首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Nowadays agricultural practices are based in the use of N fertilizers which can lead to environmental N losses. These losses can occur as nitrous oxide (N2O) emissions as result of the microbial processes of nitrification and denitrification. N2O together with carbon dioxide (CO2) and methane (CH4) are the strongest greenhouse gases (GHG) associated with agricultural soils. Nitrification inhibitors (NI) have been developed with the aim of decreasing fertilizer-induced N losses and increasing N efficiency. One of the most popular NI is the 3,4-dimethylpyrazol phosphate (DMPP) which have proven to be an advisable strategy to mitigate GHG emissions while maintaining crops yield. A new NI, 3,4-dimethylpyrazole succinic (DMPSA), has been developed. The objective of this study was to compare the impact of the new nitrification inhibitor DMPSA on greenhouse gases emissions, wheat yield and grain protein with respect to DMPP. For this purpose a field-experiment was carried out for two years. Fertilizer dose, with and without NIs, was 180 kg N ha−1 applied as ammonium sulphate (AS) split in two applications of 60 kg N ha−1 and 120 kg N ha−1, respectively. A single application of 180 kg N ha−1 of AS with NIs was also made. An unfertilized treatment was also included. The new nitrification inhibitor DMPSA reduces N2O emissions up to levels of the unfertilized control treatment maintaining the yield and its components. The DMPSA shows the same behavior as DMPP in relation to N2O fluxes, as well as wheat yield and quality. In spite of applying a double dose of N at stem elongation than at tillering, N2O losses from that period are lower than at tillering as a consequence of the influence of soil water content and temperature reducing the N2O/N2 ratio by denitrification. NI efficiency in reducing N2O losses is determined by the magnitude of the losses from the AS treatment.  相似文献   

2.
Efficient N management is essential to optimize yields and reduce degradation of the environment, but requires knowledge of deficit irrigation effects on crop yields and crop N outputs. This study assessed the N content and N-use efficiency of cotton over the 2008 and 2009 growing seasons in a single field site of the Thessaly Plain (central Greece). The experiment consisted of nine treatments with three fertilizer rates (60, 110 and 160 kg N ha−1) split into three irrigation levels (approx. 1.0, 0.7 and 0.4 of the amount applied by the producer). Reduced water supply induced a shift in the distribution of N within the plant with seeds becoming an N sink under conditions of water stress. Total crop N increased linearly with irrigation level and reached a maximum average of 261 and 192 kg N ha−1 in 2008 and 2009, respectively. Fertilizer application did not trigger a crop N or yield response and indicated that N inputs were in excess of crop needs. Variation in weather patterns appeared to explain annual differences of nitrate-N in the top soil and N uptake by the crop.The index of lint production efficiency (iNUE) detected crop responses caused by irrigation and annual effects, but failed to account for excessive N inputs due to mineral fertilizer applications. A maximum average iNUE of 9.6 was obtained under deficit irrigation, whereas an iNUE of 8.1 was obtained under 40 cm irrigation when crop N uptake was not excessive (192 kg ha−1 in 2009). In contrast, NUE, as an estimator of N recovery efficiency, identified excessive fertilizer inputs as N losses to the environment and indicated that 60 kg N ha−1 was a rate of high N removal efficiency and long-term N balance. However, NUE failed to account for crop N responses to irrigation and weather/management patterns. In this case study, neither index was able to detect all the factors influencing the N mass balance and both were required in order to provide a comprehensive evaluation of the environmental performance of our cropping system.  相似文献   

3.
The effects of soil tillage and straw management systems on the grain yield and nitrogen use efficiency of winter wheat (Triticum aestivum L. em. Thell.) were evaluated in a cool Atlantic climate, in central Ireland between 2009 and 2011. Two tillage systems, conventional tillage (CT) and reduced tillage (RT) each with and without incorporation of the straw of the preceding crop, were compared at five levels of fertiliser N (0, 140, 180, 220 and 260 kg N ha−1).CT had a significantly higher mean grain yield over the three years but the effect of tillage varied between years. Yields did not differ in 2009 (Year 1), while CT produced significantly higher grain yields in 2010 (Year 2), while RT produced the highest yields in 2011 (Year 3). Straw incorporation had no significant effect in any year.Nitrogen application significantly increased the grain yields of all establishment treatment combinations. Nitrogen use efficiency (NUE) ranged from 14.6 to 62.4 kg grain (85% DM) kg N ha−1 and decreased as N fertiliser rate was increased.The CT system had a significantly higher mean NUE over the three years but the effect of tillage varied with years. While there was no tillage effect in years 1 and 3, CT had a significantly higher NUE than RT in year 2. Straw management system had minimal effect on NUE in any year.The effect of tillage and N rate on soil mineral N content also varied between years. While there was no tillage effect in years 1 and 3, RT had significantly larger soil N contents than CT in the spring before N application, and post-harvest in year 2. N application rates had no effect on soil N in year 1, increased residual N content in year 2 and had an inconsistent effect in year 3. Straw management had no significant effect on soil mineral N content.These results indicate that RT establishment systems can be used to produce similar winter wheat yields to CT systems in a cool Atlantic climate, providing weather conditions at establishment are favourable. The response to nitrogen is similar with both tillage systems where the crop is successfully established. Straw management system has very little effect on crop performance or nitrogen uptake.  相似文献   

