首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
  1. Freshwater ecosystems, providing valuable goods and services to humans, have been subjected to multiple human impacts, among which climate change plays a central role in threats to species. It is expected that protected areas, the cornerstone of biodiversity conservation efforts, will assume a decisive role in protecting freshwater species from the impacts of climate change.
  2. This study assessed the effects of climate change on migratory fish of the second largest neotropical river basin, evaluating the effectiveness of protected areas in safeguarding fish species, and hence the ecological functions that they perform and the ecosystem resources that they provide. The present range of 23 migratory fish of economic interest in the Paraná–Paraguay basin was estimated and the responses to future climatic shifts projected to the middle and end of the 21st century were examined, quantifying predictive uncertainties.
  3. Changes and losses of climatically suitable areas will trigger severe contractions in range, with the greatest impact on the most valuable species in commercial fishing, where range losses are likely to surpass 65% in the future. The main channel of the Upper Paraná River and tributaries of its left margin are projected to serve as climatic refuges for many species, and such regions are not affected by high predictive uncertainty. The results revealed that protected areas do not sufficiently protect migratory fish at present, and that they will continue to offer negligible protection in the face of climate change.
  4. This study alerts decision makers to the potential damage to inland fishery resources from climate change and provides useful information to guide conservation strategies spatially. We advocate that the creation of new protected areas and the redesign of the existing network to encompass regions that maximize current and future occupancy of migratory fish are crucial to conserve the valuable ecological, societal, and economic benefits that they provide.
  相似文献   

2.
  1. The Amazon basin hosts the Earth's highest diversity of freshwater fish. Fish species have adapted to the basin's size and seasonal dynamics by displaying a broad range of migratory behaviour, but they are under increasing threats; however, no study to date has assessed threats and conservation of Amazonian migratory fishes.
  2. Here, the available knowledge on the diversity of migratory behaviour in Amazonian fishes is synthesized, including the geographical scales at which they occur, their drivers and timing, and life stage at which they are performed.
  3. Migratory fishes are integral components of Amazonian society. They contribute about 93% (range 77–99%) of the fisheries landings in the basin, amounting to ~US$436 million annually.
  4. These valuable fish populations are mainly threatened by growing trends of overexploitation, deforestation, climate change, and hydroelectric dam development. Most Amazonian migratory fish have key ecological roles as apex predators, ecological engineers, or seed-dispersal species. Reducing their population sizes could induce cascading effects with implications for ecosystem stability and associated services.
  5. Conserving Amazonian migratory fishes requires a broad portfolio of research, management, and conservation actions, within an ecosystem-based management framework at the basin scale. This would require trans-frontier coordination and recognition of the crucial importance of freshwater ecosystems and their connectivity.
  6. Existing areas where fishing is allowed could be coupled with a chain of freshwater protected areas. Management of commercial and subsistence species also needs fisheries activities to be monitored in the Amazonian cities and in the floodplain communities to allow assessments of the status of target species, and the identification of management units or stocks. Ensuring that existing and future fisheries management rules are effective implies the voluntary participation of fishers, which can be achieved by increasing the effectiveness and coverage of adaptive community-based management schemes.
  相似文献   

