首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Soil acidity and low natural fertility are the main limiting factors for grain production in tropical regions such as the Brazilian Cerrado. The application of lime to the surface of no-till soil can improve plant nutrition, dry matter production, crop yields and revenue. The present study, conducted at the Lageado Experimental Farm in Botucatu, State of São Paulo, Brazil, is part of an ongoing research project initiated in 2002 to evaluate the long-term effects of the surface application of lime on the soil’s chemical attributes, nutrition and kernel/grain yield of peanut (Arachis hypogaea), white oat (Avena sativa L.) and maize (Zea mays L.) intercropped with palisade grass (Urochloa brizantha cv. Marandu), as well as the forage dry matter yield of palisade grass in winter/spring, its crude protein concentration, estimated meat production, and revenue in a tropical region with a dry winter during four growing seasons. The experiment was designed in randomized blocks with four replications. The treatments consisted of four rates of lime application (0, 1000, 2000 and 4000 kg ha−1), performed in November 2004. The surface application of limestone to the studied tropical no-till soil was efficient in reducing soil acidity from the surface down to a depth of 0.60 m and resulted in greater availability of P and K at the soil surface. Ca and Mg availability in the soil also increased with the lime application rate, up to a depth of 0.60 m. Nutrient absorption was enhanced with liming, especially regarding the nutrient uptake of K, Ca and Mg by plants. Significant increases in the yield components and kernel/grain yields of peanut, white oat and maize were obtained through the surface application of limestone. The lime rates estimated to achieve the maximum grain yield, especially in white oat and maize, were very close to the rates necessary to increase the base saturation of a soil sample collected at a depth of 0–0.20 m to 70%, indicating that the surface liming of 2000 kg ha−1 is effective for the studied tropical no-till soil. This lime rate also increases the forage dry matter yield, crude protein concentration and estimated meat production during winter/spring in the maize-palisade grass intercropping, provides the highest total and mean net profit during the four growing seasons, and can improve the long-term sustainability of tropical agriculture in the Brazilian Cerrado.  相似文献   

2.
Sorghum is an excellent alternative to other grains in poor soil where corn does not develop very well, as well as in regions with warm and dry winters. Intercropping sorghum [Sorghum bicolor (L.) Moench] with forage crops, such as palisade grass [Brachiaria brizantha (Hochst. ex A. Rich) Stapf] or guinea grass (Panicum maximum Jacq.), provides large amounts of biomass for use as straw in no-tillage systems or as pasture. However, it is important to determine the appropriate time at which these forage crops have to be sown into sorghum systems to avoid reductions in both sorghum and forage production and to maximize the revenue of the cropping system. This study, conducted for three growing seasons at Botucatu in the State of São Paulo in Brazil, evaluated how nutrient concentration, yield components, sorghum grain yield, revenue, and forage crop dry matter production were affected by the timing of forage intercropping. The experimental design was a randomized complete block design. Intercropping systems were not found to cause reductions in the nutrient concentration in sorghum plants. The number of panicles per unit area of sorghum alone (133,600), intercropped sorghum and palisade grass (133,300) and intercropped sorghum and guinea grass (134,300) corresponded to sorghum grain yields of 5439, 5436 and 5566 kg ha−1, respectively. However, the number of panicles per unit area of intercropped sorghum and palisade grass (144,700) and intercropped sorghum and guinea grass (145,000) with topdressing of fertilizers for the sorghum resulted in the highest sorghum grain yields (6238 and 6127 kg ha−1 for intercropping with palisade grass and guinea grass, respectively). Forage production (8112, 10,972 and 13,193 Mg ha−1 for the first, second and third cuts, respectively) was highest when sorghum and guinea grass were intercropped. The timing of intercropping is an important factor in sorghum grain yield and forage production. Palisade grass or guinea grass must be intercropped with sorghum with topdressing fertilization to achieve the highest sorghum grain yield, but this significantly reduces the forage production. Intercropping sorghum with guinea grass sown simultaneously yielded the highest revenue per ha (€ 1074.4), which was 2.4 times greater than the revenue achieved by sowing sorghum only.  相似文献   