4.
Long term investigations on the combined effects of tillage systems and other agronomic practices such as mineral N fertilization under Mediterranean conditions on durum wheat are very scanty and findings are often contradictory. Moreover, no studies are available on the long term effect of the adoption of conservation tillage on grain yield of maize and sunflower grown in rotation with durum wheat under rainfed Mediterranean conditions. This paper reports the results of a 20-years experiment on a durum wheat-sunflower (7 years) and durum wheat–maize (13 years) two-year rotation, whose main objective was to quantify the long term effects of different tillage practices (CT = conventional tillage; MT = minimum tillage; NT = no tillage) combined with different nitrogen fertilizer rates (N0, N1, N2 corresponding to 0, 45 and 90 kg N ha−1 for sunflower, and 0, 90 and 180 kg N ha−1 for wheat and maize) on grain yield, yield components and yield stability for the three crops. In addition, the influence of meteorological factors on the interannual variability of studied variables was also assessed. For durum wheat, NT did not allow substantial yield benefits leading to comparable yields with respect to CT in ten out of twenty years. For both sunflower and maize, NT under rainfed conditions was not a viable options, because of the unsuitable (i.e., too wet) soil conditions of the clayish soil at sowing. Both spring crops performed well with MT. No significant N × tillage interaction was found for the three crops. As expected, the response of durum wheat and maize grain yield to N was remarkable, while sunflower grain yield was not significantly influenced by N rate. Wheat yield was constrained by high temperatures in January during tillering and drought in April during heading. The interannual yield variability of sunflower was mainly associated to soil water deficit at flowering and air temperature during seed filling. Heavy rains during this latter phase strongly constrained sunflower grain yield. Maize grain yield was negatively affected by high temperatures in June and drought in July, this latter factor was particularly important in the fertilized maize. Considering both yield and yield stability, durum wheat and sunflower performed better under MT and N1 while maize performed better under both CT and MT and with N2 rates. The results of this long term study are suitable for supporting policies on sustainable Mediterranean rainfed cropping systems and also for cropping system modelling.  相似文献   

5.
Increased per capita food production in the tropics is closely tied to soil organic matter and water management, timely nitrogen (N) supply and crop N use efficiency (NUE) which are influenced by farming systems. However, there is lack of data on the effect of organic farming systems on NUE and how this compares to conventional farming systems under tropical conditions. Therefore, the objectives of this study were to determine the effect of conventional and organic farming systems at low and high management intensities on N uptake and N use efficiency of potato (Solanum tuberosum L.), maize (Zea mays L.), cabbage (Brassica oleracea var. Capitata), kale (Brassica oleracea var. Acephala) and Swiss chard (Beta vulgaris sub sp. Cicla). The organic high input (Org-High) and conventional high input (Conv-High) farming systems are managed as recommended by research institutions while organic low input (Org-Low) and conventional low input (Conv-Low) farming systems are managed as practiced by small scale farmers in the Central highlands of Kenya. The study was conducted during three cropping seasons between October 2012 and March 2014 in an ongoing long-term trial established since 2007 at Chuka and at Thika, Kenya. Synthetic N-based fertilizer and cattle manure were applied at ∼225 kg N ha−1 yr−1 for Conv-High and at ∼50 kg N ha−1 yr−1 for the Conv-Low. Composts and other organic inputs were applied at similar N rates for Org-High and Org-Low. Nitrogen uptake efficiency (NUpE) of potato was highest in Conv-Low and Org-Low at Thika and lowest in Org-High and Org-Low at Chuka site where late blight disease affected potato performance. In contrast, the NUpE of maize was similar in all systems at Chuka site, but was significantly higher in Conv-High and Org-High compared to the low input systems at Thika site. The NUpE of cabbage was similar in Conv-High and Org-High while the NUpE of kale and Swiss chard were similar in the low input systems. Potato N utilization efficiencies (NUtE) and agronomic efficiencies of N use (AEN) in Conv-Low and Conv-High were 11–21 % and 1.4–3.4 times higher than those from Org-Low and Org-High, respectively. The AEN of maize was similar in all the systems at Chuka but was 3.2 times higher in the high input systems compared to the low input systems at the Thika site. The AEN of vegetables under conventional systems were similar to those from organic systems. Nitrogen harvest index (NHI) of potato was similar between Conv-High and Org-High and between Conv-Low and Org-Low. N partitioned into maize grain was similar in all the system at Chuka, but significantly lower (P < 0.001) in Conv-low and Org-Low at Thika site. The NHI of cabbage in Org-High was 24 % higher than that of Conv-High. The study concluded that for maize and vegetables, conventional and organic farming systems had similar effects on NUpE, AEN, NUtE and NHI, while for potato conventional systems improved NUE compared to organic systems. The study recommends that management practices for potato production in organic systems should be improved for a more efficient NUE.  相似文献   

