首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Treatments in big sagebrush (Artemisia tridentata Nutt.) are often implemented to improve habitat conditions for species such as greater sage-grouse (Centrocercus urophasianus). These treatments aim to increase the availability of forbs and invertebrates critical to juvenile and adult sage-grouse during the breeding season. However, information regarding the response of forbs in treated sagebrush are often conflicting, dependent on the type of sagebrush community treated and time after treatment. In addition, there is little information on the response of invertebrates to treatments, particularly herbicide treatments in Wyoming big sagebrush (A.t. ssp. wyomingensis Beetle & Young) communities. We evaluated the response of forbs and invertebrates in Wyoming big sagebrush that had been mowed or aerially treated with tebuthiuron compared with untreated reference areas. We also compared forb and invertebrate dry matter (DM) between treated plots and locations used by brood-rearing females. Forb and invertebrate DM in mowed and tebuthiuron treatments did not differ from untreated plots up to 4 yr after treatment and were equal to or less than locations used by brood-rearing grouse up to 2 yr after treatment. Our findings corroborate best available science that suggest treating Wyoming big sagebrush may not increase food availability for sage-grouse.  相似文献   

2.
Wyoming big sagebrush (Artemisia tridentata Nutt. ssp. wyomingensis Beetle & Young) is the most abundant and widely distributed subspecies of big sagebrush and has been treated through chemical application, mechanical treatments, and prescribed burning in efforts thought to improve habitat conditions for species such as greater sage-grouse (Centrocercus urophasianus) and mule deer (Odocoileus hemionus). Although the response of structural attributes of sagebrush communities to treatments is well understood, there is a need to identify how treatments influence the quality of sagebrush as winter food for wildlife. Our purpose was to identify how mowing and tebuthiuron treatments influenced dietary quality of Wyoming big sagebrush in central Wyoming. Two study areas were mowed in January and February 2014, and tebuthiuron was applied in two study areas in May 2014. We constructed 6 exclosures in each of these four study areas (24 total), which encompassed 30 × 30 m areas of treated and untreated sagebrush within each exclosure. Samples of current annual growth were collected from 18 sagebrush plants from treated and 12 plants from control portions of mowing exclosures during November 2013–2015 and tebuthiuron exclosures during November 2014–2015. Samples were analyzed for crude protein and plant secondary metabolites known to influence dietary selection of sagebrush by sage-grouse and other sagebrush-occurring herbivores. Our results suggest mowing and tebuthiuron treatments may slightly increase crude protein concentrations directly after treatments without immediate changes in plant secondary metabolites. Slight increases in dietary quality of sagebrush following treatments coupled with potential trade-offs with loss of biomass associated with treatments corroborates previous research that treating Wyoming big sagebrush may have little benefit for sage-grouse and other sagebrush-dependent wildlife. Future work should evaluate not only how treatments influence sage-grouse habitat use and reproductive success but also how treatments influence other wildlife species in fragile sagebrush ecosystems.  相似文献   

3.
Anthropogenic disturbances, wildfires, and weedy-plant invasions have destroyed and fragmented many sagebrush (Artemisia L. spp.) habitats. Sagebrush-dependent species like greater sage-grouse (Centrocercus urophasianus) are vulnerable to these changes, making habitat monitoring essential to effective management. Conventional ground inventory methods are time consuming (expensive) and have lower data collection potentials than remote sensing. Our study evaluated the feasibility of ground (0.3-mm ground surface distance [GSD]) and aerial imagery (primarily, 1-mm GSD) to assess ground cover for big sagebrush (Artemisia tridentata Nutt.) and other vegetation functional groups important in sage-grouse breeding habitat (lekking, nesting, and brood rearing). We surveyed ∼ 526 km2 of the upper Powder River watershed in Natrona County, Wyoming, USA, a region dominated by Wyoming big sagebrush (Artemisia tridentata Nutt. ssp. wyomingensis Beetle & Young) communities interspersed with narrow riparian corridors. Our study area was used year-round by sage-grouse and included 16 leks. In June 2010, we acquired aerial images (1-mm resolution) for 3 228 systematic sampling locations; additional images were acquired as rapid-succession bursts where aerial transects crossed riparian areas and for 39 riparian and 39 upland ground locations (0.3-mm resolution) within 3.2-km of leks. We used SamplePoint software to quantify cover for plant taxa and functional groups using all ground images and a systematic sampling of aerial images. Canopy cover of sage-grouse food forbs—as averaged across aerial and ground imagery around all leks—was 1.8% and 7.8% in riparian and 0.5% and 4.0% in upland areas, respectively. Big sagebrush cover was 8.7% from upland aerial images and 9.4% from upland ground images. Aerial and ground imagery provided similar values for bare ground and shrubs in riparian and upland areas, whereas ground imagery provided finer-scale herbaceous-cover data that complemented the aerial imagery. These and other image-derived archival data provide a practical basis for landscape-scale management and are a cost-effective means for monitoring extensive sagebrush habitats.  相似文献   