3.
Agroforesry is a common traditional practice in China, especially in the saline-alkaline regions, like the lower North China Plain (LNCP) characterized by lower yields of food crops. Adding trees to the agricultural land creates additional fruitsets or woody biomass besides food crops, enabling farmers to diversify the provision of farm commodities. However, the productivity of many agroforestry systems has been lower than expected in recent years, highlighting the need for a mechanistic understanding of below- or above-ground interactions. The study combined investigation and experimental data together to evaluate the effects of long-term intercropping agroforestry system [jujube tree (Zizyphus jujuba Mill. var. inermis (Bunge) Rehd.)/winter wheat–summer maize] on soil fertility balance, crop production and system economic efficiency over the past 22 years in LNCP, with a view to developing an effective fertilization management for the moderately alkaline soils. Except remain higher pH, the soils are basically free of sodic and soil salinity is not the major restriction factor for intercrops, even through there are some fluctuation with season and distance from jujube tree. The intercropping system significantly reduced soil nutrient contents, like soil organic C (SOC), total N (TN), available P (avail. P) and K (avail. K) in most parts of the ecotone of the system, but increased those nutrients in the belt of underneath the edge of tree canopy, The growth of intercrops at the belt of 3.5 m from tree was severely negative stressed by jujube tree in term of lower soil moisture, nitrate, avail. P and K although receiving more photosynthetically active radiation (PAR), whereas the winter wheat growing at the 2.5 m row had more water and nutrients supplied and thus produced more grain yield. Uneven fertilization to the ecotone (about 1–2.5 m of the intercrop field boundary) could partly offset the consumption and competition for nutrients between the tree and the intercrops, and improved the grain yields by 12.1% and 14.5% in the ecotone regions (distance from jujube trees) of 1.5 m for winter wheat and 2.5 m for summer maize by increasing respective yield components. Although the mean grain yield of intercropped winter wheat and summer maize was reduced by 35.6 and 35.2%, respectively, compared to sole cropping system, the intercropping system proved to be a profitable land use type based on net income and economic returns, in addition to the wood and ecological benefits of the jujube tree in the moderate desalinate- alkaline regions.  相似文献   

4.
Nitrogen (N) deficiency and weed infestation are main factors limiting yield and yield stability in organic wheat. Organic fertilizers may be used to improve crop performance but off-farm input costs tend to limit profitability. Instead, forage legumes may be inserted into the crop rotation to improve the N balance and to control weed infestation. In opposition to simultaneous cropping, relay intercropping of legumes in organic winter wheat limits resource competition for the legume cover crop, without decreasing the performance of the associated wheat.The aim of this study is to evaluate the effect of spring organic fertilization on the performance of intercropped legumes and wheat, and on services provided by the legume cover.Two species of forage legumes (Trifolium pratense L. and Trifolium repens L.) were undersown in winter wheat (Triticum aestivum L. cv Lona) in five organic fields during two consecutive crop seasons. Organic fertilizer was composed of feather meal and applied on wheat at legume sowing. The cover crop was maintained after the wheat harvest and destroyed just before sowing maize.Spring organic nitrogen fertilization increased wheat biomass (+35%), nitrogen (+49%), grain yield (+40%) and protein content (+7%) whatever the intercropping treatment. At wheat harvest, red clover biomass was significantly higher than white clover one (1.4 vs. 0.7 t ha−1). Nitrogen fertilization decreased forage legume above-ground biomass at wheat harvest, at approximately 0.5 t ha−1 whatever the specie. No significant difference in forage legume biomass production was observed at cover killing. Nitrogen accumulation in legume above-ground tissues was significantly higher for white clover than for red clover. Both red and white clover species significantly decreased weed infestation at this date. Nitrogen fertilization significantly increased weed biomass whatever the intercropping treatment and decreased nitrogen accumulation in both clover species (−12%).We demonstrated that nitrogen fertilization increased yield of wheat intercropped with forage legume while the performance of legumes was decreased. Legume growth was modified by spring fertilization whatever the species.  相似文献   

5.
The intercropping of rapeseed with frost-sensitive companion plants (CP) has recently been proposed as a way to mitigate the negative environmental impact of rapeseed crops. Using mixed-effect linear models, we compared the yield and weed amounts of rapeseed intercropped with different CP species with that of rapeseed as a sole crop in an unique dataset of 79 field experiments covering a wide range of climate, soil and practices conditions in the northwestern part of France, from 2009 to 2015. Bayesian model averaging procedure was used to determine the relative contributions of sites characteristics to the effects of intercropping.Before winter, field pea and faba bean had accumulated the largest amounts of dry mass, with more than 100 g m−2. Rapeseed biomass was reduced by 56% by non-legume CPs and by only 18% by legume CPs, the largest decrease being caused by pea. Non-legumes decreased the nitrogen nutrition index of rapeseed by 7%, whereas pea and faba bean increased this index by 6% and 3%, respectively. Intercropping with non-legume and legume CPs reduced weed amounts by 52% and 38% respectively, with no difference between CP species. Non-legume CPs decreased rapeseed yield at harvest by 0.58 t ha−1, whereas faba bean and faba bean + lentil increased yield by 0.16 and 0.12 t ha−1 respectively, when fertilized at the recommended rate. Intercropping with faba bean, lentil or a mixture of both made it possible to reduce nitrogen applications by 30–40 kg ha−1 with no significant decrease in rapeseed yield. Faba bean and faba bean + lentil mixtures had the best overall performance. This work suggests that intercropping rapeseed is promising, particularly in soils with low nitrogen content with an early sowing date in the late summer.  相似文献   