6.
The use of winter cover crops enhances environmental benefits and, if properly managed, may supply economic and agronomic advantages. Nitrogen retained in the cover crop biomass left over the soil reduces soil N availability, which might enhance the N fertiliser use efficiency of the subsequent cash crop and the risk of depressive yield and pre-emptive competition. The main goal of this study was to determine the cover crop effect on crop yield, N use efficiency and fertiliser recovery in a 2-year study included in a long-term (10 years) maize/cover crop production system. Barley (Hordeum vulgare L.) and vetch (Vicia sativa L.), as cover crops, were compared with a fallow treatment during the maize intercropping period. All treatments were cropped following the same procedure, including 130 kg N ha−1 with 15N fertiliser. The N rate was reduced from the recommended N rate based on previous results, to enhance the cover crop effect. Crop yield and N uptake, soil N mineral and 15N fertiliser recovered in plants and the soil were determined at different times. The cover crops behaved differently: the barley covered the ground faster, while the vetch attained a larger coverage and N content before being killed. Maize yield and biomass were not affected by the treatments. Maize N uptake was larger after vetch than after barley, while fallow treatment provided intermediate results. This result can be ascribed to N mineralization of vetch residues, which results in an increased N use efficiency of maize. All treatments showed low soil N availability after the maize harvest; however, barley also reduced the N in the upper layers before maize planting, increasing the risk of pre-emptive competition. In addition to the year-long effect of residue decomposition, there was a cumulative effect on the soil’s capacity to supply N after 7 years of cover cropping, larger for the vetch than for the barley.  相似文献   

7.
A better understanding of the fate of fertilizer nitrogen (N) is critical to design appropriate N management strategies in plastic-mulched croplands. We evaluated the effects of plastic mulch on urea-N recovery by crops and loss from soil in furrow-ridge plots, with and without maize (Zea mays L.) cropping, in a semi-arid rain-fed site in China. We applied the same rate of urea-N (281 kg ha−1) to all treatments during the preparation of the furrow-ridges in 2011 and 2012 but 15N-labeled the urea in 2011 only. We used transparent film to cover all soil surfaces in the mulched treatments and seeded maize in furrows in treatments with crop. In 2011, plastic mulch increased the total N uptake in the aboveground biomass of maize by 53%, whereas it decreased the in-season labeled-N uptake by 19%, compared to non-mulched treatment. At harvest in 2011, in mulched treatments the total labeled-N remaining in the 0−170 cm soil layer was 25% greater whereas unaccounted labeled-N was 69% less, than in non-mulched treatments, regardless of whether maize was cropped. In 2012 the effect of mulch on total maize N uptake was comparable to that in 2011, but the residual soil labeled-N uptake by maize was 63% higher in mulched compared to non-mulched treatment. At harvest in 2012, plastic mulch increased total labeled-N remaining in the 0−170 cm depth in cropped soils and unaccounted labeled-N in non-cropped soils, compared with no mulch. Our results indicate that plastic mulch profoundly changes the fate of urea-N in maize production in cold and dry croplands.  相似文献   

8.
Depending on soil and management, ploughing up grassland for use as arable land can lead to an increase in the release of mineralized nitrogen and a high risk of nitrogen leaching during winter. The amount of N leaching is also dependent on the N efficiency of following crops and the level of N fertilization.In a field experiment in northwest Germany permanent grassland was ploughed and used as arable land. The experiment was conducted over 2 years at three sites and investigated two main factors: (i) succeeding crops, either spring barley (and catch crop)–maize or silage maize–maize; and (ii) N-fertilization either nil or moderate (120 kg N ha−1 for barley or 160 kg for maize). Plant yields, the soil mineral nitrogen (SMN) content and the nitrate leaching losses over winter were determined. On average for the 2-year period, the SMN in autumn and the nitrate leaching losses during winter for the rotation barley–maize were 76 kg ha−1 SMN and 81 kg N ha−1 N leaching losses, and for maize–maize they amounted to 108 and 113 kg ha−1, respectively. The SMN and N leaching losses for the plots with no N fertilizer were 49 and 52 kg N ha−1 and for the plots fertilized at a moderate N level they were 135 and 142 kg N ha−1, respectively.We conclude that although the extent of nitrate leaching is influenced by the site conditions and management of the grassland prior to ploughing, the management after ploughing is the decisive factor. The farmer can significantly reduce nitrate leaching with his choice of succeeding crop and the amount of N fertilization.  相似文献   

