首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The efficient use by crops of nitrogen from manures is an agronomic and environmental issue, mainly in double-annual forage cropping systems linked to livestock production. A six-year trial was conducted for a biennial rotation of four forage crops: oat-sorghum (first year) and ryegrass-maize (second year) in a humid Mediterranean area. Ten fertilization treatments were introduced: a control (without N); two minerals equivalent to 250 kg N ha−1 year−1 applied at sowing or as sidedressing; dairy cattle manure at a rate of 170, 250 and 500 kg N ha−1 year−1 and four treatments where the two lowest manure rates were supplemented with 80 or 160 kg mineral N ha−1 year−1. They were distributed according to a randomized block design with three blocks. The highest N mineral soil content was found in the summer of the third rotation, in plots where no manure was applied. The yearly incorporation of manure reduced, in successive cropping seasons, the amount of additional mineral N needed as sidedressing to achieve the highest yields. Besides, in the last two years, there was no need for mineral N application for the manure rate of 250 kg N ha−1 year−1. This amount always covered the oat-sorghum N uptake. In the ryegrass-maize sequence uptakes were as high as 336 kg N ha−1 year−1. In the medium term, the intermediate manure rate (250 kg N ha−1 year−1) optimizes nutrient recycling within the farming system, and it should be considered in the analysis of thresholds for N of organic origin to be applied to systems with high N demand.  相似文献   

2.
In dryland agricultural systems, pig slurry (PS) is usually applied to cereal crops only at sowing, and slurries accumulate for the rest of the year in pits. In this context, a four-year experiment was established in order to evaluate the feasibility of PS applications at the barley or wheat tillering stage. The main treatments were PS either applied at sowing (25 Mg ha−1) or not, but they alternated after a two-year period. Both were annually combined with eight side-dressing treatments at cereal tillering: mineral N as NH4NO3 (M; 60 or 120 kg N ha−1 yr−1), PS from fattening pigs (PSf; 17, 30, 54 Mg ha−1 yr−1), PS from sows (PSs; 25, 45, 81 Mg ha−1 yr−1) and a treatment without N. The combined fertilization treatments were 18 plus a control (no N applied). In the context of crop rotation, the biennial alternation of PS applied at sowing allowed the control of soil nitrate increments, while PS side-dressing improved N recovery compared with a unique application at sowing. The highest yields (>3.6 Mg ha−1 yr−1) were obtained with an annual average (4-yr) N rate close to 173 kg N ha−1 (±40 kg N ha−1). The best overall strategies corresponded to PSs side-dressings of 50–90 kg N ha−1. These PSs rates also recorded the highest values on the five calculated N-efficiency indexes, which were higher than or similar to results from M side-dressings or those recorded in the literature. These similarities (M vs. PSs) were also shown by the reduction of unaccounted-for N inside the overall N balance. Thus, split PS application during the crop cycle is a sound fertilization option in dryland systems.  相似文献   

3.
In recent years, the cultivation of the pseudocereal species amaranth, quinoa, and buckwheat has gained rising attention. This study was undertaken to explore nitrogen (N) fertility requirements and nitrogen use efficiency of these species. For this purpose, a 2-year field experiment with N rates of 0, 80, and 120 kg N ha−1 for amaranth and quinoa and 0, 30, and 60 kg N ha−1 for buckwheat and two cultivars of each species was conducted.Grain yield of amaranth responded to N and ranged between 1986 and 2767 kg ha−1. Nitrogen utilization efficiency (NUtE) ranged from 13.9 to 15.4 kg grain yield per kg above-ground plant N and decreased with increasing N rate. Higher grain yields and NUtEs seemed to be mainly inhibited by the low harvest index (0.22–0.23) of the investigated amaranth cultivars.Quinoa yielded between 1790 and 3495 kg grain ha−1 and responded strongly to N fertilization. NUtE averaged 22.2 kg kg−1 and did not decrease with increasing N rates.The grain yield of buckwheat did not respond to N fertilization and averaged 1425 kg ha−1. N uptake increased only slightly with N fertilization. NUtE ranged from 16.1 to 20.0 kg kg−1. Main problems occurring with the application of N to buckwheat were grain scattering and lodging.  相似文献   