6.
In a field experiment, peas (Pisum sativum L.) and oats (Avena sativa L.) were grown as sole crops and intercrops, fertilized with horse manure and yard-waste compost derived from shrub and garden cuttings at 10 t C ha−1 each. The objectives were to compare the effects of these organic fertilizer and cropping system in organic farming on (a) yield of peas and oats, grown as the sole crop or intercropped, as well as N2 fixation and photosynthetic rates, (b) the yield of wheat as a succeeding crop, (c) microbial biomass indices in soil and roots, and (d) microbial activity estimated by the CO2 evolution rate in the field and the amount of organic fertilizers, recovered as particulate organic matter (POM). In general, organic fertilizer application improved nodule dry weight (DW), photosynthetic rates, N2 fixation, and N accumulation of peas as well as N concentration in oat grain. Averaged across fertilizer treatments, pea/oat intercropping significantly decreased nodule DW, N2 fixation and photosynthetic rate of peas by 14, 17, and 12%, respectively, and significantly increased the photosynthetic rate of oats by 20%. However, the land equivalent ratio (LER) of intercropped peas and oats exceeded 1.0, indicating a yield advantage over sole cropping. Soil microbial biomass was positively correlated with pea dry matter yields both in sole and intercropped systems. Organic fertilizers increased the contents of microbial biomass C, N, P, and fungal ergosterol in soil and CO2 production, whereas the cropping system had no effects on these microbial indices. According to the organic fertilizer recovered as POM, 70% (manure) and 64% (compost) of added C were decomposed, but only 39% (manure) and 13% (compost) could be attributed to CO2–C during a 101-day period. This indicated that horse manure was more readily available to soil microorganisms than compost, leading to increased grain yields of the succeeding winter wheat.  相似文献   

7.
The use of winter cover crops enhances environmental benefits and, if properly managed, may supply economic and agronomic advantages. Nitrogen retained in the cover crop biomass left over the soil reduces soil N availability, which might enhance the N fertiliser use efficiency of the subsequent cash crop and the risk of depressive yield and pre-emptive competition. The main goal of this study was to determine the cover crop effect on crop yield, N use efficiency and fertiliser recovery in a 2-year study included in a long-term (10 years) maize/cover crop production system. Barley (Hordeum vulgare L.) and vetch (Vicia sativa L.), as cover crops, were compared with a fallow treatment during the maize intercropping period. All treatments were cropped following the same procedure, including 130 kg N ha−1 with 15N fertiliser. The N rate was reduced from the recommended N rate based on previous results, to enhance the cover crop effect. Crop yield and N uptake, soil N mineral and 15N fertiliser recovered in plants and the soil were determined at different times. The cover crops behaved differently: the barley covered the ground faster, while the vetch attained a larger coverage and N content before being killed. Maize yield and biomass were not affected by the treatments. Maize N uptake was larger after vetch than after barley, while fallow treatment provided intermediate results. This result can be ascribed to N mineralization of vetch residues, which results in an increased N use efficiency of maize. All treatments showed low soil N availability after the maize harvest; however, barley also reduced the N in the upper layers before maize planting, increasing the risk of pre-emptive competition. In addition to the year-long effect of residue decomposition, there was a cumulative effect on the soil’s capacity to supply N after 7 years of cover cropping, larger for the vetch than for the barley.  相似文献   

