 161 cardinal pairs and survival of 180 adults were monitored from late March-September, 2003-2005. Cardinals were 1.7× (in the breeding season) to nearly 4× (in non-breeding season) more abundant in urban than rural forests, and the results suggest that these differences in abundance stemmed from urban-associated changes in habitat and microclimate features used by cardinals to select habitats. Most notably, cardinals were strongly associated with dense understory vegetation and warmer minimum January temperatures, both of which were promoted as urban development increased within the landscapes surrounding riparian forests. Although other studies suggest mismatches between the habitat cues used by cardinals and how those features affect nesting success (e.g., higher nest predation in exotic shrubs), these results provide no evidence that urban forests were acting as ecological traps for cardinals. Instead, cardinals in urban and rural forests had similar numbers of nesting attempts, young fledged over the breeding season, and apparent annual survival rates. Thus, these findings do not support for the idea that urban forests in central Ohio represent ecological traps for synanthropic understory birds.  相似文献   

20.
We compared species richness and abundance of birds between five patches under selective Alnus exploitation and five patches that have not been harvested for at least 10 years prior to our study, during the early dry season (April-July 2001), in Cotapata National Park. Using “point counts” we recorded birds and their distribution in two (<1.5 m and >1.5 m) forest layers. Simultaneously we evaluated the floristic structure (size [dbh] distribution, basal area, tree density, tree height, and vegetation cover) and composition (diversity) on three transects placed within each Alnus patch. Both bird diversity and vegetation cover were significantly higher in not presently used patches but only for the higher layer of the forest, whereas plant diversity was higher in presently used patches. Lack of differences between the two types of Alnus patches in any of the vegetation parameters measured in the lower layer was coupled with an indistinct avifauna. Small changes in habitat characteristics following a perturbation like selective logging have the potential to affect richness and abundance of birds, at least within the habitats directly affected by the perturbation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号