4.
The level of N fertilization and the content of leaf N in Cynodon dactylon × C. transvaalensis Burtt Davy cv. ‘Tifway 419’ bermudagrass were evaluated non-destructively with a fluorescence-based method. It was applied directly into the field by using the Multiplex portable fluorimeter during two consecutive seasons (2010 and 2011). In the 2010 experiment, the nitrogen balance index (NBI1) provided by the sensor was able to discriminate (at P < 0.05) six different N levels applied, up to 250 kg ha−1, with a precision (root mean square error, RMSE) in the rate estimate of 3.29 kg ha−1. In 2011, the index was insensitive to the N treatment between 150 kg ha−1 and 250 kg ha−1 N rates, and its precision was 39.98 kg ha−1. Calibration of the sensor by using the destructive analysis of turf samplings showed a good linear regression between NBI1 and the leaf N content for both 2010 (R2 = 0.81) and 2011 (R2 = 0.93) experiments. This allowed mapping of the leaf N spatial distribution acquired by the sensor in the field with a prediction error of 0.21%. Averaging the overall estimates of leaf N content per N treatment provided an upper limit of 200 kg ha−1 for the required fertilization, corresponding to a critical level of leaf N of about 2.3%. Our results confirm the usefulness of the new fluorescence-based method and sensor for a precise management of fertilization in turfgrass.  相似文献   

5.
The aim of the present work was to evaluate the effect of soil water availability and nitrogen fertilization on yield, water use efficiency and agronomic nitrogen use efficiency of giant reed (Arundo donax L.) over four-year field experiment.After the year of establishment, three levels for each factor were studied in the following three years: I0 (irrigation only during the year of establishment), I1 (50% ETm restitution) and I2 (100% ETm restitution); N0 (0 kg N ha−1), N1 (60 kg N ha−1) and N2 (120 kg N ha−1).Irrigation and nitrogen effects resulted significant for stem height and leaf area index (LAI) before senescence, while no differences were observed for stem density and LAI at harvest.Aboveground biomass dry matter (DM) yield increased following the year of establishment in all irrigation and N fertilization treatments. It was always the highest in I2N2 (18.3, 28.8 and 28.9 t DM ha−1 at second, third and fourth year growing season, respectively). The lowest values were observed in I0N0 (11.0, 13.4 and 12.9 t DM ha−1, respectively).Water use efficiency (WUE) was significantly higher in the most stressed irrigation treatment (I0), decreasing in the intermediate (I1) and further in the highest irrigation treatment (I2). N fertilization lead to greater values of WUE in all irrigation treatment.The effect of N fertilization on agronomic nitrogen use efficiency (NUE) was significant only at the first and second growing season.Giant reed was able to uptake water at 160–180 cm soil depth when irrigation was applied, while up to 140–160 cm under water stress condition.Giant reed appeared to be particularly suited to semi-arid Mediterranean environments, showing high yields even in absence of agro-input supply.  相似文献   

6.
Depending on soil and management, ploughing up grassland for use as arable land can lead to an increase in the release of mineralized nitrogen and a high risk of nitrogen leaching during winter. The amount of N leaching is also dependent on the N efficiency of following crops and the level of N fertilization.In a field experiment in northwest Germany permanent grassland was ploughed and used as arable land. The experiment was conducted over 2 years at three sites and investigated two main factors: (i) succeeding crops, either spring barley (and catch crop)–maize or silage maize–maize; and (ii) N-fertilization either nil or moderate (120 kg N ha−1 for barley or 160 kg for maize). Plant yields, the soil mineral nitrogen (SMN) content and the nitrate leaching losses over winter were determined. On average for the 2-year period, the SMN in autumn and the nitrate leaching losses during winter for the rotation barley–maize were 76 kg ha−1 SMN and 81 kg N ha−1 N leaching losses, and for maize–maize they amounted to 108 and 113 kg ha−1, respectively. The SMN and N leaching losses for the plots with no N fertilizer were 49 and 52 kg N ha−1 and for the plots fertilized at a moderate N level they were 135 and 142 kg N ha−1, respectively.We conclude that although the extent of nitrate leaching is influenced by the site conditions and management of the grassland prior to ploughing, the management after ploughing is the decisive factor. The farmer can significantly reduce nitrate leaching with his choice of succeeding crop and the amount of N fertilization.  相似文献   