8.
Competition for soil resources plays a key role in the crop yield of intercropping systems. There is a lack of knowledge on the main factors involved in competitive interactions between crops and weeds for nutrients uptake. Hence, the purpose of this work was to compare the effects of arbuscular mycorrhial fungi (Funneliformis mosseae) colonization in interspecific competitive relations and its effect on nutrients uptake and weed control in dill and common bean intercropping. Two field experiments were carried out with factorial arrangements based on randomized complete block design with three replications during 2013–2014. The factors were cropping systems including a) common bean (Phaseolus vulgaris L.) sole cropping (40 plants m−2), b) dill (Anethum graveolens L.) sole cropping at different densities (25, 50 and 75 plants m−2) and c) the additive intercropping of dill + common bean (25 + 40, 50 + 40 and 75 + 40 plants m−2). All these treatments were applied with (+AM) or without (-AM) arbuscular mycorrhiza colonization. In both cropping systems, inoculation with F. mosseae increased the P, K, Fe and Zn concentrations of dill plants by 40, 524, 57 and 1.0 μg kg−1 DW, respectively. Intercropping increased Mn concentration in common bean (4.0 μg kg−1 DW) and dill (3.0 μg kg−1 DW), and also seed yields of both crops (198 g m−2 and161 g m−2, respectively). AM colonization improved seed yields of dill and common bean by 169 and 177 g m−2 in 2013 and 2014, respectively. Moreover, AM application enhanced competitive ability of dill + common bean intercrops against weeds at different intercropping systems. Intercropping significantly changed weed density compared to sole cropping, as weed density was decreased in the dill + common bean intercropping. Diversity (H), Evenness (E) and richness of weed species of weeds for intercrops were higher than those for sole crops.  相似文献   

9.
Wheat (Triticum aestivum L.)/maize (Zea mays L.) strip intercropping is widely practiced in arid regions of northwestern China because of its high land use efficiency. However, its sustainability has been questioned because it consumes much more water than sole cropped wheat or maize. The present study was conducted to investigate the effects of water limitation on the yield advantage and water use of this system. Three field experiments were conducted in the Hetao Irrigation District in Inner Mongolia during the growing seasons of 2012–2014. Each experiment comprised two water applications, in which one was full irrigation and the other was a period of water limitation during the co-growth period of intercropping.The interspecific competition in wheat/maize intercropping was intensified by water stress. For water limitation applied during the wheat booting/maize V5 stage (Exp. I, second irrigation was not applied), the yield advantage of intercropped wheat (IW) over sole wheat was enhanced, whereas that of intercropped maize (IM) over sole maize was reduced compared with full irrigated treatments; for water limitation applied during the wheat jointing/maize V2 stage (Exp. II, first irrigation was not applied), the yield advantages of both IW and IM were greatly reduced; for water limitation applied during the wheat grain filling/maize V9 stage (Exp. III, third irrigation was not applied), the yield advantage of IW was slightly improved, whereas that of IM was reduced. The yield advantage of intercropping under limited irrigation was 25%, 3%, and 18% in Exps. I–III, respectively, whereas that under full irrigation ranged between 22 and 24%.Under well-watered conditions, wheat/maize intercropping used 24–29% more water than the weighted means of sole crops with the water use efficiency equivalent to sole crops. After the application of water limitation, 60 mm irrigation water was saved by intercropping every year, whereas the reduction of water use ranged from 25.1 to 70.8 mm; the changes in water use of intercropping relative to sole crops was reduced to 18–24%; the changes in water use efficiency stayed at nearly zero in Exps. I and III but decreased to a value of −13% in Exp. II. These results indicated that water limitation could be applied during wheat booting or filling stage in wheat/maize intercropping to save irrigation water in our study area.  相似文献   

10.
In Maraba, Southwest Rwanda, coffee productivity is constrained by poor soil fertility and lack of organic mulch. We investigated the potential to produce mulch by growing Tephrosia vogelii either intercropped with smallholder coffee or in arable fields outside the coffee, and the effect of the mulch on coffee yields over two years. Two accessions of T. vogelii (ex. Gisagara, Rwanda and ex. Kisumu, Kenya) were grown for six months both within and outside smallholder coffee fields in the first year. Experimental blocks were replicated across eight smallholder farms, only a single replicate per farm due to the small farm sizes. The accession from Rwanda (T. vogelii ex. Gisagara) grew more vigorously in all experiments. Soils within the coffee fields were more fertile those outside the coffee fields, presumably due to farmers’ long-term management with mulch. Tephrosia grew less well in the fields outside coffee, producing only 0.6–0.7 Mg ha−1 of biomass and adding (in kg ha−1) 19 N, 1 P and 6 K in the mulch. By contrast, Tephrosia intercropped with coffee, produced 1.4–1.9 Mg ha−1 of biomass and added (in kg ha−1) 42–57 N, 3 P and 13–16 K in the mulch. Coffee yields were increased significantly by 400–500 kg ha−1 only in the treatments where Tephrosia was intercropped with coffee. Soil analysis and a missing-nutrient pot experiment showed that the poor growth of Tephrosia in the fields outside coffee was due to soil acidity (aluminium toxicity) combined with deficiencies of P, K and Ca.In the second year, the treatments in fields outside coffee were discontinued, and in the coffee intercrops, two Tephrosia accessions were grown in treatments with and without NPK fertilizer. Tephrosia grew well and produced between 2.5 and 3.8 Mg ha−1 biomass for the two accessions when interplanted within coffee fields, adding 103–150 kg N ha−1, 5–9 kg P ha−1 and 24–38 kg K ha−1. Tephrosia mulch increased yields of coffee by 400 kg ha−1. Combined use of NPK + Tephrosia mulch increased Tephrosia biomass production and in turn yielded an additional 300–700 kg ha−1 of coffee. Over the two years, this was equivalent to a 23–36% increase in coffee yield using Tephrosia intercropping alone and a further 25–42% increase in coffee yield when NPK fertilizer was also added. Agronomic efficiency (AE) of nutrients added were 30% greater when the Tephrosia mulch was grown in situ and the two cultivars of Tephrosia did not differ in AE. The AE of Tephrosia mulch was 87% that of NPK fertilizer, reflecting the rapid mineralization of Tephrosia mulch. There was a synergistic effect of Tephrosia mulch on the efficiency with which NPK fertilizer was used by coffee. The increase in coffee yields was positively related to the amount of nutrients added in the Tephrosia biomass. Tephrosia intercropping required 30 man-days ha−1 less than current farmer management due to reduced labour required for weeding, and benefit–cost ratios ranged between 3.4 and 5.5. The Tephrosia-coffee intercropping system offers great potential for agroecological intensification for smallholder farmers in the East African highlands.  相似文献   