4.
Re-establishing native communities that resist exotic weed invasion and provide diverse habitat for wildlife are high priorities for restoration in sagebrush ecosystems. Native forbs are an important component of healthy rangelands in this system, but they are rarely included in seedings. Understanding competitive interactions between forb and grass seedlings is required to devise seeding strategies that can enhance establishment of diverse native species assemblages in degraded sagebrush communities. We conducted a greenhouse experiment to examine seedling biomass and relative growth rate of common native forb species when grown alone or in the presence of a native bunchgrass or an exotic annual grass. Forb species included bigseed biscuitroot (Lomatium macrocarpum [Nutt. ex Torr. & A. Gray] J.M. Coult. & Rose), sulphur-flower buckwheat (Eriogonum umbellatum Torr.), hoary aster (Machaeranthera canescens [Pursh] Gray), royal penstemon (Penstemon speciosus Douglas ex Lindl.), and Munro's globemallow (Sphaeralcea munroana [Douglas ex Lindl.] Spach ex Gray); and neighboring grass species included bottlebrush squirreltail (Elymus elymoides [Raf.] Swezey), Sandberg bluegrass (Poa secunda J. Presl); and cheatgrass (Bromus tectorum L.). Forbs and grasses were harvested after 6, 9, or 12 wk of growth for biomass determination and calculation of relative growth rates (RGR) of forbs. Neither bunchgrass reduced biomass of any forb. RGR was reduced for royal penstemon when grown with either native grass and for Munro's globemallow when grown with bottlebrush squirreltail. Although only assessed qualitatively, forbs with vertically oriented root morphologies exhibited no reduction in RGR when grown with native grasses, compared to forbs with dense lateral branching, similar to the root morphology of native grasses. Biomass of forbs was reduced by 50% to 91% and RGR by 37% to 80% when grown with cheatgrass. Understanding native forb interactions with native grasses and cheatgrass will aid land managers in selecting effective seed mixes and making better use of costly seed.  相似文献   

5.
Traditional management of sand sagebrush (Artemisia filifolia) rangelands has emphasized sagebrush control to increase forage for livestock. Since the 1950s shrub removal has been primarily achieved with herbicides. Concerns over declining lesser prairie-chicken (Tympanuchus pallidicinctus; LPC) populations have led to increased scrutiny over the use of herbicides to control shrubs. The objective of our research was to describe changes to LPC habitat qualities following chemical control of sand sagebrush in northwest Oklahoma. Study pastures ranged in size from 10 to 21 ha. Five pastures were sprayed with 2,4-dichlorophenoxyacetic acid (2,4-D) in 2003 (RECENT), five were sprayed with 2,4-D in 1984 (OLD), and four received no treatment (SAGE). We measured habitat structure (sagebrush cover, sagebrush density, visual obstruction [VO], and basal grass cover), and dietary resources (forb density, forb richness, and grasshopper density) in all pastures from 2003 to 2006. OLD and RECENT pastures had less sagebrush (cover and density) and VO than SAGE pastures. OLD pastures produced more annual forbs than either SAGE or RECENT pastures. SAGE pastures had more perennial forbs than RECENT pastures. Herbicide application reduced protective cover while providing no increase in forb abundance in RECENT pastures. Our results indicated that it may take several years to realize increases in annual forbs following application of 2,4-D. However, loss of protective cover may persist for multiple years (20+ yr), and removal of sagebrush did not increase forb richness or grasshopper abundance. Thus, 2,4-D may have limited use as a habitat management tool because it takes numerous years to reap the benefit of increased forb abundance while reducing habitat structure in the long term.  相似文献   