7.
High rates of nitrogen (N) fertilizer may increase N leaching with drainage, especially when there is no further crop response. It is often discussed whether leaching is affected only at levels that no longer give an economic return, or whether reducing fertilization below the economic optimum could reduce leaching further. To study nitrate leaching with different fertilizer N rates (0–135 kg N ha−1) and grain yield responses, field experiments in spring oats were conducted in 2007, 2008 and 2009 on loamy sand in south-west Sweden. Nitrate leaching was determined from nitrate concentrations in soil water sampled with ceramic suction cups and measured discharge at a nearby measuring station. The results showed that nitrate leaching per kg grain produced had its minimum around the economic optimum, here defined as the fertilization level where each extra kg of fertilizer N resulted in a 10 kg increase in grain yield (85% DM). There were no statistically significant differences in leaching between treatments fertilized below this level. However, N leaching was significantly elevated in some of the treatments with higher fertilization rates and the increase in nitrate leaching from increased N fertilization could be described with an exponential function. According to this function, the increase was <0.04 kg kg−1 fertilizer N at and below the economic optimum. Above this fertilization level, the nitrate leaching response gradually increased as the yield response ceased and the increase amounted to 0.1 and 0.5 kg kg−1 when the economic optimum was exceeded by 35 and 100 kg N ha−1, respectively. The economic optimum fertilization level depends on the price relationship between grain and fertilizer, which in Sweden can vary between 5:1 and 15:1. In other words, precision fertilization that provides no more or no less than a 10 kg increase in grain yield per kg extra N fertilizer can be optimal for both crop profitability and the environment. To predict this level already at fertilization is a great challenge, and it could be argued that rates should be kept down further to ensure that they are not exceeded due to overestimation of the optimum rate. However, the development of precision agriculture with new tools for prediction may reduce this risk.  相似文献   

8.
To identify the best practice for nitrogen (N) fertilization of overwinter processing spinach, two field experiments were carried out in the Foggia plain (Southern Italy), one of the most vocated area for leafy vegetables production. The field trials were aimed to define and suggest the proper fertilizer dose, typology and the right time of application. Experiment 1 evaluated four N fertilizer doses (0, 150, 225, 300 kg ha−1) in a two-year field trial. Experiment 2 was aimed to assess the effect of the split distribution of prilled urea fertilizer in comparison with the application of nitrification inhibitor (DMPP) containing urea fertilizer, broadcasted at sowing.Spinach yield, yield quality (nitrate – NO3 – and carotenoids content), N-use efficiency and risk of soil nitrate (NO3-N) leaching were evaluated. The processing spinach yielded 37.8 and 3.6 t ha−1 of fresh and dry yield, respectively (average of the two experiments). Fresh and dry yield among the fertilizing treatments were similar. Also the β-carotene and the lutein content of spinach leaves (19.5 and 38.1 mg kg−1, respectively) were not affected by the N fertilizer dose. Conversely, the N dose strongly influenced the NO3 content of the leafy vegetable tissues (1286 mg kg−1 on average, 58% lower than the limits imposed by the EC regulation). As expected, the different rainfall pattern influenced both the leaf NO3 content and the risk of soil NO3-N leaching. The results achieved demonstrated that, in order to get a favorable trade-off, among yield, yield quality, N-use efficiency and environmental impact, the processing spinach growers of the Foggia plain area should be encouraged to apply 225 kg N ha−1 as maximum fertilization rate. Also, the split urea fertilizer application appeared as the more effective strategy for N fertilization of overwinter spinach in comparison with the use of the nitrification inhibitor containing urea fertilizer, being the last strategy not able to adequately match the N crop demand.  相似文献   

9.
Sustainable soil and crop management practices that reduce soil erosion and nitrogen (N) leaching, conserve soil organic matter, and optimize cotton and sorghum yields still remain a challenge. We examined the influence of three tillage practices (no-till, strip till and chisel till), four cover crops {legume [hairy vetch (Vicia villosa Roth)], nonlegume [rye (Secaele cereale L.)], vetch/rye biculture and winter weeds or no cover crop}, and three N fertilization rates (0, 60–65 and 120–130 kg N ha−1) on soil inorganic N content at the 0–30 cm depth and yields and N uptake of cotton (Gossypium hirsutum L.) and sorghum [Sorghum bicolor (L.) Moench]. A field experiment was conducted on Dothan sandy loam (fine-loamy, siliceous, thermic, Plinthic Paleudults) from 1999 to 2002 in Georgia, USA. Nitrogen supplied by cover crops was greater with vetch and vetch/rye biculture than with rye and weeds. Soil inorganic N at the 0–10 and 10–30 cm depths increased with increasing N rate and were greater with vetch than with rye and weeds in April 2000 and 2002. Inorganic N at 0–10 cm was also greater with vetch than with rye in no-till, greater with vetch/rye than with rye and weeds in strip till, and greater with vetch than with rye and weeds in chisel till. In 2000, cotton lint yield and N uptake were greater in no-till with rye or 60 kg N ha−1 than in other treatments, but biomass (stems + leaves) yield and N uptake were greater with vetch and vetch/rye than with rye or weeds, and greater with 60 and 120 than with 0 kg N ha−1. In 2001, sorghum grain yield, biomass yield, and N uptake were greater in strip till and chisel till than in no-till, and greater in vetch and vetch/rye with or without N than in rye and weeds with 0 or 65 kg N ha−1. In 2002, cotton lint yield and N uptake were greater in chisel till, rye and weeds with 0 or 60 kg N ha−1 than in other treatments, but biomass N uptake was greater in vetch/rye with 60 kg N ha−1 than in rye and weeds with 0 or 60 kg N ha−1. Increased N supplied by hairy vetch or 120–130 kg N ha−1 increased soil N availability, sorghum grain yield, cotton and sorghum biomass yields, and N uptake but decreased cotton lint yield and lint N uptake compared with rye, weeds or 0 kg N ha−1. Cotton and sorghum yields and N uptake can be optimized and potentials for soil erosion and N leaching can be reduced by using conservation tillage, such as no-till or strip till, with vetch/rye biculture cover crop and 60–65 kg N ha−1. The results can be applied in regions where cover crops can be grown in the winter to reduce soil erosion and N leaching and where tillage intensity and N fertilization rates can be minimized to reduce the costs of energy requirement for tillage and N fertilization while optimizing crop production.  相似文献   