11.
In organic agriculture, weeds and nitrogen deficiency are the main factors that limit crop production. The use of relay-intercropped forage legumes may be a way of providing ecological services such as weed control, increasing N availability in the cropping system thanks to N fixation, reducing N leaching and supplying nitrogen to the following crop. However, these ecological services can vary considerably depending on the growing conditions. The aim of this study was to identify early indicators to assess these two ecological services, thereby giving farmers time to adjust the management of both the cover crop and of the following crop.Nine field experiments were conducted over a period of three years. In each experiment, winter wheat was grown as sole crop or intercropped with one of two species of forage legumes; Trifolium repens L. or Trifolium pratense L. Two levels of fertilization were also tested (0 and 100 kg N ha−1). After the intercropping stage, the cover crop was maintained until the end of winter and then destroyed by plowing before maize was sown. Legume and weed biomass, nitrogen content and accumulation were monitored from legume sowing to cover destruction.Our results showed that a minimum threshold of about 2 t ha−1 biomass in the aboveground parts of the cover crop was needed to decrease weed infestation by 90% in early September and to ensure weed control up to December. The increase in nitrogen in the following maize crop was also correlated with the legume biomass in early September. The gain in nitrogen in maize (the following crop) was correlated with legume biomass in early September, with a minimum gain of 60 kg N ha−1 as soon as legume biomass reached more than 2 t ha−1.Legume biomass in early September thus appears to be a good indicator to predict weed control in December as well as the nitrogen released to the following crop. The indicator can be used by farmers as a management tool for both the cover crop and following cash crop. Early estimation of available nitrogen after the destruction of the forage legume can be used to adjust the supply of nitrogen fertilizer to the following crop.  相似文献   

12.
Spring-sown intercrops of wheat (Triticum aestivum L.) and faba beans (Vicia faba L.) were grown in three experiments at the University of Reading, UK. One wheat cultivar, Axona, and one (experiment 1) or two bean cultivars (experiments 2 and 3) Scirocco and Maris Bead, were grown as sole crops and intercrops at 50%, 75% and 100% recommended density. Experiments were rainfed but irrigation was an additional treatment in experiment 3. Biomass and seed yields of both wheat and faba beans were greater when monocropped than when intercropped. There was no evidence that radiation use efficiency (RUE) of intercrops was significantly different from sole crops. In all intercrops there was no significant effect of density on biomass, RUE or seed yield, though there were compensating changes in yield components. Seed yields of Maris Bead were significantly greater than Scirocco in experiment 3 but not experiment 2. There was no significant effect of irrigation on RUE or on wheat biomass and seed yield, but there was a trend for irrigation to increase faba bean biomass (P = 0.07) and seed yield (P = 0.06). With later sowing in experiments 2 and 3, time to harvest was shorter and wheat and bean biomass, seed yield and RUE were reduced. All land equivalent ratio (LER) values for both biomass (maximum 1.23) and seed yield (maximum 1.44) were greater than 1, with one exception in experiment 3, indicating that intercrops of wheat and faba beans make more effective use of land than equivalent sole crops. Partial LERs for faba beans were always lower than those of wheat. The tendency was for highest LERs to occur at 75% recommended density.  相似文献   