6.
Sagebrush (Artemisia L.) taxa historically functioned as the keystone species on 1 090 000 km2 of rangeland across the western United States, and Wyoming big sagebrush (Artemisia tridentata Nutt. ssp. wyomingensis Beetle and Young) is or was dominant on a substantial amount of this landscape. Wyoming big sagebrush provides habitat for numerous wildlife species. Nevertheless, Wyoming big sagebrush communities are commonly manipulated to decrease shrub cover and density and increase the productivity and diversity of herbaceous plants. We examined relationships between management-directed changes in Wyoming big sagebrush and greater sage-grouse (Centrocercus urophasianus), elk (Cervus elaphus), pronghorn (Antilocapra americana), and mule deer (Odocoileus hemionus), species commonly associated with these ecosystems. We focused on herbicide applications, mechanical treatments, and prescribed burning, because they are commonly applied to large areas in big sagebrush communities, often with the goal to improve wildlife habitats. Specifically, our objective was to identify treatments that either enhance or imperil sagebrush habitats for these wildlife species. The preponderance of literature indicates that habitat management programs that emphasize treating Wyoming big sagebrush are not supported with respect to positive responses by sage-grouse habitats or populations. There is less empirical information on ungulate habitat response to Wyoming big sagebrush treatments, but the value of sagebrush as cover and food to these species is clearly documented. A few studies suggest small-scale treatments (≤ 60-m width) in mountain big sagebrush (Artemisia tridentata ssp. vaseyana [Rydb.] Beetle) may create attractive foraging conditions for brooding sage-grouse, but these may have little relevance to Wyoming big sagebrush. Recommendations or management programs that emphasize treatments to reduce Wyoming big sagebrush could lead to declines of wildlife species. More research is needed to evaluate the response of sagebrush wildlife habitats and populations to treatments, and until that time, managers should refrain from applying them in Wyoming big sagebrush communities.  相似文献   

7.
Juniper and piñon coniferous woodlands have increased 2- to 10-fold in nine ecoregions spanning the Intermountain Region of the western United States. Control of piñon-juniper woodlands by mechanical treatments and prescribed fire are commonly applied to recover sagebrush steppe rangelands. Recently, the Sage Grouse Initiative has made conifer removal a major part of its program to reestablish sagebrush habitat for sage grouse (Centrocercus urophasianus) and other species. We analyzed data sets from previous and ongoing studies across the Great Basin characterizing cover response of perennial and annual forbs that are consumed by sage grouse to mechanical, prescribed fire, and low-disturbance fuel reduction treatments. There were 11 sites in western juniper (Juniperus occidentalis Hook.) woodlands, 3 sites in singleleaf piñon (Pinus monophylla Torr. & Frém.) and Utah juniper (Juniperus osteosperma [Torr.] Little), 2 sites in Utah juniper, and 2 sites in Utah juniper and Colorado piñon (Pinus edulis Engelm). Western juniper sites were located in mountain big sagebrush (A. tridentata ssp. vaseyana) steppe associations, and the other woodlands were located in Wyoming big sagebrush (A. tridentata ssp. wyomingensis) associations. Site potential appears to be a major determinant for increasing perennial forbs consumed by sage grouse following conifer control. The cover response of perennial forbs, whether increasing (1.5- to 6-fold) or exhibiting no change, was similar regardless of conifer treatment. Annual forbs favored by sage grouse benefitted most from prescribed fire treatments with smaller increases following mechanical and fuel reduction treatments. Though forb abundance may not consistently be enhanced, mechanical and fuel reduction conifer treatments remain good preventative measures, especially in phase 1 and 2 woodlands, which, at minimum, maintain forbs on the landscape. In addition, these two conifer control measures, in the short term, are superior to prescribed fire for maintaining the essential habitat characteristics of sagebrush steppe for sage grouse.  相似文献   