10.
Fertiliser recommendation systems should aim at a finer tuning of non-renewable P inputs for agronomic, environmental and economic reasons. Modern decision support systems should take into account the relevant soil characteristics, the P recycling capabilities of the cropping system, and crop requirements for attainable production in a range of soil/weather conditions. Unfortunately, information is still lacking for low input cropping systems in south-western France. In 1968 INRA Toulouse set up a P experiment, which has been going on for 36 years, on a deep alluvial silty-clay/clay soil with varying CaCO3. Four P regimes (P0, P1, P2, P4) were arranged in four blocks with periodic changes in the fertiliser dressings. Wheat, maize, sunflower, sorghum and soybean were tested for grain yield (GY) and grain P concentration (GPC) response to soil Olsen P concentration. The highest GY were observed in both P2 and P4, although P1 yields were significantly lower in only 4 years out of 36. P0 resulted 32 times in lower yields than P2–P4 and 27 times in lower yields than P1. Wheat was the crop most sensitive to the absence of P fertilization (GYP0/GYPmax = 0.72); maize and sorghum were intermediate (0.77) and sunflower was the less sensitive on average (0.83). As the highest GPC values were observed in the P4 treatments, P removal was maximum for P4 (21.9 kg P ha−1 year−1) and minimal in P0 (11.7 kg P ha−1 year−1). The critical soil Olsen P values for yield responses were determined using the Cate–Nelson and Mitscherlich approaches. Although the thresholds differ for the two methods (3.3–7.2 mg P kg−1 with Cate–Nelson; 4.4–11.2 mg P kg−1 with Mitscherlich), crops ranked similarly with both methods. Critical soil P values were lowest for maize and highest for sunflower, while wheat, soybean and sorghum had intermediate values. Because of low-input management and frequent water stress, critical values fall within the lower range of published values. Only in the P4 treatment were P-Olsen values potentially hazardous for the environment (>20 mg P kg−1) 8–10 years after the beginning of the experiment. Annual P dressings of 17.5 kg P ha−1 year−1 (P1) were sufficient to achieve good yields but P dressings of 35 kg P ha−1 year−1 (P2) were necessary to stabilize soil P around the critical level in the calcareous part of the experiment.  相似文献   

11.
In Jiangsu province, Southeast China, high irrigated rice yields (6–8000 kg ha−1) are supported by high nitrogen (N) fertilizer inputs (260–300 kg N ha−1) and low fertilizer N use efficiencies (recoveries of 30–35%). Improvement of fertilizer N use efficiency can increase farmers’ profitability and reduce negative environmental externalities. This paper combines field experimentation with simulation modeling to explore N fertilizer management strategies to realize high yields, while increasing N use efficiency. The rice growth model ORYZA2000 was parameterized and evaluated using data from field experiments carried out in Nanjing, China. ORYZA2000 satisfactorily simulated yield, crop biomass and crop N dynamics, and the model was applied to explore options for different N-fertilizer management regimes, at low and high levels of indigenous soil N supply, using 43 years of historical weather data.On average, yields of around 10–11,000 kg ha−1 were realized (simulated and in field experiments) with fertilizer N rates of around 200 kg ha−1. Higher fertilizer doses did not result in substantially higher yields, except under very favorable weather conditions when yields exceeding 13,000 kg ha−1 were calculated. At fertilizer rates of 150–200 kg ha−1, and at the tested indigenous soil N supplies of 0.6–0.9 kg ha−1 day−1, high fertilizer N recovery (53–56%), partial N productivity (50–70 kg kg−1) and agronomic N use efficiency (20–30 kg kg−1) were obtained with application in three equal splits at transplanting, panicle initiation and booting. Increasing the number of splits to six did not further increase yield or improve any of the N use efficiency parameters.  相似文献   