13.
For biomethane production, the cup plant (Silphium perfoliatum L.) is considered a promising alternative substrate to silage maize (Zea mays L.) due to its high biomass potential and associated ecological and environmental benefits. It has also been suggested to grow cup plant on less productive soils because of its presumed drought tolerance, but robust information on the impact of water shortage on biomass growth and substrate quality of cup plant is rare. Therefore, this study assesses the effects of soil water availability on the chemical composition and specific methane yield (SMY) of cup plant. Furthermore above-ground dry matter yield (DMY) was analysed as a function of intercepted photosynthetic active radiation (PAR) and radiation use efficiency (RUE). Data were collected in a two-year field experiment under rainfed and irrigated conditions with cup plant, maize, and lucerne-grass (Medicago sativa L., Festuca pratensis Huds., Phleum pratense L.). The cup plant revealed a slight decrease of −6% in the SMY in response to water shortage (less than 50% of plant available water capacity). The average SMY of cup plant [306 l (kg volatile solids (VS))−1] was lower than that of maize [362 l (kg VS)−1] and lucerne-grass [334 l (kg VS)−1]. The mean drought-related reduction of the methane hectare yield (MHY) was significantly greater for cup plant (−40%) than for maize (−17%) and lucerne-grass (−13%). The DMY reduction in rainfed cup plant was mainly attributed to a more severe decrease in RUE (−29%) than for maize (−16%) and lucerne-grass (−12%). Under water stress, the mean cup plant RUE (1.3 g MJ−1) was significantly lower than that of maize (2.9 g MJ−1) and lucerne-grass (1.4 g MJ−1). Compared to RUE, the reduced PAR interception was less meaningful for DMY in rainfed crops. Hence, the cup plant is not suitable for growing on drought prone lands due to its high water demand required to produce reasonably high MHYs.  相似文献   

14.
Intensive tillage by means of mouldboard ploughing can be highly effective for weed control in organic farming, but it also carries an elevated risk for rapid humus decomposition and soil erosion. To develop organic systems that are less dependent on tillage, a two-year study at Reinhardtsgrimma and Köllitsch, Germany was conducted to determine whether certain legume cover crops could be equally successfully grown in a no-till compared with a reduced tillage system. The summer annual legumes faba bean (Vicia faba L.), normal leafed field pea (Pisum sativum L.), narrow-leafed lupin (Lupinus angustifolius L.), grass pea (Lathyrus sativus L.), and common vetch (Vicia sativa L.) were examined with and without sunflower (Helianthus annuus L.) as a companion crop for biomass and nitrogen accumulation, symbiotic nitrogen fixation (N2 fixation) and weed suppression. Total cover crop biomass, shoot N accumulation and N2 fixation differed with year, location, tillage system and species due to variations in weather, inorganic soil N resources and weed competition. Biomass production reached up to 1.65 and 2.19 Mg ha−1 (both intercropped field peas), and N2 fixation up to 53.7 and 60.5 kg ha−1 (both common vetches) in the no-till and reduced tillage system, respectively. In the no-till system consistently low sunflower performance compared with the legumes prevented significant intercropping effects. Under central European conditions no-till cover cropping appears to be practicable if weed density is low at seeding. The interactions between year, location, tillage system and species demonstrate the difficulties in cover crop species selection for organic conservation tillage systems.  相似文献   

15.
The effects of an increase in UV-B radiation on growth and yield of maize (Zea mays L.) were investigated at four levels of applied nitrogen (0, 100, 200 and 300 kg ha−1 of N) under Mediterranean field conditions. The experiment simulated a 20% stratospheric ozone depletion over Portugal. Enhanced UV-B and N deficiency decreased yield and total biomass production by 22–49%. High UV-B dose reduced yield, total biomass and growth of N-fertilized maize plants but did not affect N-stressed plants to the same extent. The response of grain yield to N was smaller with enhanced UV-B radiation. The underlying mechanisms for these results are discussed.  相似文献   