8.
We evaluated elk (Cervus elaphus), mule deer (Odocoileus hemionus), cattle (Bos taurus), and domestic sheep (Ovis aries) diet composition, diet overlap, and forage selection on aspen (Populus tremuloides Michaux)–sagebrush (Artemisia spp. L.) summer range in northeastern Nevada to understand potential for forage competition to provide better information for managing these communities. Diets were determined through microhistological fecal analysis from 1998 to 2000, and forage selection was evaluated at feeding sites in aspen and sagebrush communities in 1999 and 2000. Elk spring diets were the most diverse in composition; summer elk diets were dominated by forbs (59%–78%); deer consumed mostly woody browse (64%–72%); and cattle and sheep ate mostly graminoids. Lupines (Lupinus spp. L.) constituted ≥ 11% of elk, deer, and sheep diets in summer. Spurred lupine (Lupinus caudatus Kellogg) was the lupine typically selected in feeding sites and greatest consumption occurred in summer when total alkaloid levels were lowest. Highest diet overlap was between cattle and sheep in 1999 (68%) and lowest between deer and cattle in 2000 (3%). Summer elk and deer diets overlapped moderately (45%–59%). Diets did not differ between elk in spring with sheep, elk in summer with deer and sheep, or cattle with sheep. Cattle foraged selectively on forbs in aspen communities (68%) and on graminoids in sagebrush communities (88%), reflecting relative forage availabilities. We detected no differences among elk, cattle, and sheep for forage selection in aspen communities. Electivity indices indicated elk preferred forbs in aspen and sagebrush communities; cattle preferred graminoids in sagebrush; and foraging sheep preferred forbs in aspen. Our results suggest potential for forage competition among ungulates on aspen–sagebrush summer range is highest for forbs in aspen communities. Monitoring productivity and use of key forage species, particularly forbs in aspen communities, should complement management objectives on shared aspen–sagebrush summer range.  相似文献   

9.
Agricultural land use is known to alter ecological processes, and native plant communities can require decades to centuries to recover from the disturbance of cultivation. “Recovery” is typically measured by comparison to undisturbed adjacent sites as a control. Recovery following cultivation in sagebrush ecosystems of the Great Basin remains largely unexamined even though nearly a half million hectares of land were dry-farmed and abandoned in the early 1900s. We tested the hypothesis that the native vegetation has not recovered from this exotic disturbance by evaluating differences in canopy cover of shrubs, grasses, and forbs between paired sets of historically dry-farmed land and adjacent never-cultivated areas. Paired sites were located in three ecological sites in northwestern Utah. We found that vegetation recovery from cultivation is variable by growth form, species, and ecological site. Shrub recovery was different among sagebrush (Artemisia) species. Yellow rabbitbrush (Chrysothamnus viscidiflorus [Hook.] Nutt.) and black greasewood (Sarcobatus vermiculatus [Hook.] Torr.), which often increase following disturbance, maintained higher cover inside old fields. At one of the paired sets, shrub composition was altered from a mix of four species to dominance of mainly Wyoming big sagebrush (Artemisia tridentata Nutt. subsp. wyomingensis Beetle & Young). Total forb cover was generally lower in cultivated areas and some species, such as spiny phlox (Phlox hoodii Richardson), had not recovered. The most common grass species encountered across all ecological sites, bottlebrush squirreltail (Elymus elymoides [Raf.] Swezey), had higher cover in cultivated areas. Surprisingly, exotic annual species, such as cheatgrass (Bromus tectorum L.), did not dominate these sites as they have for decades after cultivation in other areas of the Great Basin. This study demonstrates that the land-use legacy of dry farming on vegetation remains nearly a century after cultivation has ceased, and has direct implications for describing ecological site conditions.  相似文献   

10.
The link between individual variation in resource selection (e.g., functional response) and fitness creates a foundation for understanding wildlife-habitat relationships. Although many anthropogenic activities adversely affect these relationships, it is largely unknown whether projects implemented to benefit wildlife populations actually achieve this outcome. For sagebrush (Artemisia spp.) obligate species such as the greater sage-grouse (Centrocercus urophasianus; sage-grouse), expansion of juniper (Juniperus spp.) and pinyon-pine (Pinus spp.; conifers) woodlands into sagebrush ecosystems has been identified as a conservation threat. This threat is intensified when a sagebrush ecosystem is bounded by naturally unsuitable habitats. As such, federal, state, and private land managers have implemented landscape-level management to remove conifers on thousands of hectares of sagebrush habitat across the western United States. Despite the scale of contemporary conifer treatments, little was previously known whether sage-grouse will occupy these manipulated landscapes and whether occupancy has consequences on fitness components. To address these questions, we monitored nest and brood success rates for 96 radio-marked sage-grouse from 2012-2015 that inhabited conifer-dominated landscapes in the Box Elder Sage-grouse Management Area in Utah where mechanical conifer removal projects were completed. We then linked sage-grouse resource selection to individual nest (n = 95) and brood (n = 56) success by incorporating random-slope Resource Selection Functions as explanatory predictors in a logistic brood success model. Using the novel approach of random slope covariates, we demonstrated that sage-grouse selected for nest and brooding sites closer to conifer removal areas and that the probability of individual nest and brood success declined (β = ? 0.10 and β = ? 0.74, respectively) as sage-grouse females selected sites farther from conifer removal areas. Our research provided the first evidence that mechanical conifer removal treatments can increase suitable available breeding habitats for female sage-grouse and that individuals who occupied these areas experienced enhanced nest and brood success.  相似文献   