12.
In the rainfed mid-hill region of Nepal, most fields receive 2–3 t ha−1 of organic compost application every year. Despite efficient recovery and use of organics in the mixed crop-animal systems that predominant in the mid-hills, depleted soil fertility is widely understood to be a significant constraint to crop productivity, with most farmers achieving maize grain yields below 2 t ha−1. Increased use of fertilizer may arrest and even reverse long-term soil quality degradation, but few farmers in the mid-hills use them at present and existing recommendations are insufficiently responsive to site, varietal, and management factors that influence the productivity and profitability of increased fertilizer use. Moreover, policy makers and development practitioners often hold the perception that returns to fertilizer use in the mid-hills are too low to merit investment. In this study, on-farm experiments were conducted at 16 sites in the Palpa district, Nepal to assess the responsiveness of a maize hybrid (DKC 9081) and an ‘improved’ open-pollinated maize variety (‘OPV’, Manakamana-3) to four nitrogen (N) rates, i.e., 0, 60, 120 and 180 kg ha−1, with each N rate response evaluated at 30:30 and 60:60 kg ha−1 rates of phosphorus (P2O5) and potassium (K2O), respectively. With sound agronomy and high rates of fertilizer (180:60:60 kg N:P2O5:K2O ha−1), grain yields observed in the field experiments exceeded 8 t ha−1 with hybrids and 6 t ha−1 with OPV. Yield levels were lower for OPV than hybrid at every level of applied N, but both genotypes responded linearly to N with partial factor productivity for N (PFPN) ranging from 14 to 19 for OPV versus 26–30 for hybrid, with improved N efficiencies obtained when P and K rates were significantly higher. Averaged across phosphorus (P) and potassium (K) levels, a $ 1 incremental investment in fertilizer increased the gross margin (GM) by $ 1.70 ha−1 in OPV and by $ 1.83 ha−1 in the hybrid. For the full response of N, requires higher rate of P2O5:K2O and vice-versa and full response to P2O5:K2O does not occur if N is absent. These results suggest that, i) degraded soils in the mid-hills of Nepal respond favorably to macronutrient fertilizers – even at high rates, ii) balanced fertilization is necessary to optimize returns on investments in N but must be weighed against additional costs, iii) OPVs benefit from investments in fertilizer, albeit at a PFPN that is 36–47% lower than for hybrids, and, consequently iv) hybrids are an effective mechanism for achieving a higher return on fertilizer investments, even when modest rates are applied. To extend these findings across years and sites in the mid-hills, crop growth simulations using the CERES-maize model (DSSAT) were conducted for 11 districts with historical weather and representative soils data. Average simulated (hybrid) maize yields with high fertilizer rate (180:60:60 kg N:P2O5:K2O ha−1) ranged from 3.9 t ha−1 to 7.5 t ha−1 across districts, indicating a high disparity in attainable yield potential. By using these values to estimate district-specific attainable yield targets, recommended N fertilizer rates vary between 65 and 208 kg N ha−1, highlighting the importance of developing domain-specific recommendations. Simulations also suggest the potential utility of using weather forecasts in tandem with site and planting date information to adjust fertilizer recommendations on a seasonal basis.  相似文献   

13.
An experiment was conducted in order to investigate hay yield and nitrogen harvest in binary smooth bromegrass (Bromus inermis Leyss cv. Tohum Islah) mixtures with alfalfa (Medicago sativa L. cv. Kayseri) and red clover (Trifolium pratense L. cv. Tohum Islah) in Erzurum, Turkey for 5 years between 1991 and 1995. The Hay yield, nitrogen harvest, protein concentration and land equivalent ratio (LER) in the mixtures with alternating rows of 1:1, 2:1 and 1:2 of smooth bromegrass with alfalfa and red clover were compared to those in pure legume stands without any N-fertilizer application or pure smooth bromegrass stands that received 0, 50, 100 and 150 kg ha−1 N. The mixtures had no N fertilization apart from 40 kg N ha−1 in the establishment year. The dry matter production in all the mixtures receiving no N fertilizer application was higher than in pure legume stands. Pure grass stands were sustained only with the application of 150 kg ha−1 N. The highest hay yields were obtained from the mixtures of smooth bromegrass (Sb) with red clover (Rc) (2Rc 1Sb) (14.65 t ha−1) and with alfalfa (A) (1A 1 Sb) (14.49 t ha−1). Although N application increased Sb yields in pure stands, the highest yields obtained with N fertilization were still lower than the yields in the mixtures without N application. The superiority of the mixtures was also reflected by their large N harvests (e.g. 355.9 kg N ha−1 in 2Rc 1Sb plots) compared to pure Rc (317.8 kg N ha−1), pure A (294.3 kg N ha−1) and pure Sb stands that received 150 kg N ha−1. The nitrogen harvest increased in pure Sb plots as the N doses applied increased. Furthermore, the protein concentration of the hay from the mixtures (158.2–165.7 mg g−1) was equal to that of the pure A stands (165.7 mg g−1) and higher than that of pure Sb stands (122.9 mg g−1 at 150 kg N ha−1 application) although the hay from pure Rc plots had the highest protein concentration (179.3 mg g−1). The LER values were also higher in the mixtures (e.g. 1.28 in 1A 1Sb and 1.28 in 2Rc 1Sb plots) compared with the pure stands. The mixture plots also had a more balanced temporal distribution of hay. The grass component was more productive in early spring, whereas the legume fractions grew better in the summer. In conclusion, for a sustainable production of high-quality hay and greater N harvests without using N fertilizers, binary mixtures of Sb with A in alternating rows (1A 1Sb) were recommended for long-purpose stands and in alternation with double red clover rows (2Rc 1Sb) for short purpose stands under similar conditions. N application could be eliminated in the grass–legume mixtures without any yield depression.  相似文献   

