首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Waxy wheat flour (WWF) was substituted for 10% regular wheat flour (RWF) in frozen doughs and the physicochemical properties of starch and protein isolated from the frozen doughs stored for different time intervals (0, 1, 2, 4 and 8 weeks) were determined to establish the underlying reasons leading to the effects observed in WWF addition on frozen dough quality. Using Nuclear Magnetic Resonance (NMR), Differential Scanning Calorimeter (DSC) and X-ray Diffraction (XRD) among others, the gluten content, water molecular state, glutenin macropolymer content, damaged starch content, starch swelling power, gelatinization properties, starch crystallinity and bread specific volume were measured. Compared to RWF dough at the same frozen storage condition, 10% WWF addition decreased dry gluten and glutenin macropolymer contents and T23 proton density of frozen dough, but increased the wet gluten content, T21 and T22 proton density. 10% WWF addition also decreased damaged starch content, but increased starch swelling power, gelatinization temperature and enthalpy, crystallinity of starch and bread specific volume of frozen dough. Results in the present study showed that the improvement observed due to WWF addition in frozen dough bread quality might be attributed to its inhibition of redistribution of water molecules bound to proteins, increase in damaged starch content and decrease in starch swelling power.  相似文献   

2.
The objective of this study was to examine the influence of flour quality on the properties of bread made from pre-fermented frozen dough. The physicochemical parameters of 8 different wheat flours were determined, especially the protein quality was analysed in detail by a RP-HPLC procedure. A standardized baking experiment was performed with frozen storage periods from 1 to 168 days. Baked bread was characterised for specific loaf volume, crumb firmness and crumb elasticity. The results were compared to none frozen control breads. Duration of frozen storage significantly affected specific loaf volume and crumb firmness. The reduction of specific loaf volume was different among the used flours and its behaviour and intensity was highly influenced by flour properties. For control breads wet gluten, flourgraph E7 maximum resistance and RVA peak viscosity were positively correlated with specific loaf volume. However, after 1–28 days of frozen storage, wet gluten content was not significantly influencing specific loaf volume, while other parameters were still significantly correlated with the final bread properties. After 168 days of frozen storage all breads showed low volume and high crumb firmness, thus no significant correlations between flour properties and bread quality were found. Findings suggest that flours with strong gluten networks, which show high resistance to extension, are most suitable for frozen dough production. Furthermore, starch pasting characteristics were also affecting bread quality in pre-fermented frozen dough.  相似文献   

3.
Native (NF, 13.5% w.b) and moistened (MF, 27% w.b) wheat flours were treated with superheated steam (SS) at 170 °C for 1, 2 and 4 min, and their protein structure as well as dough rheological properties were analyzed. Confocal laser scanning microscopy (CLSM) and SDS-PAGE patterns indicated the formation of protein aggregates with reduced SDS extractability after treatment. Farinograph and dynamic rheometry measurements showed that the strength as well as elastic and viscous moduli of the dough made from SS-treated flours progressively increased with SS treatment time. And both the improvements were more pronounced for superheated steam-treated moistened flours (SS-MF) than for superheated steam-treated native flours (SS-NF). Size-exclusion high performance liquid chromatography (SE-HPLC) analysis demonstrated that dough rheological parameters have positive correlations with SDS unextractable polymeric proteins (UPP) contents. SS treatment on flours led to a transition of protein secondary structures to more ordered form (α-helix and β-sheet). Additionally, free sulfhydryl (SH) contents decreased after treatment, which implied that disulfide bonds accounted for protein extractability loss and dough rheological properties improvement. Elevated moisture level promoted the modification of both protein structure and dough behaviors of flours during SS treatment.  相似文献   

4.
The influence of high molecular weight glutenin subunits (HMW-GS) on wheat breadmaking quality has been extensively studied but the effect of different Glu-1 alleles on cookie quality is still poorly understood. This study was conducted to analyze the effect of HMW-GS composition and wheat-rye translocations on physicochemical flour properties and cookie quality of soft wheat flours. Alleles encoded at Glu-A1, Glu-B1 and Glu-D1 locus had a significant effect over physicochemical flour properties and solvent retention capacity (SRC) profile. The null allele for Glu-A1 locus presented the highest cookie factor observed (CF = 7.10), whereas 1BL/1RS and 1AL/1RS rye translocations had a negative influence on CF. The three cultivars that showed the highest CF (19, 44 and 47) had the following combination: Glu-A1 = null, Glu-B1 = 7 + 8, Glu-D1 = 2 + 12 and no secalins. Two prediction equations were developed to estimate soft wheat CF: one using the HMW-GS composition and the other using physicochemical flour parameters, where SRCsuc, SRC carb, water-soluble pentosans, damaged starch and protein turned out to be better CF predictors. This data suggests that grain protein allelic composition and physicochemical flour properties can be useful tools in breeding programs to select soft wheat of good cookie making quality.  相似文献   