3.
  1. Freshwater ecosystems represent less than 0.01% of Earth's surface water but proportionately encompass the most species-rich environment on the planet, including nearly one-third of all vertebrate species. Even though inland continental waters are widely regarded as highly endangered ecosystems, their species assemblages are mostly ignored in conservation plans, largely because spatial patterns of freshwater species remain poorly understood. This is particularly severe throughout the Neotropics, most notably in the Amazon superbasin, where the sheer biotic diversity is coupled with a severe lack of biodiversity knowledge at several levels.
  2. Spatial patterns of Neotropical freshwater fishes focusing mainly on the Amazon superbasin were investigated. First, Endemic Amazonian Fish Areas (EAFAs) representing central units for the conservation of continental fishes were delimited. Interpolated maps were then analysed using alternative methodologies to delimit spatial patterns of diversity and endemicity across the Amazon superbasin. Several biogeographical analyses used a comprehensive dataset of species and geographical coordinates of Amazonian fishes.
  3. The results reveal well-defined spatial patterns of species richness and endemicity in the Amazonian fish fauna, showing that most protected areas are concentrated in a single bioregion (Amazon lowlands). Those areas are incongruent and insufficient to protect endemic and threatened species, which are mostly distributed in upland regions.
  4. Effective conservation of the Amazonian fish fauna should include EAFAs within protected areas, especially those undergoing deforestation and hydropower development pressure and containing a high concentration of threatened species.
  5. The following EAFAs should be considered as conservation priorities: Upper Araguaia, Upper Tocantins, Lower Teles Pires/Serra do Cachimbo, Chapada dos Parecis and Upper Marañon. These regions should be urgently protected to avert the loss of important trophic relationships and unique elements of the Amazonian fish fauna.
  相似文献   

4.
  • 1. Biodiversity is probably at greater risk in freshwater systems than in other ecosystems. Although protected areas (PAs) play a vital role in the protection of biodiversity and are the mainstay of most conservation polices, the coverage of biodiversity by existing PA networks is often inadequate and few reserves are created that take into consideration freshwater biota.
  • 2. In this paper an attempt is made to address the performance of protected areas in the context of freshwater biodiversity conservation using data records for water beetles in a Mediterranean river basin.
  • 3. Although the present PAs in the study area cover a relatively high number of water beetle species, the distribution and extent of reserves is still inadequate or insufficient to protect freshwater biodiversity, especially species of conservation concern.
  • 4. Alternative area‐selection methods (hotspots and complementary) were more efficient than PAs for representing water beetles. Within these, complementarity was the most efficient approach, and was able to represent all species in a significantly lower area than the current PA network. On the other hand, the future Natura 2000 Network will result in a great increase in the total area of protected land as well as in the biodiversity represented.
  • 5. Unfortunately, the occurrence of a species within a protected area is not a guarantee of long‐term survival because the extent of PAs is often insufficient and disturbances occur outside park boundaries. Thus, whole‐catchment management and natural‐flow maintenance are indispensable strategies for freshwater biodiversity conservation.
Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

5.
6.
  • 1. A basin approximation was used to analyse distribution patterns of different components of biodiversity (taxonomic richness, endemicity, taxonomic singularity, rarity) and conservation status of freshwater fish fauna in 27 Mediterranean Iberian rivers.
  • 2. Basin area alone explained more than 80% of variation in native species richness. Larger basins featured not only a higher number of native species, but also more endemic and rare species and fewer diversified genera than smaller basins.
  • 3. In contrast, smaller basins scored higher community conservation values, owing to their lower degree of invasion by introduced species.
  • 4. The presence of dams was the most important factor determining the conservation status of fish communities, and it was also positively associated with the number of introduced species.
  • 5. While the most important components of Iberian freshwater fish biodiversity are located in large basins, small unregulated basins feature better conserved fish communities.
Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

7.
  1. Freshwater ecosystems are essential to human well-being and most have high biodiversity. However, this biodiversity has been suffering severe declines owing to the expansion of human activities. Protected areas (PAs) are essential for biodiversity conservation and have proved to be successful in stopping species extirpation if managed properly. Unfortunately, they are usually focused on terrestrial biodiversity, leaving freshwater ecosystems aside.
  2. The main goal of this study was to determine the influence of a PA (Montesinho Natural Park (MNP), Portugal) on freshwater biodiversity. Aquatic macroinvertebrates and fishes were surveyed, and biodiversity (richness, abundance, Shannon-Wiener diversity, and Pielou's evenness) and water quality (IASPT) indices were calculated inside, at the periphery and outside the MNP.
  3. Results showed that the PA does not affect positively either water quality or the two faunal groups monitored. Macroinvertebrate communities were not influenced by the PA; however, the abundance of pearl mussel Margaritifera margaritifera was significantly higher and size was significantly lower inside the MNP. The richness and abundance of fish communities were significantly higher outside the MNP, except for trout Salmo trutta abundance which was higher inside the MNP.
  4. Given these results, the MNP does not guarantee the safeguard of overall aquatic biodiversity and habitats and we propose an extension of MNP to downstream areas in order to increase the number of species (mostly cyprinids) under legal protection. This work demonstrates that terrestrial PA planning and management should also consider aquatic biodiversity to achieve successful conservation.
  相似文献   