14.
Data from a field experiment (1995–2000) conducted on a fertile sandy loess in the Hercynian dry region of central Germany were used to determine the energy efficiency of winter oilseed rape (Brassica napus L.) as affected by previous crop and nitrogen (N) fertilization. Depending on the previous crop, winter oilseed rate was cultivated in two different crop rotations: (1) winter barley (Hordeum vulgare L.)–winter oilseed rape–winter wheat (Triticum aestivum L.), and (2) pea (Pisum sativum L.)–winter oilseed rape–winter wheat. Fertilizer was applied to winter oilseed rape as either calcium ammonium nitrate (CAN) or cattle manure slurry. The N rates applied to winter oilseed rape corresponded to 0, 80, 160 and 240 kg N ha−1 a−1.Results revealed that different N management strategies influenced the energy balance of winter oilseed rape. Averaged across years, the input of energy to winter oilseed rape was highly variable ranging from 7.42 to 16.1 GJ ha−1. Lowest energy input occurred when unfertilized winter oilseed rape followed winter barley, while the highest value was obtained when winter oilseed rape received 240 kg N ha−1 organic fertilization and followed winter barley. The lowest energy output (174 GJ ha−1), energy from seed and straw of winter oilseed rape, was observed when winter oilseed rape receiving 80 kg N ha−1 as organic fertilizer followed winter barley. The energy output increased to 262 GJ ha−1 for winter oilseed rape receiving 240 kg N ha−1 as mineral fertilizer followed pea. The energy efficiency was determined using the parameters energy gain (net energy output), energy intensity (energy input per unit grain equivalent GE; term GE is used to express the contribution that crops make to the nutrition of monogastric beings), and output/input ratio. The most favourable N rate for maximizing energy gain (250 GJ ha−1) was 240 kg N ha−1, while that needed for minimum energy intensity (91.3 MJ GE−1) was 80 kg N ha−1 and for maximum output/input ratio (29.8) was 0 kg N ha−1.  相似文献   

15.
UK livestock agriculture can significantly reduce its protein imports by increasing the amount of forage based protein grown on-farm. Forage legumes such as red clover (Trifolium pratense L.) produce high dry matter yields of quality forage but currently available varieties lack persistence, particularly under grazing. To assess the impact of red clover persistence on protein yield, diploid red clover populations selected for improved persistence were compared with a range of commercially available varieties. All populations were grown over four harvest years in mixed swards with either perennial ryegrass (Lolium perenne L.) or perennial plus hybrid ryegrass (L. boucheanum Kunth). Red clover and total sward dry matter (DM) herbage yields were measured in Years 1–4, red clover plant survival in Years 3 and 4 and herbage protein (CP) yield and concentration in Years 2 and 4. In general, red clover DM yield in year 4 (3.4 t ha−1) was lower than in year 1 (13.9 t ha−1) but the red clover populations differed in the extent of this decline. Differences in the persistence of the red clover populations in terms of plant survival and yield were reflected in the contribution of red clover to the total sward yield in Year 4, which ranged from 61% for the highest yielding population, AberClaret, to 11% in the lowest yielding, Vivi. Increased red clover DM yield was reflected in a greater CP yield (protein weight per unit area), which ranged from 1.6 t ha−1 year−1 to 2.9 t ha−1 year−1 in Year 2 and from 1.1 t ha−1 year−1 to 1.9 t ha−1 year−1 in Year 4. CP concentration (protein weight per unit herbage weight) of all of the red clover populations was within a range considered suitable for ruminant production. The implication of these results for the future use of red clover in sustainable grassland systems is discussed.  相似文献   