11.
A decrease in fire frequency and past grazing practices has led to dense mountain big sagebrush (Artemisia tridentata Nutt. subsp. vaseyana [Rydb.] Beetle) stands with reduced herbaceous understories. To reverse this trend, sagebrush-reducing treatments often are applied with the goal of increasing herbaceous vegetation. Mechanical mowing is a sagebrush-reducing treatment that commonly is applied; however, information detailing vegetation responses to mowing treatments generally are lacking. Specifically, information is needed to determine whether projected increases in perennial grasses and forbs are realized and how exotic annual grasses respond to mowing treatments. To answer these questions, we evaluated vegetation responses to mowing treatments in mountain big sagebrush plant communities at eight sites. Mowing was implemented in the fall of 2007 and vegetation characteristics were measured for 3 yr post-treatment. In the first growing season post-treatment, there were few vegetation differences between the mowed treatment and untreated control (P > 0.05), other than sagebrush cover being reduced from 28% to 3% with mowing (P < 0.001). By the second growing season post-treatment, perennial grass, annual forb, and total herbaceous vegetation were generally greater in the mowed than control treatment (P < 0.05). Total herbaceous vegetation production was increased 1.7-fold and 1.5-fold with mowing in the second and third growing seasons, respectively (P < 0.001). However, not all plant functional groups increased with mowing. Perennial forbs and exotic annual grasses did not respond to the mowing treatment (P > 0.05). These results suggest that the abundance of sagebrush might not be the factor limiting some herbaceous plant functional groups, or they respond slowly to sagebrush-removing disturbances. However, this study suggests that mowing can be used to increase herbaceous vegetation and decrease sagebrush in some mountain big sagebrush plant communities without promoting exotic annual grass invasion.  相似文献   

12.
Russian knapweed (Acroptilon repens [L.] DC.), an exotic perennial forb, has invaded many native ecosystems in western North America. Russian knapweed's success is attributed to allelopathy, extensive tap rooting, zinc accumulation in soils, and a lack of North American predators. Revegetation following chemical control slows exotic reestablishment, but the impacts of Russian knapweed-invaded soils on the establishment of native forbs and shrubs have not been determined. In a greenhouse experiment, we monitored the establishment of two native forbs, Indian blanketflower (Gaillardia aristata Pursh) and purple prairie clover (Dalea purpurea Vent.) and two native shrubs, winterfat (Krascheninnikovia lanata [Pursh] A.D.J. Meeuse & Smit syn. Ceratoides lanata) and Wyoming big sagebrush (Artemisia tridentata Nutt. subsp. wyomingensis [Hook.] Nutt.) in soils obtained from three Russian knapweed invasions and adjacent noninvaded areas. We analyzed soils collected near Greybull and Riverton, Wyoming, and Greeley, Colorado, for cation exchange capacity, organic matter, electroconductivity, pH, and total nitrogen, carbon, and plant-available potassium, zinc, manganese, copper, and phosphate. We documented seedling emergence of the four natives and Russian knapweed every two days for 14–17 weeks, harvested seedlings biweekly to assess their growth, and determined their zinc accumulation. All species established in invaded soil and seedlings were larger in invaded than in noninvaded soils. Invaded rangeland soils had greater organic matter (8.6% and 1.1% in invaded vs. 2.5% and 0.4% in noninvaded soils) and lower pH (7.4 in invaded versus 8.0 noninvaded soils). Zinc concentrations in invaded soils (from 0.15 to 6.56 mg · kg-1) were not high enough to limit plant growth. Reports that Russian knapweed is a hyper-accumulator of zinc are not supported by our seedling data, which suggests that previously invaded soils may not limit native seedlings.  相似文献   