8.
  1. The Amazon Basin is being degraded at unprecedented rates, yet conservation efforts have implemented protected areas to curb deforestation, leaving freshwater ecosystems vulnerable to degradation. Amazon freshwater ecosystems are largely unprotected because a terrestrial bias has limited the ability of science to affect policy.
  2. Overcoming this bias requires increasing exchange of information among stakeholders across the basin to raise awareness of threats to Amazon freshwater ecosystems and promote discussions and access to conservation solutions. To help address this need, this Special Issue collates 15 synthetic articles that advance knowledge and identify conservation solutions.
  3. Three articles highlight the importance of considering the hydrological and limnological processes that control the integrity of these freshwater ecosystems and offer new insights on how to extrapolate them across the basin.
  4. Three articles on crocodilians, aquatic mammals, and migratory fishes document threats and knowledge gaps, and identify the missing role of governments as an impediment to conservation of their populations.
  5. Three articles evaluate the multi-faceted effects of hydropower dams on fish, birds, and floodplain trees. They reinforce perceptions that dams are key environmental threats and offer guidance for improving protocols for dam site selection and impact assessment.
  6. Three articles assessing the effectiveness of protected areas to safeguard fish and aquatic invertebrates show there is an urgent need to redesign the Amazon protected area network to adequately protect freshwater biota.
  7. Three forward-looking articles show that: (i) conservation initiatives by local communities are ‘bright spots’ for freshwater conservation; (ii) microchemistry analyses of the ear bones of fishes could boost the knowledge base needed to conserve them; and (iii) strengthening the Amazon conservation framework requires a reversal of Brazil's current governmental priorities, remobilization of stakeholders, investments in capacity building, and expanding protections to terrestrial and freshwater ecosystems.
  相似文献   

9.
10.
  1. Mahseer (Tor) fish species are critical components of locally adapted freshwater food webs across the Indian Himalayan biodiversity hotspot; however, multiple human stressors compounded by climate change have significantly depleted their populations over recent decades.
  2. Mahseer species are now considered locally vulnerable or endangered in many regions. Hydropower projects in particular have fragmented populations, impairing genetic exchange, obstructing migratory paths, and changing the structure and functioning of riverine habitats, especially of formerly fast‐flowing rivers.
  3. Worryingly, a literature survey and group discussions reveal that the increasing spread of non‐native fish species further compounds threats to mahseer and overall freshwater ecology. A better understanding of the current distribution, habitat requirement, and dispersal of non‐native fish is therefore essential to manage the growing threats to mahseer in the Indian Himalayan region.
  相似文献   

11.
  1. The extent and intensity of impacts of multiple new dams in the Amazon basin on specific biological groups are potentially large, but still uncertain and need to be better understood.
  2. It is known that river disruption and regulation by dams may affect sediment supplies, river channel migration, floodplain dynamics, and, as a major adverse consequence, are likely to decrease or even suppress ecological connectivity among populations of aquatic organisms and organisms dependent upon seasonally flooded environments.
  3. This article complements our previous results by assessing the relationships between dams, our Dam Environmental Vulnerability Index (DEVI), and the biotic environments threatened by the effects of dams. Because of the cartographic representation of DEVI, it is a useful tool to compare the potential hydrophysical impacts of proposed dams in the Amazon basin with the spatial distribution of biological diversity. As the impact of Amazonian dams on the biota of both rivers and periodically flooded riparian environments is severe, DEVIs from different Amazonian tributary basins are contrasted with patterns of diversity and distribution of fish, flooded forest trees and bird species.
  4. There is a consistent relationship between higher DEVI values and the patterns of higher species richness and endemism in all three biological groups. An assessment of vulnerability at the scale of tributary basins, the assessment of biodiversity patterns related to DEVI, and the analysis of teleconnections at basin scale, demonstrate that recent construction of dams is affecting the biota of the Amazon basin.
  5. The evidence presented here predicts that, if currently planned dams are built without considering the balance between energy production and environmental conservation, their cumulative effects will increase drastically and represent a major threat to Amazonian biodiversity.
  相似文献   