16.
The agricultural sector is highly affected by climate change and it is a source of greenhouse gases. Therefore it is in charge to reduce emissions. For a development of reduction strategies, origins of emissions have to be known. On the example of sugar beet, this study identifies the main sources and gives an overview of the variety of production systems. With data from farm surveys, calculations of greenhouse gas (GHG) emissions in sugar beet cultivation in Germany are presented. Emissions due to the production and use of fertilizers and pesticides, emissions due to tillage as well as field emissions were taken into account. All emissions related to the growing of catch crops during fall before the cultivation of sugar beet were also included. The emissions are related to the yield to express intensity.The median of total GHG emissions of sugar beet cultivation in Germany for the years 2010–2012 amounted to 2626 equivalents of CO2 (CO2eq) kg ha−1 year−1 when applying mineral plus organic fertilizer and to 1782 kg ha−1 when only organic fertilizer was applied. The CO2eq emissions resulting from N fertilization exclusively were 2.5 times higher than those caused by diesel and further production factors. The absence of emissions for the production of organic fertilizers led to 12% less total CO2eq emissions compared to the use of mineral fertilizer only. But by applying organic fertilizer only, there were more emissions via the use of diesel due to larger volumes transported (126 l diesel ha−1 vs. 116 l ha−1 by applying mineral fertilizer exclusively).As there exists no official agreement about calculating CO2eq emissions in crop production yet, the authors conclude that there is still need for further research and development with the aim to improve crop cultivation and crop rotations concerning GHG emissions and the therewith related intensity.  相似文献   

17.
In the Lorraine region, major soils used for winter oilseed rape are calcareous. Across two pot and two field experiments, we studied the influence of sulfur applied at different levels on apparent N-use efficiency (ANU), yield, glucosinolate (GLS) and oil content of seeds. The soil received a constant dose of 200 kg N ha−1 as ammonium nitrate, urea or cow slurry and three levels of S: 0, 30 and 75 kg ha−1 as ammonium thiosulfate (ATS), MgSO4 or ATS plus MgSO4. Apparently, oilseed rape is a N-inefficient crop as revealed by low ANU values which varied within 36 and 53% from field experiment versus 25 and 61% under controlled conditions. In both cases, S additions improved N-use efficiency only at the highest dose of 75 kg S ha−1, which is not attained by ATS with 35 kg S ha−1 (10% v/v). S fertilization increased the GLS contents that were found to be negatively correlated with plant N/S uptake ratios observed at maturity. The most important increase in GLS content by 52% was noted with cow slurry in the pot experiment. But, as a whole, the GLS levels remain below the European norm of 18 μmol g seed−1. Moreover, the oil content (% DM) of seeds decreased (but the total production increased) when the soil was fertilized with N and with or without S. The results showed that N and S nutrition during the growth were tightly linked. Their interactions, as reflected by plant uptake, are synergistic at optimum rates and antagonistic at excessive levels of one of the both. Collectively, the results indicate that S fertilization is required to improve N-use efficiency and thereby maintaining a sufficient oil level and fatty acid quality.  相似文献   

18.
Questions as to which crop to grow, where, when and with what management, will be increasingly challenging for farmers in the face of a changing climate. The objective of this study was to evaluate emergence, yield and financial benefits of maize, finger millet and sorghum, planted at different dates and managed with variable soil nutrient inputs in order to develop adaptation options for stabilizing food production and income for smallholder households in the face of climate change and variability. Field experiments with maize, finger millet and sorghum were conducted in farmers’ fields in Makoni and Hwedza districts in eastern Zimbabwe for three seasons: 2009/10, 2010/11 and 2011/12. Three fertilization rates: high (90 kg N ha−1, 26 kg P ha−1, 7 t ha−1 manure), low (35 kg N ha−1, 14 kg P ha−1, 3 t ha−1 manure) and a control (zero fertilization); and three planting dates: early, normal and late, were compared. Crop emergence for the unfertilized finger millet and sorghum was <15% compared with >70% for the fertilized treatments. In contrast, the emergence for maize (a medium-maturity hybrid cultivar, SC635), was >80% regardless of the amount of fertilizer applied. Maize yield was greater than that of finger millet and sorghum, also in the season (2010/11) which had poor rainfall distribution. Maize yielded 5.4 t ha−1 compared with 3.1 t ha−1 for finger millet and 3.3 t ha−1 for sorghum for the early plantings in the 2009/10 rainfall season in Makoni, a site with relatively fertile soils. In the poorer 2010/11 season, early planted maize yielded 2.4 t ha−1, against 1.6 t ha−1 for finger millet and 0.4 t ha−1 for sorghum in Makoni. Similar yield trends were observed on the nutrient-depleted soils in Hwedza, although yields were less than those observed in Makoni. All crops yielded significantly more with increasing rates of fertilization when planting was done early or in what farmers considered the ‘normal window’. Crops planted early or during the normal planting window gave comparable yields that were greater than yields of late-planted crops. Water productivity for each crop planted early or during the normal window increased with increase in the amount of fertilizer applied, but differed between crop type. Maize had the highest water productivity (8.0 kg dry matter mm−1 ha−1) followed by sorghum (4.9 kg mm−1 ha−1) and then finger millet (4.6 kg mm−1 ha−1) when a high fertilizer rate was applied to the early-planted crop. Marginal rates of return for maize production were greater for the high fertilization rate (>50%) than for the low rate (<50%). However, the financial returns for finger millet were more attractive for the low fertilization rate (>100%) than for the high rate (<100%). Although maize yield was greater compared with finger millet, the latter had a higher content of calcium and can be stored for up to five years. The superiority of maize, in terms of yields, over finger millet and sorghum, suggests that the recommendation to substitute maize with small grains may not be a robust option for adaptation to increased temperatures and more frequent droughts likely to be experienced in Zimbabwe and other parts of southern Africa.  相似文献   