13.
Recent and unprecedented scale of greater sage-grouse (Centrocercus urophasianus) conservation in the American West enables assessment of community-level benefits afforded to other sagebrush-obligate species. We use North American Breeding Bird Survey (BBS) count data and machine-learning to assess predictors influencing spatial distribution and abundance of three sagebrush-obligate songbirds (Brewer’s sparrow [Spizella breweri], sagebrush sparrow [Artemisiospiza nevadensis], and sage thrasher [Oreoscoptes montanus]). We quantified co-occurrence of songbird abundance with sage-grouse lek distributions using point pattern analyses and evaluated the concurrence of songbird abundance within sage-grouse habitat restoration and landscape protection. Sagebrush land-cover predictors were positively associated with the abundance of each songbird species in models that explained 16 ? 37% of variation in BBS route level counts. Individual songbird models identified an apparent 40% threshold in sagebrush land-cover, over which songbird abundances nearly doubled. Songbird abundances were positively associated with sage-grouse distributions (P < 0.01); range-wide, landscapes supporting > 50% of males on leks also harbored 13 ? 19% higher densities of songbirds compared with range-wide mean densities. Eighty-five percent of the conifer removal conducted through the Sage Grouse Initiative coincided with high to moderate Brewer’s sparrow abundance. Wyoming’s landscape protection (i.e., “core area”) strategy for sage-grouse encompasses half the high to moderate abundance sagebrush sparrow and sage thrasher populations. In the Great Basin half the high to moderate abundance sagebrush sparrow and sage thrasher populations coincide with sage-grouse Fire and Invasive Assessment Tool priorities, where conservation actions are being focused in an attempt to reduce the threat of wildfire and invasive plants. Our work illustrates spatially targeted actions being implemented ostensibly for sage-grouse largely overlap high abundance centers for three sagebrush obligate passerines and are likely providing significant conservation benefits for less well-known sagebrush songbirds and other sagebrush-associated wildlife.  相似文献   

14.
The Wyoming big sagebrush (Artemisia tridentata ssp. wyomingensis [Beetle & A. Young] S.L. Welsh) alliance is the most extensive of the big sagebrush complex in the Intermountain West. There is a lack of information describing vegetation characteristics, diversity, and heterogeneity of the Wyoming big sagebrush alliance. We annually sampled 48 Wyoming big sagebrush plant communities over 10 yr to delineate major vegetation associations and describe their major vegetation characteristics including canopy cover, density, species richness, and yield. Six associations were identified on the basis of dominant or codominant perennial bunchgrass species, using MRPP analysis, and they included ARTRW8 (Wyoming big sagebrush)/PSSP6 (Pseudoroegneria spicata [Pursh] A. Löve, bluebunch wheatgrass), ARTRW8/ACTH7 (Achnatherum thurberianum [Piper] Barkworth, Thurber’s needlegrass), ARTRW8/FEID (Festuca idahoensis Elmer, Idaho fescue), ARTRW8/HECO26 (Hesperostipa comata [Trin. & Rupr.] Barkworth, needle-and-thread), ARTRW8/PSSP6-ACTH7, and ARTRW8/PSSP6-FEID-ACTH7. On average, PSSP6 and FEID associations had the highest total herbaceous cover and annual yields and the HECO26 and ACTH7 associations had the lowest. Perennial forb cover averaged over 5% in PSSP6 and FEID associations and ranged from 0.3% to 3.5% in the other associations. Sagebrush cover was greatest in ACTH7 and PSSP6-ACTH7 and lowest in FEID and HECO26 associations. Habitat suitability criteria for sage-grouse indicated that Wyoming big sagebrush associations at the stand/site level will generally not meet breeding habitat requirements and only attain suitable habitat requirements for other life stages about 50% of the time.  相似文献   