12.
  1. Freshwater environments host roughly half of the world’s fish diversity, much of which is concentrated in large, tropical river systems such as the Amazon. Fishes are critical to ecosystem functioning in the Amazon River basin but face increasing human threats. The basic biology of these species, and particularly migratory behaviour, remains poorly studied, in part owing to the difficulty associated with conducting tagging studies in remote tropical regions.
  2. Otolith microchemistry can circumvent logistical issues and is an increasingly important tool for studying fish life histories. However, this approach is still new in the Amazon, and its potential and limitations to inform fish conservation strategies remain unclear.
  3. Here, otolith microchemistry studies in the Amazon are reviewed, highlighting current possibilities, and several key factors that limit its use as a conservation tool in the Amazon are discussed. These include the dearth of spatiotemporal elemental data, poor understanding of environment–fish–otolith pathways, and insufficient funding, facilities, and equipment.
  4. A research initiative is proposed to harness the potential of this technique to support conservation in the Amazon. Key aspects of the proposal include recommendations for internal and external funding, which are critical to acquiring and maintaining technical staff, cutting-edge equipment, and facilities, as well as fostering regular scientific meetings and working groups. Meetings can facilitate a systematic approach to investigating environment–otolith pathways, broadening the chemical baseline for most Amazonian tributaries, and exploring potential valuable elements.
  5. These outcomes are urgently needed to conserve biodiversity and ecosystem functioning in the Amazon, especially given threats such as widespread hydroelectric damming. The initiative proposed here could make otolith microchemistry an important, cost-effective tool to inform and foster conservation in the Amazon, and act as a template for other imperilled tropical river basins, such as the Mekong and the Congo.
  相似文献   

13.
  • 1. Studies dealing with the fish fauna of coastal streams are scarce in the scientific literature, particularly those from Mediterranean climates. Owing to their small size, these systems suffer extreme seasonal fluctuations, following the typical Mediterranean flood–drought cycle and leading to a high risk of extinction to freshwater fish.
  • 2. This work analyses fish distribution in 14 stream stretches belonging to eight basins in the northern sector of the Strait of Gibraltar (southern Spain). Fish–habitat relationships were studied through multivariate ordination techniques at two scales: basin and stretch.
  • 3. A principal components analysis clearly discriminated larger and more sinuous basins from smaller and steeper ones. This ordination was related to the non‐migratory freshwater fish species richness and to the total number of fish species present in the middle reaches of each basin.
  • 4. The main sources of variation in community composition and habitat characteristics in the different stretches were related to a clear upstream–downstream gradient, along which total species richness increased.
  • 5. These small coastal basins are inhabited by two highly endangered species, Andalusian toothcarp (Aphanius baeticus) and Iberian chub (Squalius pyrenaicus), and have similar or higher overall freshwater species richness than larger adjacent basins. The near absences of flow regulation and introduced species make these streams one of the few types of Iberian aquatic system where unaltered fish–habitat relationships can be studied.
Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
  1. Global trade in non-native ornamental species coupled with high connectivity among countries is well known to result in worldwide biological invasions, which pose challenges for the conservation and management of biodiversity.
  2. There are few studies aimed at implementing management strategies that have examined differences in the potential invasiveness of non-native species between neighbouring political regions within the same ecoregion.
  3. To compare the potential risk of invasiveness of non-native ornamental fishes with high commercial value in the river basins of two neighbouring regions of East and Southeast Asia, 32 extant and horizon species were screened with the aquatic species invasiveness screening kit (as-isk ) for the lower Pearl River basin (South China) and the Chao Phraya River basin (Thailand). Both regional (i.e. basin level) and combined risk-ranking thresholds were determined by receiver operating characteristic curve analysis.
  4. Of the 32 species screened, 14 were categorized as posing a high risk and seven were categorized as posing a medium risk of being invasive in both regions, under current and future climate conditions. These species have a history of invasiveness and the climate of their native ranges is similar to that of the two study regions. Pterygoplichthys pardalis received the highest risk score in both regions. The risk ranks of 11 species differed between the two regions, based on either the combined or regional thresholds, and this was partly related to the different risk of invasiveness between the two regions, coupled with cognitive subjectivity among the assessors.
  5. The results of the present study suggest that the invasion of non-native ornamental fish species could pose similar threats to biodiversity in neighbouring regions. This will serve to inform policy makers of neighbouring countries in the development of coordinated, mutually beneficial regulations and management strategies to enhance the conservation of native species.
  相似文献   

