首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A bone bruise is a magnetic resonance (MR) imaging sign thought to signify acute traumatic microfracture of trabecular bone with hemorrhage and edema in the marrow that may occur without grossly visible disruption of the adjacent cortices or overlying cartilage. In approximately 75% of people with acute anterior-cruciate ligament tears, bone bruises are detected in characteristic locations within the femur and tibia and are best seen as high-signal lesions using fat-suppression sequences. We questioned whether this is a component of naturally acquired stifle lameness in dogs and obtained short-tau inversion recovery (STIR) images of six dogs with stifle lameness. High-signal STIR lesions were detected in five of six (83%) dogs and eight of 12 (67%) limbs. We observed these lesions deep to the intercondylar fossa of the femur and intercondylar eminence of the tibia, which are atypical locations in people. High-signal STIR lesions were detected in dogs with only synovitis, partial tear of the cranial cruciate ligament (CCL) and complete tear of the CCL. One of these lesions was seen in the lateral tibial condyle, a typical location in humans with acute anterior cruciate ligament tear. As the MR imaging appearance of stress fractures and bone bruises are similar, and the high-signal STIR lesions are at attachment sites of the CCL, this finding may be due to stress disease or other unknown causes, rather than bone bruising. High-signal STIR lesions may be a common sign in naturally acquired canine stifle disease, but the pathogenesis, prognostic and diagnostic values need further investigation.  相似文献   

2.
We describe the abnormal magnetic resonance (MR) imaging findings in the deep digital flexor tendon (DDFT) and distal sesamoid bone in horses with radiographic changes compatible with navicular syndrome. Thirteen postmortem specimens were examined using a 1.5-T magnetic field, with spin echo (SE) T1-weighted, turbo SE (TSE) proton density-weighted (with and without fat saturation), and fat saturation TSE T2-weighted sequences. The limbs were then dissected to compare the MR findings with the gross assessment and histologic examination of the DDFT and distal sesamoid bones. Tendonous abnormalities were detected by MR imaging in 12 DDFTs and confirmed at necropsy. Most tendon lesions were located at the level of the distal sesamoid bone and the proximal recess of the podotrochlear bursa. Tendon lesions were classified based on their MR imaging features as core lesions, dorsal lesions, dorsal abrasions, and parasagittal splits. Areas of increased MR signal in the DDFTs were characterized by tendon fiber disturbance and lack of continuity of the collagen fibers, foci of edema, hemorrhages, and formation of lakes containing eosinophilic plasma-like material or amphophilic material of low density. Bone marrow signal alterations in the distal sesamoid bone were seen in all digits. Two main phenomena were responsible for the abnormal signal, respectively, in T1-weighted (decreased signal) and in T2-weighted fat-suppressed images (increased signal): a decrease in the fat marrow content in the trabecular spaces and an increase in the fluid content. Histologic examination revealed foci of bone marrow edema, hemorrhage, necrosis, and fibrosis. Cyst formation and trabecular abnormalities (disorganization, thinning, remodelling) were also observed in areas of abnormal signal intensity. Increased bone density because of trabecular thickening induced a decrease in signal in all sequences.  相似文献   

3.
Reasons for performing study: There is limited knowledge about both histological features in early navicular disease and what histological features are represented by increased signal intensity in fat‐suppressed magnetic resonance (MR) images of the navicular bone. Objective: To characterise increased signal intensity in the spongiosa of the navicular bone in fat‐suppressed MR images and to compare this with histopathology; and to compare objective grading of all aspects of the navicular bone on MR images with histological findings. Methods: One or both front feet of 22 horses with foot pain and a median lameness duration of 3 months were examined using high‐field MR imaging (MRI) and histopathology. The dorsal, palmar, proximal and distal borders of the navicular bone and the spongiosa were assigned an MRI grade (0–3) and a histological grade and compared statistically. Results: Increased signal intensity in the spongiosa of the navicular bone was associated with a variety of abnormalities, including fat atrophy, with lipocytes showing loss of definition of cytoplasmic borders, a proliferation of capillaries within the altered marrow fat, perivascular or interstitial oedema, enlarged intertrabecular bone spaces, fibroplasia and thinned trabeculae showing loss of bone with irregularly spiculated edges of moth‐eaten appearance. There were significant associations among histological lesions of the fibrocartilage, calcified cartilage and subchondral bone. There were also significant associations between MRI grading of the spongiosa and both histological marrow fat grade and the combined maximum of the MRI grades for the fibrocartilage. Conclusions and potential relevance: Increased signal intensity in the spongiosa of the navicular bone in fat‐suppressed MR images may occur in association with lesions of the fibrocartilage with or without subchondral bone or may represent a separate disease entity, particularly if diffuse, reflecting a variety of alterations of trabecular bone and marrow fat architecture.  相似文献   