15.
Dominant plant species are often used as indicators of site potential in forest and rangelands. However, subspecies of dominant vegetation often indicate different site characteristics and, therefore, may be more useful indicators of plant community potential and provide more precise information for management. Big sagebrush (Artemisia tridentata Nutt.) occurs across large expanses of the western United States. Common subspecies of big sagebrush have considerable variation in the types of sites they occupy, but information that quantifies differences in their vegetation characteristics is lacking. Consequently, wildlife and land management guidelines frequently do not differentiate between subspecies of big sagebrush. To quantify vegetation characteristics between two common subspecies of big sagebrush, we sampled 106 intact big sagebrush plant communities. Half of the sampled plant communities were Wyoming big sagebrush (A. tridentata subsp. wyomingensis [Beetle & A. Young] S. L. Welsh) plant communities, and the other half were mountain big sagebrush (A. tridentata subsp. vaseyana [Rydb.] Beetle) plant communities. In general, mountain big sagebrush plant communities were more diverse and had greater vegetation cover, density, and biomass production than Wyoming big sagebrush plant communities. Sagebrush cover was, on average, 2.4-fold higher in mountain big sagebrush plant communities. Perennial forb density and cover were 3.8- and 5.6-fold greater in mountain compared to Wyoming big sagebrush plant communities. Total herbaceous biomass production was approximately twofold greater in mountain than Wyoming big sagebrush plant communities. The results of this study suggest that management guidelines for grazing, wildlife habitat, and other uses should recognize widespread subspecies as indicators of differences in site potentials.  相似文献   

16.
The sagebrush biome in the western United States is home to the imperiled greater sage-grouse (Centrocercus urophasianus) and encompasses rangelands used for cattle production. Cattle grazing activities have been implicated in the range-wide decline of the sage-grouse, but no studies have investigated the relationship between the physiological condition of sage-grouse and the presence of grazing cattle. We sampled 329 sage-grouse across four sites (two grazed and two ungrazed) encompassing 13 600 km2 during the spring and late summer–early autumn of 2005 to evaluate whether demographic factors, breeding status, plasma protein levels, and residence in a cattle-grazed habitat were associated with the stress hormone corticosterone. Corticosterone was measured in feces as immunoreactive corticosterone metabolites (ICM). Males captured during the lekking season exhibited higher ICM levels than all others. Prenesting female sage-grouse captured in a grazed site had higher ICM levels than those in ungrazed sites and prenesting female plasma protein levels were negatively correlated with ICM concentrations. With the use of a small-scale spatial model, we identified a positive correlation between cattle pat count and sage-grouse ICM levels. Our model indicated that ICM levels increased by 2.60 ng · g-1 dry feces for every increase in the number of cow pats found in the vicinity. Management practices will benefit from future research regarding the consistency and mechanism(s) responsible for this association and, importantly, how ICM levels and demographic rates are related in this species of conservation concern.  相似文献   

17.
Degradation of shrublands around the world from altered fire regimes, overutilization, and anthropogenic disturbance has resulted in a widespread need for shrub restoration. In western North America, reestablishment of mountain big sagebrush (Artemisia tridentata Nutt. ssp. vaseyana [Rydb.] Beetle) is needed to restore ecosystem services and function. Western juniper (Juniperus occidentalis ssp. occidentalis Hook) encroachment is a serious threat to mountain big sagebrush communities in the northern Great Basin and Columbia Plateau. Juniper trees can be controlled with fire; however, sagebrush recovery may be slow, especially if encroachment largely eliminated sagebrush before juniper control. Short-term studies have suggested that seeding mountain big sagebrush after juniper control may accelerate sagebrush recovery. Longer-term information is lacking on how sagebrush recovery progresses and if there are trade-offs with herbaceous vegetation. We compared seeding and not seeding mountain big sagebrush after juniper control (partial cutting followed with burning) in fully developed juniper woodlands (i.e., sagebrush had been largely excluded) at five sites, 7 and 8 yr after seeding. Sagebrush cover averaged ~ 30% in sagebrush seeded plots compared with ~ 1% in unseeded plots 8 yr after seeding, thus suggesting that sagebrush recovery may be slow without seeding after juniper control. Total herbaceous vegetation, perennial grass, and annual forb cover was less where sagebrush was seeded. Thus, there is a trade-off with herbaceous vegetation with seeding sagebrush. Our results suggest that seeding sagebrush after juniper control can accelerate the recovery of sagebrush habitat characteristics, which is important for sagebrush-associated wildlife. We suggest land manager and restoration practitioners consider seeding sagebrush and possibly other shrubs after controlling encroaching trees where residual shrubs are lacking after control.  相似文献   