15.
  1. The European Water Framework Directive 2000/60/EC (WFD) defines the ecological status of aquatic systems as the deviation between their present biological state and that which would be expected in the absence of any major human disturbance, referred to by the WFD as the ‘reference condition’ (RC). It assumes that their biotic composition should remain balanced and constant over time. This study tested both assumptions against an analysis of the historical distribution of the fish fauna in a large and highly disturbed Mediterranean basin. If fish communities change substantially over time, it will mean that the validity of the RC concept comes into question.
  2. Using presence/absence data for historical native fish fauna from the Guadalquivir Basin, distribution changes among sub-basins were quantified by mapping between the nineteenth century and today.
  3. The range of two native species (Anguilla anguilla and Salmo trutta) has changed significantly. In addition, the diadromous species assemblage has almost become locally extinct, with the exception of the eel. Finally, most Guadalquivir sub-basins (94.7%) have suffered major changes in the composition of their fish communities, either by losing native species or by adding new non-native species.
  4. These results render the definition of any RC unlikely. In Mediterranean areas, the WFD objective of ‘good ecological status’ recovery based on the integrity of aquatic communities is a theoretical rather than a real goal. Nonetheless, the WFD provides an ecological guiding principle that can also be transferred to the conservation of freshwater ecosystems.
  5. As an alternative to the RC concept in Mediterranean lotic ecosystems, specific multimetric indices can be used, based on expert criteria, the metrics of which can also relate to the conservation value of water bodies, and not only to their ecological status.
  相似文献   

16.
  1. The freshwater mussel (Unionida) fauna of the Yangtze River is among the most diverse on Earth. In recent decades, human activities have caused habitat degradation in the river, and previous studies estimated that up to 80% of the mussel species in the Yangtze River are Threatened or Near Threatened with extinction. However, a comprehensive and systematic evaluation of the conservation status of this fauna has yet to be completed.
  2. This study evaluated the conservation status of the 69 recognized freshwater mussel species in the middle and lower reaches of the Yangtze River, using the criteria published by the International Union for Conservation of Nature (IUCN). A new method for prioritizing species for conservation was then developed and applied termed Quantitative Assessment of Species for Conservation Prioritization (QASCP), which prioritizes species according to quantifiable data on their distribution and population status, life history, and recovery importance and potential.
  3. IUCN assessments showed that 35 (51%) species in the study region are Threatened or Near Threatened (11 Endangered, 20 Vulnerable, 4 Near Threatened). In addition, 16 species (23%) could not be assessed owing to data deficiency. Key threats to the freshwater mussel biodiversity of the Yangtze River include pollution, habitat loss and fragmentation, loss of access to host fish, and overharvesting of mussels and their host fish. The genera Aculamprotula, Gibbosula, Lamprotula, Pseudodon, Ptychorhynchus, and Solenaia were identified as particularly threatened.
  4. Data availability allowed QASCP assessment of 44 species. Only Solenaia carinata, regionally Endangered under IUCN criteria, achieved the highest QASCP rank, i.e. First Priority. The five species assessed as Second Priority were considered either regionally Endangered (one), Vulnerable (three), or Data Deficient (one) under IUCN criteria. The 23 Third Priority species were assessed as regionally Endangered (two), Vulnerable (15), Near Threatened (two), or Least Concern (four).
  相似文献   