5.
Wheat gluten was isolated in a laboratory dough-batter flour separation process in the presence or absence of lipases differing in hydrolysis specificity. The obtained gluten was blended with wheat starch to obtain gluten-starch (GS) blends of which the water and oil binding capacities were investigated. Furthermore, GS blends were mixed into dough and processed into model breads, of which dough extensibility and loaf volume were measured, respectively. In comparison to GS blends prepared with control gluten, oil binding capacity was higher when GS blends contained gluten isolated with Lecitase Ultra (at 5.0 mg enzyme protein/kg flour), a lipase hydrolyzing both non-polar and polar lipids. Additionally, dough extensibility and total work needed for fracture were lower for dough prepared from GS blends containing gluten isolated with Lipolase (at 5.0 mg enzyme protein/kg flour), a lipase selectively degrading non-polar lipids. In GS blend bread making, this resulted in inferior loaf volumes. Comparable GS blend properties were measured when using control gluten and gluten isolated with YieldMAX, a lipase mainly degrading N-acyl phosphatidylethanolamine. In conclusion, properties of GS blend model systems are altered when gluten prepared in the presence of lipases is used to a degree which depends on lipase specificity and concentration.  相似文献   

6.
Wheat flour replacement from 0 to 40% by single tef flours from three Ethiopian varieties DZ-01-99 (brown grain tef), DZ-Cr-37 (white grain tef) and DZ-Cr-387 (Quncho, white grain tef) yielded a technologically viable ciabatta type composite bread with acceptable sensory properties and enhanced nutritional value, as compared to 100% refined wheat flour. Incorporation of tef flour from 30% to 40% imparted discreet negative effects in terms of decreased loaf volume and crumb resilience, and increase of crumb hardness in brown tef blended breads. Increment of crumb hardness on aging was in general much lower in tef blended breads compared to wheat bread counterparts, revealing slower firming kinetics, especially for brown tef blended breads. Blended breads with 40% white tef exhibited similar extent and variable rate of retrogradation kinetics along storage, while brown tef-blended breads retrograded slower but in higher extent than control wheat flour breads. Breads that contains 40% tef grain flour were found to contain five folds (DZ-01-99, DZ-Cr-387) to 10 folds (DZ-Cr-37) Fe, three folds Mn, twice Cu, Zn and Mg, and 1.5 times Ca, K, and P contents as compared to the contents found in 100% refined wheat grain flour breads. In addition, suitable dietary trends for lower rapidly digestible starch and starch digestion rate index were met from tef grain flour fortified breads.  相似文献   

7.
Selection for water absorption, a fundamental wheat quality parameter, has been a challenge in wheat breeding programs due to limited wheat materials available for milling and consequent time-consuming farinograph test. Hence, a high shear-based method, which requires 8 g of flour and less than 10 min per test, was proposed to predict flour water absorption using the Brabender GlutoPeak instrument. Highly significant positive linear relationship (r2 = 0.97) was found between GlutoPeak maximum torque and farinograph water absorption for 83 flour samples prepared with Bühler test mill from wheat lines under evaluation in the Canadian wheat variety registration trials. Similar strong correlation (r2 = 0.96) was obtained from flours (n = 63) prepared with Quadrumat Junior laboratory mill using small amount of wheat. Flour prepared either with Bühler test mill or Quadrumat Junior mill can be used for predicting water absorption effectively. GlutoPeak maximum torque was found to be independent of dough strength (r2 = 0.02) as measured by extensigraph. GlutoPeak test can be a powerful tool for rapid and reliable prediction of water absorption of wheat flour.  相似文献   