9.
Soil nitrogen (N) dynamics can be modified by cover crops in rotations with cereals. Although, roots are a major source of N, little is known about the dynamics of root decomposition of cash and cover crops. The objective of this study was to assess the effects that cover crop species have on i) the decomposition of spring wheat roots during the growth of cover crops, and ii) the decomposition of cover crop roots during the growing season of spring wheat. The experiment aimed also at comparing three non-winter hardy cover crops of varying shoot C/N ratios under low and high N input levels of 6 and 12 g N m−2 y−1, respectively. The experiment included spring wheat (Triticum aestivum L.) as the main crop and non-winter hardy cover crops (yellow mustard (Sinapis alba L.), phacelia (Phacelia tanacetifolia Benth), and sunflower (Helianthus annuus L.) as well as bare soil fallow treatment. Minirhizotrons were used to non-destructively assess the spatial and temporal patterns of root growth and decomposition from 0.10 to 1.00 m. Simultaneously, we grew all crops in soil columns to measure destructively C and N content in the roots. We concluded that wheat root decomposition was not affected by cover crop species. In contrast, during the growing season of wheat root decomposition of yellow mustard was on average twice as high for phacelia and sunflower as a consequence of a higher production of roots with a significantly higher C/N ratio compared to the other cover crops.  相似文献   

10.
The sustainability of growing a maize—winter wheat double crop rotation in the North China Plain (NCP) has been questioned due to its high nitrogen (N) fertiliser use and low N use efficiency. This paper presents field data and evaluation and application of the soil–vegetation–atmosphere transfer model Daisy for estimating crop production and nitrate leaching from silty loam fields in the NCP. The main objectives were to: i) calibrate and validate Daisy for the NCP pedo-climate and field management conditions, and ii) use the calibrated model and the field data in a multi-response analyses to optimise the N fertiliser rate for maize and winter wheat under different field managements including straw incorporation.The model sensitivity analysis indicated that a few measurable crop parameters impact the simulated yield, while most of the studied topsoil parameters affect the simulated nitrate leaching. The model evaluation was overall satisfactory, with root mean squared residuals (RMSR) for simulated aboveground biomass and nitrogen content at harvest, monthly evapotranspiration, annual drainage and nitrate leaching out of the root zone of, respectively, 0.9 Mg ha−1, 20 kg N ha−1, 30 mm, 10 mm and 10 kg N ha−1 for the calibration, and 1.2 Mg ha−1, 26 kg N ha−1, 38 mm, 14 mm and 17 kg N ha−1 for the validation. The values of mean absolute deviation, model efficiency and determination coefficient were also overall satisfactory, except for soil water dynamics, where the model was often found erratic. Re-validation run showed that the calibrated Daisy model was able to simulate long-term dynamics of crop grain yield and topsoil carbon content in a silty loam field in the NCP well, with respective RMSR of 1.7 and 1.6 Mg ha−1. The analyses of the model and the field results showed that quadratic, Mitscherlich and linear-plateau statistical models may estimate different economic optimal N rates, underlining the importance of model choice for response analyses to avoid excess use of N fertiliser. The analyses further showed that an annual fertiliser rate of about 300 kg N ha−1 (100 for maize and 200 for wheat) for the double crop rotation with straw incorporation is the most optimal in balancing crop production and nitrate leaching under the studied conditions, given the soil replenishment with N from straw mineralisation, atmospheric deposition and residual fertiliser.This work provides a sound reference for determining N fertiliser rates that are agro-environmentally optimal for similar and other cropping systems and regions in China and extends the application of the Daisy model to the analyses of complex agro-ecosystems and management practices under semi-arid climate.  相似文献   