17.
  1. Despite the current rates of deforestation and the expected climatic changes, protecting species in their natural habitats is still the simplest, cheapest, and most effective way of safeguarding biodiversity. Here, the network of protected areas in the Brazilian Amazon was evaluated to assess its effectiveness in safeguarding species of Odonata.
  2. Ecological niche models were built to assess the suitability of the habitat for 503 Amazonian odonate species. Then, the effectiveness for the protection of odonate species of three classes of protected areas (strictly protected area, sustainable use area, and indigenous territory) was evaluated.
  3. Approximately 30% of the species are protected within the network of protected areas. These findings highlight the importance of protected areas for safeguarding most odonate species in the Amazon. For under-represented or gap species, additional resources are still needed for effective management and protection on some private properties, which need to set aside land for conservation. In this way, it is possible to preserve habitats for odonate species and guarantee their conservation in the Amazon.
  相似文献   

18.
  1. Few conservation studies have examined fish communities in entire drainage basins, especially in developing regions such as Southeast Asia, one of the most diverse biomes globally. The aim of this study was to establish conservation projections for the whole of the Irrawaddy River system, based on fish diversity patterns, human impact, and environmental change.
  2. The Irrawaddy River is one of the five largest rivers in Southeast Asia. Although it has very high diversity of fish species and species endemism, our understanding of resident fish status remains poor.
  3. Based on 1,726 field survey and 1,056 database records, 470 fish species and their distribution patterns (i.e. alpha, beta, threatened species, and endemic species diversities) in sub-basins of the Irrawaddy drainage were identified. Canonical correspondence analysis of diversity and environmental patterns indicated that climatic factors had the largest effect on diversity, compatible with the species–energy theory.
  4. Fish conservation priorities of sub-basins were evaluated based on diversity patterns and human impact. The delta and Manipur basin regions were highlighted as areas of focus for future fish diversity conservation, and the importance of connectivity in the Irrawaddy main stem was demonstrated.
  5. The results of this study will be valuable for future management of the Irrawaddy basin and as a reference for other river basins when implementing protection strategies for fish diversity. This study also advocates the need for systematic investigations across entire drainage basins and further detailed studies on the ecological conditions of poorly studied river systems.
  相似文献   

19.
  1. Assessing biodiversity and understanding how it works is a prerequisite for species conservation. The Amazon basin is one of the main biodiversity hotspots where fish are heavily exploited for ornamental purposes.
  2. The ornamental trade heavily exploits the genus Apistogramma, which is one of the most species‐rich among Neotropical cichlids with 94 formally described species. This number is certainly underestimated owing to the limitations of conventional taxonomy, which is still too often based solely on morphological criteria and sometimes on few individuals.
  3. Most species of this genus have a high degree of endemism and are highly prized on the ornamental market, which could put them at risk. A few species are supposed to have extensive distributions, and in particular Apistogramma agassizii, present from the Amazon estuary up to the Ucayali and Marañon rivers in Peru.
  4. This study assessed the taxonomic status of 1,151 specimens of A. agassizii collected from 35 sites around Iquitos in the Peruvian Amazon. On the basis of molecular analyses (nuclear and mitochondrial DNA) and mate choice experiments, at least three biological species within the nominal A. agassizii were evidenced in the sampling area, which is extremely small compared with the known distribution of the species as initially described.
  5. According to the molecular calibrations, these three species would have diverged during the Plio‐Pleistocene. Two of them seem to be endemic from small sub‐basins, one from the Nanay River and the other from the Apayacu/Ampiyacu systems. A possible scenario that may explain the evolutionary history of these species is proposed.
  6. The conservation implications of these results on the estimation of the diversity of A. agassizii, of Apistogramma species in general, and of other Amazonian cichlids are discussed.
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号