4.
Bone marrow lesions (BMLs) (also known as ‘bone bruises’, ‘bone oedema’, ‘bone contusions’ and ‘occult fractures’) within the middle phalanx were diagnosed by standing low field magnetic resonance imaging (MRI) in 7 horses. The lesions were characterised by low signal intensity on T1‐ and T2*‐weighted gradient echo sequences, mildly increased signal intensity on T2 fast spin echo sequences, and high signal intensity on short tau inversion recovery (STIR) sequences. Four distinct patterns of abnormal signal were identified: BML associated with osteoarthritis of either the proximal or distal interphalangeal joints; BML associated with soft tissue injury; BML associated with acute trauma; and BML unassociated with any other injury or lameness (assumed to represent bone response to biomechanical stress). Repeat MRI was undertaken in 4 cases. In most cases the BML resolved with rest and time, although lameness was persistent in 2 horses (one of which had an associated osteoarthritis of the proximal interphalangeal joint).  相似文献   

5.
The purpose of this study was to describe the appearance of normal bone marrow in seven adult dogs using low-field (0.3 T) magnetic resonance (MR) imaging. The areas imaged included the lumbar spine, pelvis, and femur. T1-weighted, fast spin-echo T2-weighted, and short tau (T1) inversion recovery (STIR) sequences were obtained at all locations. Histopathology was performed on sections from the sixth lumbar vertebral body, the wing of the ilium, and the femur (head and neck, mid-diaphysis, and condyle) for evaluation of cellularity and fat content. The lumbar spine and pelvic marrow MR images were similar in all dogs. The lumbar vertebral bone marrow was uniform, intermediate signal intensity, and isointense to muscle on all sequences. There was variation between dogs in the bone marrow distribution with MR imaging of the femur. In the proximal and mid-diaphysis of the femur there was patchy high-signal intensity on T1- and T2-weighted images, and hypointense foci on the STIR images. The distal femoral metaphysis had a variable pattern ranging from intermediate-to-high signal on T1- and T2-weighted images and intermediate-to-low signal on STIR images. The femoral condyles were uniformly high signal on T1- and T2-weighted images and hypointense on STIR images. Histopathologically there was a normal variation in the bone marrow cellularity. The marrow was normocellular (25–75% cellularity) for all sites examined except the femoral condyles, which were hypocellular (<25% cellularity).  相似文献   

6.
OBJECTIVE: To compare the bone mineral density (BMD) of the proximal portion of the femur in dogs with and without early osteoarthritis secondary to hip dysplasia. ANIMALS: 24 dogs (3 Greyhounds, 6 Labrador-Greyhound crossbreeds, and 15 Labrador Retrievers). PROCEDURE: Computed tomography (CT) of the pelvis, including a bone-density phantom, was performed for each dog. Centrally located transverse CT slices and a computer workstation were used to identify 16 regions of interest (ROIs) in the proximal portion of the femur. For each ROI, the mean Hounsfield unit value was recorded; by use of the bone-density phantom and linear regression analysis, those values were converted to equivalent BMD (eBMD). Mean eBMD values for the subchondral and nonsubchondral ROIs in dogs with and without osteoarthritis (determined at necropsy) were compared. A mixed-model ANOVA and post hoc linear contrasts were used to evaluate the effects of osteoarthritis, breed, and sex on the BMD value. RESULTS: At necropsy, osteoarthritis was detected in 14 hip joints in 9 dogs; all lesions included early cartilage fibrillation. After adjusting for breed and sex, eBMD in subchondral ROIs 8 and 12 (adjacent to the fovea) were 8% and 6% higher, respectively, in osteoarthritis-affected dogs, compared with unaffected dogs; in the nonsubchondral ROIs, eBMD was 10% higher in osteoarthritis-affected dogs. CONCLUSIONS AND CLINICAL RELEVANCE: Compared with findings in unaffected dogs, increased eBMD in hip joints of dogs with early osteoarthritis supports a strong relationship between the subchondral and epiphyseal regions and articular cartilage in the pathogenesis and progression of osteoarthritis.  相似文献   