8.
The genotype, environment and their interaction play an important role in the grain yielding and grain quality attributes. The main aim of this study was to determine the contributions of the genotype, environment and their interaction to the variation in bread-making traits. The data that were used for the analyses performed in this study were obtained from 3 locations in Poland from post-registration multi-environment trials with winter wheat in 2009 and 2010. The experimental factors were the cultivar (7 cultivars) and the crop management level (low input and high input). In the multi-environment trials, 17 traits were investigated that characterize grain, flour and dough quality. Most of the traits were affected much more strongly by environmental factors (i.e., year and location) than by genotype. The variance components revealed an especially strong effect of the year on the baking score, loaf volume and water absorption, as well a strong effect of the location on dough development and protein content. The obtained results demonstrate that the grain quality as measured by the parameters based on the protein content and quality may be substantially improved by crop management practices, especially by N fertilization level.  相似文献   

9.
Native and moistened wheat flours (moisture contents were 13.5 and 27.0%, respectively) were treated with superheated steam (SS) at different temperatures (140 and 170 °C) and times (1, 2 and 4 min). Their physicochemical and digestive properties were analyzed. For native flour, SS treatment altered the starch molecular structure and behavior slightly. While for moistened flour, crystalline degree, gelatinization enthalpy, amylose leaching (AML) and falling number significantly decreased, but thermal transition temperatures increased with the rise of treating severity. Clumping of starch granules, aggregation of proteins and formation of amylose-lipid complexes occurred in both native and moistened flours. Broader pasting temperature ranges and higher viscosities were found on SS-modified flours. Additionally, SS treatment on moistened flours increased resistant and slowly digestible starch contents. In general, SS treatment induced changes in starch molecular structure and reactions among flour components leading to more stable structures, thus affecting their pasting behavior, thermal properties and in vitro digestion.  相似文献   

10.
Hydrocolloids have traditionally been investigated as an alternative to gluten for making good quality products for coeliac patients. This study investigated the interactions between hydroxypropylmethylcellulose (HPMC) (2–4 g/100 g of flour), psyllium (0–4 g/100 g of flour) and water level (90–110 g/100 g of flour) in gluten-free breadmaking. Psyllium incorporation reduced the pasting temperature and compliance values, and increased elastic (G′) and viscous (G″) moduli values. In contrast, HPMC addition had no important effects on pasting properties and compliance values, but also increased G′ and G″ values. Psyllium inclusion reduced bread specific volume and increased bread hardness, while there were hardly differences in the bread specific volume and hardness between the percentages of HPMC studied. In addition, when the dough hydration level was increased, there was a decrease in the influence of hydrocolloids on dough rheology and specific volume and hardness of breads.  相似文献   

11.
Dough rheological properties and noodle-making performance of non-waxy whole-wheat flour (WWF) with partial- or full-waxy (PW- or FW-) WWF substitution were studied. The substitution levels were 0, 250, 500, 750, and 1000 g/kg, respectively. FW-WWF reduced the peak viscosity and pasting temperature of WWF blends as its substitution level was increased due to its higher proportions of B-type starch granules and short amylopectin chains, while PW-WWF increased peak viscosity with the increasing substitution level because of its higher amylopectin content. As demonstrated by farinograph and rheometer measurements, FW-WWF interfered with gluten development because of the increased competition for water by arabinoxylans and amylopectin; however, PW-WWF enhanced dough strength due primarily to its increased protein content. Consequently, FW-WWF showed a detrimental effect on cooked noodle texture as the cooked noodle hardness was reduced by 50% at the 1000 g/kg substitution level. In contrast, PW-WWF enhanced noodle integrity and elasticity by increasing cooked noodle cohesiveness and resilience by 10.1% and 14.8%, respectively, at the 1000 g/kg substitution level. The results suggest that with waxy WWF substitution, the changes in starch composition, arabinoxylans, and protein content could modify the interactions among flour components and influence the quality characteristics of noodle products.  相似文献   

12.
Arising from work showing that conventionally bred high protein digestibility sorghum types have improved flour and dough functionality, the flour and dough properties of transgenic biofortified sorghum lines with increased protein digestibility and high lysine content (TG-HD) resulting from suppressed synthesis of several kafirin subclasses, especially the cysteine-rich γ-kafirin, were studied. TG-HD sorghums had higher flour water solubility at 30 °C (p < 0.05) and much higher paste viscosity (41% higher) than their null controls (NC). TG-HD doughs were twice as strong as their NC and dynamic rheological analysis indicated that the TG doughs were somewhat more elastic up to 90 °C. CLSM of doughs and pastes indicated that TG-HD had a less compact endosperm protein matrix surround the starch compared to their NC. The improved flour and dough functional properties of the TG-HD sorghums seem to be caused by reduced endosperm compactness resulting from suppression of synthesis of several kafirin subclasses which modifies protein body and protein matrix structure, and to improved protein-starch interaction through hydrogen bonding specifically caused by reduction in the level of the hydrophobic γ-kafirin. The improved flour functionality of these transgenic biofortified sorghums can increase their commercial utility by complementing their improved nutritional quality.  相似文献   