16.
Long term investigations on the combined effects of tillage systems and other agronomic practices such as mineral N fertilization under Mediterranean conditions on durum wheat are very scanty and findings are often contradictory. Moreover, no studies are available on the long term effect of the adoption of conservation tillage on grain yield of maize and sunflower grown in rotation with durum wheat under rainfed Mediterranean conditions. This paper reports the results of a 20-years experiment on a durum wheat-sunflower (7 years) and durum wheat–maize (13 years) two-year rotation, whose main objective was to quantify the long term effects of different tillage practices (CT = conventional tillage; MT = minimum tillage; NT = no tillage) combined with different nitrogen fertilizer rates (N0, N1, N2 corresponding to 0, 45 and 90 kg N ha−1 for sunflower, and 0, 90 and 180 kg N ha−1 for wheat and maize) on grain yield, yield components and yield stability for the three crops. In addition, the influence of meteorological factors on the interannual variability of studied variables was also assessed. For durum wheat, NT did not allow substantial yield benefits leading to comparable yields with respect to CT in ten out of twenty years. For both sunflower and maize, NT under rainfed conditions was not a viable options, because of the unsuitable (i.e., too wet) soil conditions of the clayish soil at sowing. Both spring crops performed well with MT. No significant N × tillage interaction was found for the three crops. As expected, the response of durum wheat and maize grain yield to N was remarkable, while sunflower grain yield was not significantly influenced by N rate. Wheat yield was constrained by high temperatures in January during tillering and drought in April during heading. The interannual yield variability of sunflower was mainly associated to soil water deficit at flowering and air temperature during seed filling. Heavy rains during this latter phase strongly constrained sunflower grain yield. Maize grain yield was negatively affected by high temperatures in June and drought in July, this latter factor was particularly important in the fertilized maize. Considering both yield and yield stability, durum wheat and sunflower performed better under MT and N1 while maize performed better under both CT and MT and with N2 rates. The results of this long term study are suitable for supporting policies on sustainable Mediterranean rainfed cropping systems and also for cropping system modelling.  相似文献   

17.
Different tillage systems (conventional, minimum, raised bed and no tillage) and four mulch levels (control, polythene, straw and soil) were compared in maize (Zea mays) and wheat (Triticum aestivum) production for three years on an experimental field (sandy loam) located at Dry Land Research Sub Station, Dhiansar, Jammu. Each treatment was replicated four times in split plot design. The aim of the research was to determine the influence of tillage and mulch practices on economics, energy requirement, soil physical properties and performance of maize and wheat. Tillage methods significantly affected the soil physical properties as change in soil moisture contents and infiltration rate of soil was recorded. The soil moisture contents in minimum tillage (MT) were maximum (12.4%, 16.6%) in surface soil as compared to conventional tillage (CT) in maize and wheat crops, respectively. Comparing to the CT infiltration rate was (1.16times, 1.21times and 1.11times) higher in minimum tillage (MT), no tillage (NT) and raised bed (RB), respectively in kharif season. Similar results were also found in rabi season. The greatest maize yield of 1865 kg ha?1 was achieved with CT system while not significantly lower yield was achieved with MT system (1837 kg ha?1). However, wheat yield was recorded higher in MT as compare to the CT system. Comparing to the energy requirement of different operations, MT required 34.3% less, NT 31.1% less and RB 46.0% less than the CT system. MT system saved 2.5 times energy in tillage operation compared to the CT system. The economic analysis also revealed that the maximum benefits could be obtained from MT (EUR 202.4 ha?1) followed by RB (EUR 164.2 ha?1) and NT (EUR 158.3 ha?1) and lowest in CT (EUR 149.5 ha?1). Benefit-cost ratio was highest in MT (0.71) and lowest in CT (0.44). Results revealed that mulch significantly affected the soil physical properties and growth of maize. The maximum soil moisture content, infiltration rate and grain yield of maize and wheat recorded higher in mulching practices over no mulch treatment. Polythene mulch and straw mulch were almost equally valuable in maize and wheat sequence. Tillage (minimum) and mulch (polythene and straw) have pronounced effect on soil physical properties (improved infiltration rate and conserve soil water), energy requirement, economics and growth of maize and wheat.  相似文献   

18.
We studied the interaction between Eucalyptus saligna woodlots and maize crop in southern Rwanda. Three sites were selected and in each, a eucalypt woodlot with mature trees and a suitable adjoining crop field of 12.75 m × 30 m was selected. This was split into two plots of 6 m × 12 m and further subdivided into nine sub-plots running parallel to the tree-crop interface. Maize was grown in both 6 m × 12 m plots and one of these received fertiliser. Soil moisture, nutrients and solar radiation were significantly reduced near the woodlots, diminishing grain yield by 80% in the 10.5 m crop-field strip next to the woodlot. This reduction however affects only 10.5% of the maize crop field, leaving 89.5% unaffected. Spreading the loss to a hectare crop field, leads to an actual yield loss of 0.21 t ha−1, equivalent to 8.4%. Expressing yield loss in tree-crop systems usually presented as a percentage of yield recorded near the trees to that obtained in open areas may be misleading. Actual yields should be reported with corresponding crop field areas affected. Variation in grain yield coincided with those for soil moisture, soil N and K; all increasing from the woodlot-maize interface up to 10.5 m and remaining similar to the values in open areas thereafter. Solar radiation continued to increase with distance up to 18 m from the woodlot-maize interface. Harvest index in unfertilised maize exceeded that in the fertilised treatment reflecting the crop’s strategy to allocate resources to grain production under unfavourable conditions. Fertilisation increased maize yield from 1.3–2.6 t ha−1 but the trend in the woodlot effects on maize remained unaltered.  相似文献   