7.
Thoracic and pelvic limbs from 15 euthanized free-ranging lions (Panthera leo), ranging in age from 16 to 144 months, underwent standard radiographic evaluation. All lions had tested positive for Mycobacterium bovis by means of a modified intradermal tuberculn test. The radiographs of six lions were normal and nine had incidental findings of which six had more than one lesion. Seven lions had lesions suspected to be associated with tuberculosis, which was confirmed in specific joints in two lions. Incidental pathology was classified as traumatic injuries and degenerative or trauma-associated joint disease. The traumatic lesions were fractures of which the most remarkable was a femur malunion. Four lions had fibula and another three lions had metacarpal/tarsal and phalangeal fractures. Joint lesions included glenoid, humeral head, and accessory carpal bone osteophytes. There was evidence of a cranial cruciate ligament rupture in an 8-year-old male. Trauma induced joint lesions were seen in four stifles (fragmented or displaced sesamoid bones, fragmented meniscal ossicle, or mineralized fragments). Radiological abnormalities believed to be caused by M. bovis were present in one stifle, one radiocarpal three tibiotarsal, and one tarsometatarsal joints. These had evidence of septic arthritis with extensive bone formation and capsular mineralization. In one 20-month-old lion, changes typical of a bone abscess were found in a proximal tibia. Radiologic evidence of elbow hygromas were seen in three elbows, all believed to be caused by M. bovis. Lions appeared to cope fairly well with a variety of traumatic injuries and were also susceptible to some of the aging/incidental radiologic findings seen in dogs and cats. The suspected M. bovis osseous lesions were more likely to involve the joints, particularly the tarsal joint and were mainly proliferative.  相似文献   

8.
The sensitivity of low‐field magnetic resonance (MR) T2* images for predicting the presence of meniscal lesions was determined in 12 dogs with naturally‐occurring cranial cruciate ligament rupture and three control dogs, using histopathology as the reference standard. Previously published grading systems were used to grade the severity of meniscal lesions on MR images, gross inspection and histopathology. Focal areas of increased signal intensity were detected in 11/12 symptomatic dogs and 3/3 control dogs. Lesions mimicking meniscal tears (pseudotears) were identified at junctions between meniscal margins and adjacent connective tissue in control dogs and dogs with naturally occurring disease. Histopathologic lesions were present in all menisci of both symptomatic and control dogs, including the menisci from two affected dogs that appeared grossly normal but were removed and submitted based on MR imaging findings. Histopathologic lesions identified included hyaline cartilage metaplasia and changes in the amount of ground substance and cellularity. The sensitivity of MR imaging for detecting the presence of meniscal histopathologic lesions was 90% in symptomatic dogs and 91% in control dogs. However, agreement between severity scores for the different tests was poor. Low‐field MR imaging is a sensitive test for predicting the presence but not severity of meniscal histopathologic lesions in dogs with naturally‐occurring cranial cruciate ligament rupture. Findings also supported previous studies indicating that histopathologic lesions can be present in dogs with grossly normal menisci. An improved grading system for comparing MR images and histopathologic severity of meniscal lesions in dogs is needed.  相似文献   

9.
Two bullmastiffs with calvarial hyperostosis syndrome are described and are the first documented examples in females. The clinical and radiologic features were similar to those previously reported in males. Magnetic resonance (MR) imaging findings have not previously been reported. One dog underwent MR imaging and abnormalities included thickening of the frontal bones with loss of normal fat signal and changes in the overlying soft tissues. In one of the dogs, long bone changes were seen in the femora and resembled those seen with craniomandibular osteopathy.  相似文献   