13.
Consumption of whole-wheat based products is encouraged due to their important nutritional elements that benefit human health. However, the use of whole-wheat flour is limited because of the poor processing and end-product quality. Bran was postulated as the major problem in whole wheat breadmaking. In this study, four major bran components including lipids, extractable phenolics (EP), hydrolysable phenolics (HP), and fiber were evaluated for their specific functionality in flour, dough and bread baking. The experiment was done by reconstitution approach using the 24 factorial experimental layout. Fiber was identified as a main component to have highly significant (P < 0.05) and negative influence on most breadmaking characteristics. Although HP had positive effect on farinograph stability, it was identified as another main factor that negatively impacted the oven spring and bread loaf volume. Bran oil and EP seemed to be detrimental to most breadmaking characteristics. Overall, statistical analysis indicates that influence of the four bran components are highly complex. The bran components demonstrate multi-way interactions in regards to their influence on dough and bread-making characteristics. Particularly, Fiber appeared to have a high degree of interaction with other bran components and notably influenced the functionality of those components in whole wheat bread-making.  相似文献   

14.
Increases in the proportion of amylose in the starch of wheat grains result in higher levels of resistant starch, a fermentable dietary fiber associated with human health benefits. The objective of this study was to assess the effect of combined mutations in five STARCH BRANCHING ENZYME II (SBEII) genes on starch composition, grain yield and bread-making quality in two hexaploid wheat varieties. Significantly higher amylose (∼60%) and resistant starch content (10-fold) was detected in the SBEII mutants than in the wild-type controls. Mutant lines showed a significant decrease in total starch (6%), kernel weight (3%) and total grain yield (6%). Effects of the mutations in bread-making quality included increases in grain hardness, starch damage, water absorption and flour protein content; and reductions in flour extraction, farinograph development and stability times, starch viscosity, and loaf volume. Several traits showed significant interactions between genotypes, varieties, and environments, suggesting that some of the negative impacts of the combined SBEII mutations can be ameliorated by adequate selection of genetic background and growing location. The deployment of wheat varieties with increased resistant starch will likely require economic incentives to compensate growers and millers for the significant reductions detected in grain and flour yields.  相似文献   

15.
The purpose of this study was to improve the baking quality of high level sunn pest damaged wheat (HLSPDW; 20.6%) sample by using at varying levels transglutaminase, and fixed additive combination (diacetyl tartaric acid esters of mono and diglycerides + citric acid + L-ascorbic acid) with or without transglutaminase. It was observed that transglutaminase plays an important role in baking quality of HLSPDW. The increase in transglutaminase caused very clear increase on bread characteristics of wheat. Bread yield, height, pore structure, and crumb softness values increased sharply; weight loss and wideness of bread samples decreased accurately depending on increasing transglutaminase level. This increase did not affect obviously on bread quality at a certain proportion (0.3%). However, when the transglutaminase was more than 0.3% and depend on increase of percentage, bread characteristics showed significant increase. It was determined that, in the absence of transglutaminase; other additives could not improve the bread qualities examined. The unique application of using transglutaminase was found to be considerably to improve the bread quality of the HLSPDW. Overall results indicate that the properties of the bread from HLSPDW can be restored by the addition of transglutaminase. The highly disrupted protein structure present in the HLSPDW gluten requires higher transglutaminase concentrations.  相似文献   

16.
A new gluten-free bread formulations composed of quinoa, buckwheat, rice flour and potato starch were developed in the present study. Rheological characteristics of the bread batter with increasing amount of quinoa were determined; storage (G′) and loss modulus (G″) values were also measured for investigation of viscoelastic properties. To evaluate the quality of breads; technological and physical (bake loss %, specific volume, texture, microstructure, color), chemical (protein, moisture, ash) and sensory properties were determined. All batter formulations independent of the quinoa amount exhibited pseudoplastic behavior, and G′ values were found to be higher than G″ values in expressing the solid like characteristics of the batter. Amount of quinoa flour addition did not present significant difference on bake loss%, specific volume and protein content (p>0.05); however, 25% quinoa flour bread displayed better results with its higher sensory scores and softer texture. Quinoa and buckwheat flour mixture therefore will be a good alternative for conventional gluten-free bread formulations.  相似文献   