19.
Farmers obtain high yield when proper crop management is matched with favourable weather. Nitrogen (N) fertilization is an important agronomic management practice because it affects profitability and the environment. In rainfed environments, farmers generally apply uniform rates of N without taking into account the spatial variability of soil available water or nutrient availability. Uniform application of fertilizer can lead to over or under-fertilization, decreasing the efficiency of the fertilizer use. The objective of this study was to evaluate the impact of variable rate nitrogen fertilizer application on spatial and temporal patterns of wheat grain yield. The study was conducted during the 2008/2009 and 2009/10 growing seasons in a 12 ha field near Foggia, Italy. The crop planted each year was durum wheat (Triticum durum, Desf.) cultivar Duilio. The field was subdivided into two management zones High (H), and Average (A). Three N rates were identified using a crop model tested on the same field during a previous growing season. The N rates were: low N (T1: 30 kg N ha−1), average N (T2: 70 kg N ha−1), and high N (T3: 90 kg N ha−1). The ANOVA test showed that there were no effects of the N levels for the first growing season for the H and A zone. For the 2009/10 growing season with higher rainfall there was a significant difference in grain yield for the A zone (2955 kg ha−1), but not in the H zone (3970 kg ha−1). This study demonstrates the optimal amount of N for a given management zone is not fixed but varies with the rainfall amount and distribution during the fallow and growing season.  相似文献   

20.
The expansion of biogas production from anaerobic digestion in the Po Valley (Northern Italy) has stimulated the cultivation of dedicated biomass crops, and maize in particular. A mid-term experiment was carried out from 2006 to 2010 on a silt loamy soil in Northern Italy to compare water use and energy efficiency of maize and sorghum cultivation under rain fed and well-watered treatments and at two rates of nitrogen fertilization. The present work hypothesis were: (i) biomass sorghum, for its efficient use of water and nitrogen, could be a valuable alternative to maize for biogas production; (ii) reduction of irrigation level and (iii) application of low nitrogen fertilizer rate increase the efficiency of bioenergy production. Water treatments, a rain fed control (I0) and two irrigation levels (I1 and I2; only one in 2006 and 2009), were compared in a split–split plot design with four replicates. Two fertilizer rates were also tested: low (N1, 60 kg ha−1 of nitrogen; 0 kg ha−1 of nitrogen in 2010) and high (N2, 120 kg ha−1 of nitrogen; 100 kg ha−1 of nitrogen in 2010). Across treatments, sorghum produced more aboveground biomass than maize, respectively 21.6 Mg ha−1 and 16.8 Mg ha−1 (p < 0.01). In both species, biomass yield was lower in I0 than in I1 and I2 (p < 0.01), while I1 and I2 did differ significantly. Nitrogen level never affected biomass yield. Water use efficiency was generally higher in sorghum (52 kg ha−1 mm−1) than in maize (38 kg ha−1 mm−1); the significant interaction between crop and irrigation revealed that water use efficiency did not differ across water levels in sorghum, whereas it significantly increased from I0 and I1 to I2 in maize (p < 0.01). The potential methane production was similar in maize and sorghum, while it was significantly lower in I0 (16505 MJ ha−1) than in I1 and I2 (21700 MJ ha−1). The only significant effect of nitrogen fertilization was found in the calculation of energy efficiency (ratio of energy output and input) that was higher in N1 than in N2 (p < 0.01). These results support the hypothesis that (i) sorghum should be cultivated rather than maize to increase energy efficiency, (ii) irrigation level should replace up to 36% of ETr and (iii) nitrogen fertilizer rate should be minimized to maximize the efficiency in biomass production for anaerobic digestion in the Po Valley.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号