10.
Magnetic resonance (MR) imaging is increasingly used in the diagnosis of equine foot pain, but improved understanding of how MR images represent tissue-level changes in the equine foot is required. We hypothesized that alterations in signal intensity and tissue contour would represent changes in tissue structure detected using histologic evaluation. The study objectives were to determine the significance of MR signal alterations in feet from horses with and without lameness, by comparison with histopathologic changes. Fifty-one cadaver feet from horses with a history of lameness improved by palmar digital analgesia (n = 32) or age-matched control horses with no history of lameness (n = 19) were stored frozen before undergoing MR imaging and subsequent histopathological examination at standard sites (deep digital flexor tendon, navicular bone, distal sesamoidean impar ligament, collateral sesamoidean ligament, and navicular bursa). Using MR images, signal intensity and homogeneity, size, definition of anatomic margins, and relationships with other structures were described. Alterations were graded as mild, moderate, or severe for each structure. For each anatomic site examined histologically the structures were described and scored as no changes, mild, moderate, or severe abnormalities, also taking into account adhesion formation within the navicular bursa detected on macroscopic examination. Alterations in MR signal intensity were related to changes at the tissue level detected by histologic examination. A sensitivity and specificity comparison of MR imaging with histologic examination was used to evaluate the significance of MR signal alterations for detection of moderate-to-severe lesions of the deep digital flexor tendon (DDFT), navicular bone, distal sesamoidean impar ligament (DSIL), collateral sesamoidean ligament (CSL) and navicular bursa. Agreement between the MR and histologic grading was assessed for each structure using a weighted kappa agreement. Direct comparison between histology and MR imaging for individual limbs revealed that signal alterations on MR imaging did represent tissue-level changes. These included structural damage, fibroplasia, fibrocartilaginous metaplasia, and hemosiderosis in ligaments and tendons; trabecular damage, osteonecrosis, fibroplasia, cortical defects, and increased vascularity in bone; and fibrocartilage defects. MR imaging had a high sensitivity and specificity for most structures. MR imaging had high specificity for lesions of the DDFT, CSL and navicular bursa, quite high specificity for lesions of the medulla of the navicular bone and its proximal aspect, with moderate specificity for the DSIL, and distal, dorsal and palmar aspects of the navicular bone, and was sensitive for detection of abnormalities in all structures except the dorsal aspect of the navicular bone. When MR and histologic grades alone were compared, there was good agreement between MR and histologic grades for the navicular bursa, DDFT, navicular bone medulla and CSL; moderate-to-good agreement in grades of the distal and palmar aspects of the navicular bone; fair to moderate in grades of the DSIL, and poor agreement for the dorsal and proximal aspects of the navicular bone. The results of this study support our hypothesis and indicate the potential use and limitations of MR imaging for visualization of structural changes within osseous and soft tissue structures of the equine foot.  相似文献   

11.
OBJECTIVE: To evaluate efficacy of intra-articular injection of gadolinium tetra- azacyclododecane tetraacetic acid (gadolinium-DOTA) for delineating fragmented medial coronoid processes (FMCP) and lesions on the medial aspect of the humeral condyle (MAHC). SAMPLE POPULATION: 14 cubital joints in 9 dogs. PROCEDURE: Magnetic resonance imaging (MRI) was performed with and without intra-articular injection of a solution of 2 mmol of gadolinium-DOTA/L. Arthrographic images obtained after injection of contrast medium were compared with those obtained without contrast medium. Evidence of contrast medium around or in the medial coronoid process and infiltration of contrast medium in subchondral bone lesions was recorded. Twenty-four hours after imaging, arthroscopy was performed, and lesions detected were correlated with results of MRI. RESULTS: An abnormal coronoid process was diagnosed in 13 of 14 joints. A fragmented process (free) was seen in 7 of 14 joints; nondisplaced mineralized medial (in situ) coronoid processes were evident in 4 joints; and nondisplaced unmineralized medial coronoid processes were evident in 2 joints. Lesions on the MAHC were diagnosed in 4 of 12 joints. In 5 joints, a hyperintense signal resulted from contrast medium that infiltrated between the fragmented process and ulna. In 2 joints, contrast medium did not infiltrate completely around the process and was stopped by an isointense structure (ie, abnormal cartilage). Subchondral bone lesions were enhanced by use of contrast medium. CONCLUSION AND CLINICAL RELEVANCE: Use of arthrography enabled us to identify FMCP easily, but did not provide important additional information about changes on the medial coronoid process, compared with MRI performed without contrast medium.  相似文献   