11.
The expansion of biogas feedstock cultivation may affect a number of ecosystem processes and ecosystem services, and temporal and spatial dimensions of its environmental impact are subject to a critical debate. However, there are hardly any comprehensive studies available on the impact of biogas feedstock production on the different components of nitrogen (N) balance. The objectives of the current study were (i) to investigate the short-term effects of crop substrate cultivation on the N flows in terms of a N balance and its components (N fertilization, N deposition, N leaching, NH3 emission, N2O emission, N recovery in harvested product) for different cropping systems, N fertilizer types and a wide range of N rate, and (ii) to quantify the N footprint of feedstock production in terms of potential N loss per unit of methane produced. In 2007/08 and 2008/09, two field experiments were conducted at two sites in Northern Germany differing in soil quality, where continuous maize (R1), maize–whole crop wheat followed by Italian ryegrass as a double crop (R2), and maize–grain wheat followed by mustard as a catch crop (R3) were grown on Site 1 (sandy loam), and R1 and a perennial ryegrass ley (R4) at Site 2 (sandy soil rich in organic matter). Crops were supplied with varying amounts of N (0–360 kg N ha−1, ryegrass: 0–480 kg N ha−1) supplied as biogas digestate, cattle slurry, pig slurry or calcium-ammonium nitrate (CAN).Mineral-N fertilization of maize-based rotations resulted in negative N balances at N input for maximum yield (Nopt), with R2 having slightly less negative balances than R1 and R3. In contrast, N balances were close to zero for cattle slurry or digestate treatments. Thus, trade-offs between substrate feedstock production and changes of soil organic matter stocks have to be taken into consideration when evaluating biogas production systems. Nitrogen losses were generally dominated by N leaching, whereas for the organically fertilized perennial ryegrass ley the ammonia emission accounted for the largest proportion. Nitrogen balance of the ryegrass ley at Nopt was close to zero (CAN) or highly positive (cattle slurry, digestate). Nitrogen footprint (NFP) was applied as an eco-efficiency measure of N-loss potential (difference of N input and N recovery) related to the unit methane produced. NFP ranged between −11 and +6 kg N per 1000 m3 methane at Nopt for maize-based rotations, without a significant impact of cropping system or N fertilizer type. However, for perennial ryegrass ley, NFP increased up to 65 kg N per 1000 m3. The loose relation between NFP and observed N losses suggests only limited suitability for NFP.  相似文献   

12.
The effect of nitrogen (N) supply through animal and green manures on grain yield of winter wheat and winter rye was investigated from 1997 to 2004 in an organic farming crop rotation experiment in Denmark on three different soil types varying from coarse sand to sandy loam. Two experimental factors were included in the experiment in a factorial design: (1) catch crop (with and without), and (2) manure (with and without). The four-course crop rotation was spring barley undersown with grass/clover – grass/clover – winter wheat or wheat rye – pulse crop. All cuttings of the grass–clover were left on the soil as mulch. Animal manure was applied as slurry to the cereal crops in the rotation in rates corresponding to 40% of the N demand of the cereal crops.Application of 50 kg NH4–N ha?1 in manure increased average wheat grain yield by 0.4–0.9 Mg DM ha?1, whereas the use of catch crops did not significantly affect yield. The use of catch crops interacts with other management factors, including row spacing and weed control, and this may have contributed to the negligible effects of catch crops. There was considerable variation in the amount of N (100–600 kg N ha?1 year?1) accumulated in the mulched grass–clover cuttings prior to ploughing and sowing of the winter wheat. This was reflected in grain yield and grain N uptake. Manure application to the cereals in the rotation reduced N accumulation in grass–clover at two of the locations, and this was estimated to have reduced grain yields by 0.1–0.2 Mg DM ha?1 depending on site. Model estimations showed that the average yield reduction from weeds varied from 0.1 to 0.2 Mg DM ha?1. The weed infestation was larger in the manure treatments, and this was estimated to have reduced the yield benefit of manure application by up to 0.1 Mg DM ha?1. Adjusting for these model-estimated side-effects resulted in wheat grain yields gains from manure application of 0.7–1.1 Mg DM ha?1.The apparent recovery efficiency of N in grains (N use efficiency, NUE) from NH4–N in applied manure varied from 23% to 44%. The NUE in the winter cereals of N accumulated in grass–clover cuttings varied from 14% to 39% with the lowest value on the coarse sandy soil, most likely due to high rates of N leaching at this location. Both NUE and grain yield benefit in the winter cereals declined with increasing amounts of N accumulated in the grass–clover cuttings. The model-estimated benefit of increasing N input in grass–clover from 100 to 500 kg N ha?1 varied from 0.8 to 2.0 Mg DM ha?1 between locations. This is a considerably smaller yield increase than obtained for manure application, and it suggests that the productivity in this system may be improved by removing the cuttings and applying the material to the cereals in the rotation, possibly after digestion in a biogas reactor.Cereal grain protein content was increased more by the N in the grass–clover than from manure application, probably due to different timing of N availability. Green-manure crops or manures with a relatively wide C:N ratio may therefore be critical for ensuring sufficiently high protein contents in high yielding winter wheat for bread making.  相似文献   