17.
The extensigraph is particularly useful in characterizing dough viscoelastic properties; however, testing throughput for standard method is low due to the prerequisite for farinograph water absorption, long dough resting and milling to prepare large amounts of flour. Therefore, a rapid extensigraph method was developed that reduced sample size (165 g wheat) for milling and more than tripled throughput. Wheat is milled in Quadrumat Junior mill with a modified sieving system. The resulting flour (100 g) was mixed with a pin mixer at constant water absorption to allow the evaluation of wheat genotypes at the absorption level they are expected to perform. Dough was subsequently stretched by an extensigraph after 15 min of floor time and 30 min resting. Strong correlations for extensigram Rmax (r > 0.93), extensibility (r > 0.64) and area (r > 0.88) were found for the proposed method compared to the standard method. Mixing parameters (time and energy) obtained during dough preparation provided further information about dough strength and mixing requirement. By significantly reducing sample size requirement and increasing testing throughput, this rapid extensigraph method can be widely adopted in milling and baking industry and meets the need for a fast evaluation of dough strength in breeding trials.  相似文献   

18.
Septoria tritici blotch (STB), caused by Zymoseptoria tritici is a relevant foliar wheat disease worldwide. Several reports show the importance of STB on grain yield, their components and grain protein while little is known about its effect on the rheological properties of the wheat flour. The scarce literature found, only mentions the effect of the complex of foliar diseases on wheat quality, without individualizing the effect of the different pathogens separately. This study analyze the influence of increasing doses of inoculum of Zymoseptoria tritici, on the bread making quality of ten Argentinean wheat cultivars and its possible variation according to their quality group. The increase of inoculum concentration augmented the area under disease progress curve, decreased green flag leaf area duration and green leaf area duration. Cultivars K. Flecha and B.75 Aniversario had the lowest green flag leaf area duration causing higher reduction in grain filling period and higher reductions in P, indicating a lower gliadin/glutenin ratio. STB decreased P/L and E while L, W, D, SV and bread volume increased. Cultivars differed in rheological parameters according to their quality group. Gluten/protein relationship was significant in quality group 1 and non-significant in cultivars belonging to quality group 2 and 3.  相似文献   

19.
In order to investigate the impact of different yeast strains from the species Saccharomyces cerevisiae on the dough and bread quality parameters, wheat flour was fermented using different beer yeasts. The results show that beer yeast strains could be included in the baking process since S. cerevisiae T-58 and S. cerevisiae s-23 provided adequate gas production and dough formation with superior structural properties like extensibility and stickiness to S. cerevisiae baker's yeast. The resulting breads show the highest specific volume with the highest slice area and the highest number of cells and the lowest hardness over time. The different yeasts had also an impact on the crust colour due to their abilities to ferment different sugars and on shelf life due to the production of a range of different metabolic by-products. According to this study it was possible to produce higher quality bread by using yeast coming from the brewing industry, instead of bread containing standard baker's yeast.  相似文献   

20.
A size exclusion – high performance liquid chromatography (SE-HPLC) method originally developed for separating wheat, barley or rice proteins was applied to study the extractability and molecular weight (MW) distribution of rye flour proteins. These were extracted with 50 mmol/l sodium phosphate buffer (pH 6.8) containing 2.0% (w/v) sodium dodecyl sulfate (SDS) and, optionally, 1.0% (w/v) dithiothreitol (DTT). About 95% of the proteins were extracted in buffer containing 2.0% SDS. Addition of 1.0% DTT to such buffer increased the protein extractability to 100%, indicating that rye flour contains some proteins cross-linked by disulfide (SS) bonds. The SE-HPLC profiles revealed that rye flour contains SS-linked HMW-secalins and 75 k γ-secalins which elute in specific peaks. Upon reduction, these SS-linked protein aggregates dissociate and some entrapped albumins, globulins and/or ω-secalins are released. Rye flour albumins and globulins elute over the entire SE-HPLC profile. In contrast, the monomeric ω-secalins and 40 k γ-secalins are detected in specific well resolved SE-HPLC peaks. The applied fast and reproducible method can be used to characterise and quantify rye flour proteins and to determine changes as a result of processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号