12.
The distal row of carpal bones (C2, C3, and C4) from eight left intercarpal joints--four from Standardbred Trotters and four from Swedish Warmblood horses--were used to assess the potential of magnetic resonance (MR) imaging to detect cartilage and bone lesions. The joints used in the study were classified by macroscopic and radiographic examinations as having normal, mild, moderate, or severe articular cartilage lesions and bone sclerosis. Those classifications correlated well with the appearance of the MR images. Bone sclerosis in the MR images was observed as regions of decreased signal intensity. Upon quantitative analysis of the MR images there was a significant difference (p < 0.0001) in the MR signal intensity from areas where radiographic bone sclerosis was observed compared to areas of radiographic nonsclerotic bone. In addition, the MR images were used to pilot the location of histology slices through areas of interest that were then examined microscopically; hence, the lesions found from the MR imaging examination were verified microscopically. It was concluded that cartilage lesions and cartilage loss are related to the sclerotic state of the underlying bone. The MR protocols developed in this study were applied on five intact cadaveric carpal joints, and it was concluded that MR imaging could successfully be used in the intact joint to detect minor cartilage and bone lesions not visualized by either radiography or macroscopic examination. Hence, MR imaging can be used to delineate interactions between articular cartilage and subchondral bone over time and in vivo.  相似文献   

13.
Injury of the distal tarsus and proximal metatarsus commonly causes lameness. Magnetic resonance imaging (MRI) allows concurrent assessment of both the distal tarsal joints and suspensory ligament origin, and aids identification of lesions that may otherwise go undetected by other modalities. In this retrospective observational study, the medical records of a veterinary imaging center were searched for MRI exams of the distal tarsus and proximal metatarsus for the years 2012 through 2014. Studies for 125 limbs of 103 horses were identified and retrospectively evaluated by two board‐certified veterinary radiologists. Soft tissue and osseous changes were characterized and graded by degree of severity. The patients’ signalment, lameness severity, and results of diagnostic analgesia were recorded. Osteoarthritic changes of the distal intertarsal and tarsometatarsal joints were the most common findings. Other findings included bone marrow lesions, degenerative changes of the small cuboidal bones, subchondral cystic lesions, and intertarsal desmopathy. Suspensory ligament desmopathy was found in 53% of limbs. Fourty‐seven percent of limbs that responded to analgesia of the proximal suspensory ligament had more severe lesions in the distal tarsus. Bone marrow lesions of the third tarsal bone were the only MRI finding that correlated with grade of lameness in patients for which lameness grade was reported. The grade of lameness has a poor correlation with the severity of lesions found on MRI. The findings support the use of MRI for simultaneous evaluation of the proximal metatarsus and distal tarsus, particularly given the difficulty of lesion localization with diagnostic analgesia.  相似文献   