13.
Fertiliser recommendation systems should aim at a finer tuning of non-renewable P inputs for agronomic, environmental and economic reasons. Modern decision support systems should take into account the relevant soil characteristics, the P recycling capabilities of the cropping system, and crop requirements for attainable production in a range of soil/weather conditions. Unfortunately, information is still lacking for low input cropping systems in south-western France. In 1968 INRA Toulouse set up a P experiment, which has been going on for 36 years, on a deep alluvial silty-clay/clay soil with varying CaCO3. Four P regimes (P0, P1, P2, P4) were arranged in four blocks with periodic changes in the fertiliser dressings. Wheat, maize, sunflower, sorghum and soybean were tested for grain yield (GY) and grain P concentration (GPC) response to soil Olsen P concentration. The highest GY were observed in both P2 and P4, although P1 yields were significantly lower in only 4 years out of 36. P0 resulted 32 times in lower yields than P2–P4 and 27 times in lower yields than P1. Wheat was the crop most sensitive to the absence of P fertilization (GYP0/GYPmax = 0.72); maize and sorghum were intermediate (0.77) and sunflower was the less sensitive on average (0.83). As the highest GPC values were observed in the P4 treatments, P removal was maximum for P4 (21.9 kg P ha−1 year−1) and minimal in P0 (11.7 kg P ha−1 year−1). The critical soil Olsen P values for yield responses were determined using the Cate–Nelson and Mitscherlich approaches. Although the thresholds differ for the two methods (3.3–7.2 mg P kg−1 with Cate–Nelson; 4.4–11.2 mg P kg−1 with Mitscherlich), crops ranked similarly with both methods. Critical soil P values were lowest for maize and highest for sunflower, while wheat, soybean and sorghum had intermediate values. Because of low-input management and frequent water stress, critical values fall within the lower range of published values. Only in the P4 treatment were P-Olsen values potentially hazardous for the environment (>20 mg P kg−1) 8–10 years after the beginning of the experiment. Annual P dressings of 17.5 kg P ha−1 year−1 (P1) were sufficient to achieve good yields but P dressings of 35 kg P ha−1 year−1 (P2) were necessary to stabilize soil P around the critical level in the calcareous part of the experiment.  相似文献   

14.
This work was aimed at providing a sustainable approach in the use of manure in irrigated maize crop under Mediterranean climatic conditions. To this end, the effect of continuous annual applications of dairy cattle manure, combined or not with mineral N fertilizer, on the following parameters was studied: grain yield, grain and plant N concentration, N uptake by plant, N use efficiency, and soil N and organic carbon. The experiment was conducted in a furrow-irrigated sandy soil under dry Mediterranean conditions during seven years. Three different rates of cattle manure (CM): 0, 30 and 60 Mg ha−1, were applied each year before sowing. These CM rates were combined with four mineral N rates (0, 100, 200 and 300 kg N ha−1) applied at sidedress.On average, the highest grain yields during the 7 years were obtained with the combination of CM at 30 Mg ha−1 and mineral fertilizer and with CM at 60 Mg ha−1 without mineral fertilizer. With CM at 30 Mg ha−1, mineral fertilizer increased yields during most of the growing seasons, meanwhile with CM at 60 Mg ha−1, there was not any significant effect of the joint application of mineral fertilizer on yields. Overall, best results were obtained exceeding maximum rates according to present legislation. The mean apparent nitrogen recovery (ANR) fraction during the 7 seasons was 29% for N exclusively applied as CM. Overall, increased N rates applied as CM resulted in decreased ANRs. However, ANR with CM at 30 and 60 Mg ha−1 increased during the first two seasons. This increased ANR ascribed to mineralization of residual organic N applied in previous seasons explained the increasing yields observed in the treatments along the study.The application of CM during 7 years increased the soil organic carbon in the first 30 cm by 5.7 and 9.9 Mg ha−1 with CM at 30 and 60 Mg ha−1, respectively, when compared to the initial stock. Thus, manure-based fertilization could be an alternative to mineral fertilizer in order to achieve high maize yields while improving soil quality under dry Mediterranean conditions.  相似文献   

15.
We studied the interaction between Eucalyptus saligna woodlots and maize crop in southern Rwanda. Three sites were selected and in each, a eucalypt woodlot with mature trees and a suitable adjoining crop field of 12.75 m × 30 m was selected. This was split into two plots of 6 m × 12 m and further subdivided into nine sub-plots running parallel to the tree-crop interface. Maize was grown in both 6 m × 12 m plots and one of these received fertiliser. Soil moisture, nutrients and solar radiation were significantly reduced near the woodlots, diminishing grain yield by 80% in the 10.5 m crop-field strip next to the woodlot. This reduction however affects only 10.5% of the maize crop field, leaving 89.5% unaffected. Spreading the loss to a hectare crop field, leads to an actual yield loss of 0.21 t ha−1, equivalent to 8.4%. Expressing yield loss in tree-crop systems usually presented as a percentage of yield recorded near the trees to that obtained in open areas may be misleading. Actual yields should be reported with corresponding crop field areas affected. Variation in grain yield coincided with those for soil moisture, soil N and K; all increasing from the woodlot-maize interface up to 10.5 m and remaining similar to the values in open areas thereafter. Solar radiation continued to increase with distance up to 18 m from the woodlot-maize interface. Harvest index in unfertilised maize exceeded that in the fertilised treatment reflecting the crop’s strategy to allocate resources to grain production under unfavourable conditions. Fertilisation increased maize yield from 1.3–2.6 t ha−1 but the trend in the woodlot effects on maize remained unaltered.  相似文献   