19.
The advantages and disadvantages of varying mixture proportion of crimson clover (Trifolium incarnatum L.) and Italian ryegrass (Lolium multiflorum Lam.), used as winter cover crops, and cover crop biomass management before maize sowing (Zea mays L.) were studied in a series of field experiments in Eastern Slovenia. Pure stands and mixtures of cover crops on the main plots were split into different cover crop biomass management subplots: whole cover crop biomass ploughed down before maize sowing, aboveground cover crop biomass removed before ploughing and sowing, or aboveground cover crop biomass removed before sowing directly into chemically killed residues.Cover crop and cover crop biomass management affected the N content of the whole aboveground and of grain maize yields, and the differences between actual and critical N concentrations in the whole aboveground maize yield. The whole aboveground and grain maize dry matter yields, and the apparent remaining N in the soil after maize harvesting, showed significant interaction responses to cover crop × management, indicating positive and negative effects. Crimson clover in pure stand provided high, and pure Italian ryegrass provided low maize dry matter yields and N content in the yields in all the observed methods of biomass management. However, within individual management, mixtures containing high proportions of crimson clover sustained maize yields and N contents similar to those produced by pure crimson clover. Considering the expected ecological advantages of the mixtures, the results thereby support their use.  相似文献   

20.
Sustainable soil and crop management practices that reduce soil erosion and nitrogen (N) leaching, conserve soil organic matter, and optimize cotton and sorghum yields still remain a challenge. We examined the influence of three tillage practices (no-till, strip till and chisel till), four cover crops {legume [hairy vetch (Vicia villosa Roth)], nonlegume [rye (Secaele cereale L.)], vetch/rye biculture and winter weeds or no cover crop}, and three N fertilization rates (0, 60–65 and 120–130 kg N ha−1) on soil inorganic N content at the 0–30 cm depth and yields and N uptake of cotton (Gossypium hirsutum L.) and sorghum [Sorghum bicolor (L.) Moench]. A field experiment was conducted on Dothan sandy loam (fine-loamy, siliceous, thermic, Plinthic Paleudults) from 1999 to 2002 in Georgia, USA. Nitrogen supplied by cover crops was greater with vetch and vetch/rye biculture than with rye and weeds. Soil inorganic N at the 0–10 and 10–30 cm depths increased with increasing N rate and were greater with vetch than with rye and weeds in April 2000 and 2002. Inorganic N at 0–10 cm was also greater with vetch than with rye in no-till, greater with vetch/rye than with rye and weeds in strip till, and greater with vetch than with rye and weeds in chisel till. In 2000, cotton lint yield and N uptake were greater in no-till with rye or 60 kg N ha−1 than in other treatments, but biomass (stems + leaves) yield and N uptake were greater with vetch and vetch/rye than with rye or weeds, and greater with 60 and 120 than with 0 kg N ha−1. In 2001, sorghum grain yield, biomass yield, and N uptake were greater in strip till and chisel till than in no-till, and greater in vetch and vetch/rye with or without N than in rye and weeds with 0 or 65 kg N ha−1. In 2002, cotton lint yield and N uptake were greater in chisel till, rye and weeds with 0 or 60 kg N ha−1 than in other treatments, but biomass N uptake was greater in vetch/rye with 60 kg N ha−1 than in rye and weeds with 0 or 60 kg N ha−1. Increased N supplied by hairy vetch or 120–130 kg N ha−1 increased soil N availability, sorghum grain yield, cotton and sorghum biomass yields, and N uptake but decreased cotton lint yield and lint N uptake compared with rye, weeds or 0 kg N ha−1. Cotton and sorghum yields and N uptake can be optimized and potentials for soil erosion and N leaching can be reduced by using conservation tillage, such as no-till or strip till, with vetch/rye biculture cover crop and 60–65 kg N ha−1. The results can be applied in regions where cover crops can be grown in the winter to reduce soil erosion and N leaching and where tillage intensity and N fertilization rates can be minimized to reduce the costs of energy requirement for tillage and N fertilization while optimizing crop production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号