14.
The diagnosis of discospondylitis is based mainly on diagnostic imaging and laboratory results. Herein, we describe the magnetic resonance imaging (MRI) findings in 13 dogs with confirmed discospondylitis. In total there were 17 sites of discospondylitis. Eleven (81.1%) of the dogs had spinal pain for >3 weeks and a variable degree of neurologic signs. Two dogs had spinal pain and ataxia for 4 days. Radiographs were available in nine of the dogs. In MR images there was always involvement of two adjacent vertebral endplates and the associated disk. The involved endplates and adjacent marrow were T1‐hypointense with hyperintensity in short tau inversion recovery (STIR) images in all dogs, and all dogs also had contrast enhancement of endplates and paravertebral tissues. The intervertebral disks were hyperintense in T2W and STIR images and characterized by contrast enhancement in 15 sites (88.2%). Endplate erosion was present in 15 sites (88.2%) and was associated with T2‐hypointense bone marrow adjacent to it. In two sites (11.8%) endplate erosion was not MR images or radiographically. The vertebral bone marrow in these sites was T2‐hyperintense. Epidural extension was conspicuous in postcontrast images at 15 sites (88.2%). Spinal cord compression was present at 15 sites (88.2%), and all affected dogs had neurologic signs. Subluxation was present in two sites (11.8%). MRI shows characteristic features of discospondylitis, and it allows the recognition of the exact location and extension (to the epidural space and paravertebral soft tissues) of the infection. Furthermore, MRI increases lesion conspicuity in early discospondylitis that may not be visualized by radiography.  相似文献   

15.
The stifle joints of eleven military working dogs were evaluated using conventional magnetic resonance (MR) imaging and MR arthrography. A protocol optimizing MR imaging of the canine stifle joint is discussed, as well as potential uses for administration of intra-articular gadolinium. The technique for performing MR arthrography is described, and post-contrast image findings are reviewed. MR arthrography was performed by using an intra-articular injection of diluted gadolinium. Consistently good quality images were obtained, and no complications were clinically detected following MR arthrography. Cranial cruciate ligament abnormalities were seen in six dogs, meniscal abnormalities were visualized in nine menisci, and synovitis and medial ligament strain were seen in eight dogs. Surgical and post-mortem confirmation of these findings is discussed in seven dogs. Although MR arthrography adds an invasive procedure to conventional MR imaging, it can provide useful information on pathologic changes in the canine stifle joint.  相似文献   

16.
Little is known about the magnetic resonance imaging (MRI) appearance of canine meniscal lesions. The aim of this study is to describe the MR appearance of meniscal lesions in dogs with experimentally induced cranial cruciate ligament (CCL) deficiency. The pilot study revealed dogs weighing approximately 10 kg to be too small for meniscal evaluation on low-field MRI. In the main study, dogs weighing approximately 35 kg were used. The left CCL was transected and low-field MRI was performed regularly until 13 months post-surgery. Normal menisci were defined as grade 0. Intrameniscal lesions not reaching any surface corresponded to grade 1 if focal and to grade 2 if linear or diffuse. Grade 3 lesions consisted in linear tears penetrating a meniscal surface. Grade 4 lesions included complex signal changes or meniscal distortion. Between 2 and 13 months post-surgery, all dogs developed grade 4 lesions in the medial meniscus. Most of them corresponded to longitudinal or bucket handle tears on arthroscopy and necropsy. Two dogs showed grade 3 lesions reaching the tibial surface of the lateral meniscus on MRI but not in arthroscopy. Such tears are difficult to evaluate arthroscopically; MRI provides more accurate information about the tibial meniscal surface. Grades 1 and 2 lesions could not be differentiated from presumably normal menisci with our imaging technique. An MRI grading system better adapted to canine lesions has yet to be developed. MRI is a helpful tool for the diagnosis of complete tears in the canine meniscus, especially in larger dogs.  相似文献   

17.
Eighteen Doberman pinscher dogs with clinical signs of cervical spondylomyelopathy (wobbler syndrome) underwent cervical myelography and magnetic resonance (MR) imaging. Cervical myelography was performed using iohexol, followed by lateral and ventrodorsal radiographs. Traction myelography was performed using a cervical harness exerting 9 kg of linear traction. MR imaging was performed in sagittal, transverse, and dorsal planes using a 1.5 T magnet with the spine in neutral and traction positions. Three reviewers independently evaluated the myelographic and MR images to determine the most extensive lesion and whether the lesion was static or dynamic. All reviewers agreed with the location of the most extensive lesion on MR images (100%), while the agreement using myelography was 83%. The myelogram and MR imaging findings agreed in the identification of the affected site in 13-16 dogs depending on the reviewer. MR imaging provided additional information on lesion location because it allowed direct examination of the spinal cord diameter and parenchyma. Spinal cord signal changes were seen in 10 dogs. Depending on the reviewer, two to four dogs had their lesions classified as dynamic on myelography but static on MR images. Myelography markedly underscored the severity of the spinal cord compression in two dogs, and failed to identify the cause of the signs in another. The results of this study indicated that, although myelography can identify the location of the lesion in most patients, MR imaging appears to be more accurate in predicting the site, severity, and nature of the spinal cord compression.  相似文献   