16.
Biomass productivity, nitrogen recovery fraction and nitrogen utilization efficiency (NUE) of kenaf (Hibiscus cannabinus L.) cultivar Tainung 2 were tested, under three Lens culinaries treatments (incorporated, harvested before the sowing of the energy crop and mono-cropping) and four nitrogen dressings (0, 50, 100 and 150 kg ha−1), in two field experiments carried out on a fertile, clayey to loamy soil, and on a sandy soil of moderate fertility, in central Greece, over the period 2007–2009. The obtained results showed a positive response in L. culinaries cover cropping on kenaf total yield, on both experimental sites. Total dry biomass fluctuated from 16.07 to 21.46 t ha−1 for incorporated plots and from 13.63 to 16.55 t ha−1 for control treatments (relied only on applications of N-fertilization) for sandy soil, and from 14.98 to 19.28 t ha−1 in case of legume incorporation and from 12.34 to 16.69 t ha−1 for control plots, for clayey soil, respectively. The evaluated NUE was 76 kg kg−1, for sandy soil, and 72 kg kg−1, for clay soil. The recovery fraction escalated from 41% in control plots to 70% in plots with previous L. culinaries cultivation for sandy soil, while for clayey soil an increase of 20% was recorded, indicating a prominent effect of legume cover-cropping management.  相似文献   

17.
Cover crops in dry regions have been often limited by low nutrient and water-use efficiency. This study was conducted during 3.5 years to determine the effect of replacing bare fallow by a cover crop on yield, N uptake, and fate of labeled fertiliser in an intensive maize production system. Three treatments were studied: barley (Hordeum vulgare L.), vetch (Vicia villosa L.) and bare fallow during the intercropping period of maize (Zea mays L.). All treatments were irrigated and fertilised following the same procedure, and a microplot in each plot was established with 210 kg N ha?1 of double labeled ammonium nitrate. Crop yield and N uptake, soil mineral N (Nmin), and recovery of 15N in plant and soil were determined after maize harvest and killing the cover crop. Replacing bare fallow with cover crops did not affect subsequent maize yield but affected N uptake. Vetch increased N supply by legume residues after the second year, and the N content in grain by the third. Nitrogen recover from fertiliser was not affected by treatment and averaged 46%. Barley recovered more 15N during the autumn–winter period than vetch or fallow. Under representative conditions, average barley N content was 47, vetch 51, and spontaneous vegetation content 0.8 kg N ha?1. Recovery of 15N in barley comprised 19% of total N content in aerial biomass, while only 4% in vetch. Vetch enhaced soil 15N recovery more than other treatments, suggesting its presence in a fairly stable organic fraction unavailable for maize uptake or lost. Replacing bare fallow by a cover crop only reduced fertiliser losses in a year with abundant precipitation. Nevertheless, reduction in soil Nmin in vetch and bare fallow treatments was similar, showing that N losses can be reduced in this cropping system, either by replace bare fallow with barley or smaller N fertiliser applicationto maize.  相似文献   

18.
In southern Europe (Italy), a two-site field experiment with contrasting soil conditions (high clay—SOC-protecting soil near Napoli versus low clay—non-SOC-protecting soil near Torino) was conducted to evaluate the short-term potential of a carbon (C) friendly management to sustain and possibly increase both crop yields and soil organic C (SOC). Compost distribution (COM1, COM2) and minimum tillage (MT) were compared to conventional management (CONV) in a maize-based cropping system. COM1, MT, and CONV each received 130 kg N ha−1 in compost or urea form. A double dose was applied to COM2 while the plowed control plots (0 N) were not fertilized. Fertilizers were applied for three years (from 2006 to 2008); residual soil fertility was assessed during the fourth year (2009).Results suggested that only the SOC protection strategy via MT could be agronomically sustainable in the high clay content soil near Napoli. There, a short-term SOC increase was recorded with either compost or MT application. In fact, in the same soil, compost use depressed both yield and N availability for maize, which we attribute to the reduction of SOM mineralization due to hydrophobic protection by added humified organic matter coupled with soil physical protection. Compost addition increased SOC (55.1% of added C) in the soil near Torino, where high native N availability buffered its low mineralization and allowed high yields. Alternatively, MT showed no effect on short-term C dynamics, probably because the low organic matter protection favored oxidation and mineralization of root-derived C.  相似文献   

19.
Regions in north-western Europe characterized by high density of livestock/biogas plants and extensive silage maize production are facing major environmental challenges due to excessive residual soil mineral nitrogen (N) in autumn and hence nitrate leaching. Winter catch crops (CC) have potential to accumulate residual N; however, the N uptake potential after maize harvest in autumn and spring remains unclear. Therefore, a two-year field trial (April 2012–April 2014) was conducted at three sites, to quantify the combined effects of four consecutive CC sowing dates (10 Sep; 20 Sep; 30 Sep and 15 Oct) and two CC species (rye, Secale cereale. L. and Italian ryegrass, Lolium multiflorum Lam.) on DM accumulation and N uptake of CC above- and belowground in autumn and spring, and to derive functional relationships. The results clearly showed that rye was more effective in accumulating biomass and nitrogen than Italian ryegrass. The better performance of rye was related to increased growth intensity of roots and shoot, a different allocation pattern and higher N uptake efficiency. An exponential function of temperature sum (Tsum) produced a reliable prediction of above- and belowground biomass and N. To achieve an agronomically relevant N uptake of 20 kg N ha−1, rye required 278 °Cd Tsum, which corresponds to a sowing date latest in the second decade of September. Under favourable growing conditions, a biomass accumulation of up to 5 Mg DM ha−1, corresponding to 83 kg N ha−1 above- and belowground, seems achievable under the given environmental conditions. In continuous maize grown under the environmental conditions of Northern Germany, however, catch crops will not reach a relevant N uptake on the long-term average.  相似文献   

20.
In the rainfed mid-hill region of Nepal, most fields receive 2–3 t ha−1 of organic compost application every year. Despite efficient recovery and use of organics in the mixed crop-animal systems that predominant in the mid-hills, depleted soil fertility is widely understood to be a significant constraint to crop productivity, with most farmers achieving maize grain yields below 2 t ha−1. Increased use of fertilizer may arrest and even reverse long-term soil quality degradation, but few farmers in the mid-hills use them at present and existing recommendations are insufficiently responsive to site, varietal, and management factors that influence the productivity and profitability of increased fertilizer use. Moreover, policy makers and development practitioners often hold the perception that returns to fertilizer use in the mid-hills are too low to merit investment. In this study, on-farm experiments were conducted at 16 sites in the Palpa district, Nepal to assess the responsiveness of a maize hybrid (DKC 9081) and an ‘improved’ open-pollinated maize variety (‘OPV’, Manakamana-3) to four nitrogen (N) rates, i.e., 0, 60, 120 and 180 kg ha−1, with each N rate response evaluated at 30:30 and 60:60 kg ha−1 rates of phosphorus (P2O5) and potassium (K2O), respectively. With sound agronomy and high rates of fertilizer (180:60:60 kg N:P2O5:K2O ha−1), grain yields observed in the field experiments exceeded 8 t ha−1 with hybrids and 6 t ha−1 with OPV. Yield levels were lower for OPV than hybrid at every level of applied N, but both genotypes responded linearly to N with partial factor productivity for N (PFPN) ranging from 14 to 19 for OPV versus 26–30 for hybrid, with improved N efficiencies obtained when P and K rates were significantly higher. Averaged across phosphorus (P) and potassium (K) levels, a $ 1 incremental investment in fertilizer increased the gross margin (GM) by $ 1.70 ha−1 in OPV and by $ 1.83 ha−1 in the hybrid. For the full response of N, requires higher rate of P2O5:K2O and vice-versa and full response to P2O5:K2O does not occur if N is absent. These results suggest that, i) degraded soils in the mid-hills of Nepal respond favorably to macronutrient fertilizers – even at high rates, ii) balanced fertilization is necessary to optimize returns on investments in N but must be weighed against additional costs, iii) OPVs benefit from investments in fertilizer, albeit at a PFPN that is 36–47% lower than for hybrids, and, consequently iv) hybrids are an effective mechanism for achieving a higher return on fertilizer investments, even when modest rates are applied. To extend these findings across years and sites in the mid-hills, crop growth simulations using the CERES-maize model (DSSAT) were conducted for 11 districts with historical weather and representative soils data. Average simulated (hybrid) maize yields with high fertilizer rate (180:60:60 kg N:P2O5:K2O ha−1) ranged from 3.9 t ha−1 to 7.5 t ha−1 across districts, indicating a high disparity in attainable yield potential. By using these values to estimate district-specific attainable yield targets, recommended N fertilizer rates vary between 65 and 208 kg N ha−1, highlighting the importance of developing domain-specific recommendations. Simulations also suggest the potential utility of using weather forecasts in tandem with site and planting date information to adjust fertilizer recommendations on a seasonal basis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号