18.
Emaciated human patients have changes in the fat content in medullary bone that are consistent with serous atrophy of the bone marrow histologically. Serous atrophy has been identified at postmortem examination in horses; however, the magnetic resonance (MR) characteristics have not been documented. Herein we describe the abnormalities of the bone marrow and medullary bone detected by low‐field and high‐field MR imaging of the distal limbs of three emaciated horses. These low‐ and high‐field MR imaging abnormalities are characterized by a decrease in signal intensity on T1‐weighted images in combination with an increase in signal intensity on short tau inversion recovery images in all areas of trabecular bone in the distal limbs, in the absence of lameness. Serous atrophy was confirmed microscopically in two horses. Appreciating the sensitivity of MR imaging for detection of bone marrow changes may assist in assessment of fat atrophy in welfare cases where starvation is suspected.  相似文献   

19.
OBJECTIVE: To evaluate progression of clinical signs and magnetic resonance imaging (MRI) findings in dogs with cervical spondylomyelopathy (wobbler syndrome) treated medically or surgically. DESIGN: Prospective cohort study. ANIMALS: 12 Doberman Pinschers. PROCEDURES: Neurologic examinations and MRI were performed before medical (n = 9) or surgical treatment (ventral slot, 3) and a minimum of 12 months later. RESULTS: Mean follow-up time was 14.5 months. Clinically, 2 dogs improved after surgical treatment and 5 improved after medical treatment. Magnetic resonance imaging of surgically treated dogs revealed adequate spinal cord decompression. Spinal cord signal changes were seen in 2 dogs before surgery, both of which had new signal changes at the same and adjacent sites during follow-up examination. One dog treated surgically developed 3 new areas of spinal cord compression. In the medically treated dogs, the severity of spinal cord compression at the time of follow-up examination was unchanged in 4 dogs, worse in 2 dogs, and improved in 3 dogs, but spinal cord atrophy was observed on transverse images. Four medically treated dogs had changes in spinal cord signal initially, but none developed new signal changes or compressions. CONCLUSIONS AND CLINICAL RELEVANCE: Medical and surgical treatment improved or stabilized the clinical condition of most dogs. Surgical treatment appeared to hasten the development of additional areas of spinal cord compression and lesions in dogs with preoperative cord changes; however, the clinical importance of these changes was not determined. The progression of pathologic MRI abnormalities was notably less in medically treated dogs, compared with surgically treated dogs.  相似文献   

20.
Cervical spondylomyelopathy or Wobbler syndrome commonly affects the cervical vertebral column of Great Dane dogs. Degenerative changes affecting the articular process joints are a frequent finding in these patients; however, the correlation between these changes and other features of cervical spondylomyelopathy are uncertain. We described and graded the degenerative changes evident in the cervical articular process joints from 13 Great Danes dogs with cervical spondylomyelopathy using MR imaging, and evaluated the relationship between individual features of cervical articular process joint degeneration and the presence of spinal cord compression, vertebral foraminal stenosis, intramedullary spinal cord changes, and intervertebral disc degenerative changes. Degenerative changes affecting the articular process joints were common, with only 13 of 94 (14%) having no degenerative changes. The most severe changes were evident between C4-C5 and C7-T1 intervertebral spaces. Reduction or loss of the hyperintense synovial fluid signal on T2-weighted MR images was the most frequent feature associated with articular process joint degenerative changes. Degenerative changes of the articular process joints affecting the synovial fluid or articular surface, or causing lateral hypertrophic tissue, were positively correlated with lateral spinal cord compression and vertebral foraminal stenosis. Dorsal hypertrophic tissue was positively correlated with dorsal spinal cord compression. Disc-associated spinal cord compression was recognized less frequently.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号