18.
Western juniper (Juniperus occidentalis Hook.) has expanded into sagebrush steppe plant communities the past 130 ? 150 yr in the northern Great Basin. The increase in juniper reduces herbage and browse for livestock and big game. Information on herbaceous yield response to juniper control with fire is limited. We measured herbaceous standing crop and yield by life form in two mountain big sagebrush communities (MTN1, MTN2) and a Wyoming/basin big sagebrush (WYOBAS) community for 6 yrs following prescribed fire treatments to control western juniper. MTN1 and WYOBAS communities were early-successional (phase 1) and MTN2 communities were midsuccessional (phase 2) woodlands before treatment. Prescribed fires killed all juniper and sagebrush in the burn units. Total herbaceous and perennial bunchgrass yields increased 2 to 2.5-fold in burn treatments compared with unburned controls. Total perennial forb yield did not differ between burns and controls in all three plant communities. However, tall perennial forb yield was 1.6- and 2.5-fold greater in the WYOBAS and MTN2 burned sites than controls. Mat-forming perennial forb yields declined by 80 ? 90% after burning compared with controls. Cheatgrass yield increased in burned WYOBAS and MTN2 communities and at the end of the study represented 10% and 22% of total yield, respectively. Annual forbs increased with burning and were mainly composed of native species in MTN1 and MTN2 communities and non-natives in WYOBAS communities. Forage availability for livestock and wild ungulates more than doubled after burning. The additional forage provided on burned areas affords managers greater flexibility to rest and treat additional sagebrush steppe where juniper is expanding, as well as rest or defer critical seasonal habitat for wildlife.  相似文献   

19.
Mechanical and chemical methods used historically to rejuvenate sagebrush-steppe landscapes are cost prohibitive. A low-cost alternative is to fashion systems of management in which locally adapted animals use sagebrush as fall and winter forage to reduce feeding costs and to enhance the growth of grasses and forbs during spring and summer. We evaluated the practicality of fall browsing of sagebrush (Artemisia tridentata ssp. tridentata, ssp. wyomingensis) by cattle. To do so, we assessed 1) the foraging behavior and body weights of cattle with varying levels of experience browsing sagebrush, and 2) the ensuing responses of sagebrush, grasses, and forbs to cattle grazing. In spatially and temporally replicated trials from 2007 to 2009, cattle were challenged to eat sagebrush. Pregnant cows with calves (2007 and 2008), bred yearling heifers (2008), and first-calf heifer/calf pairs (2009), supplemented with protein and energy, learned to eat sagebrush as a significant portion of their diet (up to 63% of scans recorded during grazing). Experienced animals consistently ate more sagebrush and lost less weight, or gained more weight, than naive animals in 2008 and 2009 (P < 0.05). Cover, production, and percent composition of grasses and forbs maintained or dropped slightly from 2007 to 2008 but then rebounded sharply in 2009 to much greater levels than in 2007 or 2008 (P < 0.05). A corresponding reduction in shrub cover, production, and percent composition accompanied the increase in forbs and grasses (P < 0.05). Our research suggests grazing by cattle during fall and winter can be effective, biologically and economically, and can lead to habitat renovation and resilience by creating locally adapted systems of management in ways that landscape manipulations with chemical and mechanical treatments or prescribed fire cannot.  相似文献   

20.
Treatments to reduce shrub cover are commonly implemented with the objective of shifting community structure away from shrub dominance and toward shrub and perennial grass codominance. In sagebrush (Artemisia L.) ecosystems, shrub reduction treatments have had variable effects on target shrubs, herbaceous perennials, and non-native annual plants. The factors mediating this variability are not well understood. We used long-term data from Utah’s Watershed Restoration Initiative project to assess short-term (1  4 yr post-treatment) and long-term (5  12 yr post-treatment) responses of sagebrush plant communities to five shrub reduction treatments at 94 sites that span a range of abiotic conditions and sagebrush community types. Treatments were pipe harrow with one or two passes, aerator, and fire with and without postfire seeding. We analyzed effect sizes (log of response ratio) to assess responses of sagebrush, perennial and annual grasses and forbs, and ground cover to treatments. Most treatments successfully reduced sagebrush cover over the short and long term. All treatments increased long-term perennial grass cover in Wyoming big sagebrush (A. tridentata Nutt. ssp. wyomingensis Beetle & Young) communities, but in mountain big sagebrush (ssp. vaseyana [Rydb.] Beetle) communities, perennial grasses increased only when seeded after fire. In both sagebrush communities, treatments generally resulted in short-term, but not long-term, increases in perennial forb cover. Annual grasses (largely invasive cheatgrass, Bromus tectorum L.) increased in all treatments on sites dominated by mountain big sagebrush but stayed constant or decreased on sites dominated by Wyoming big sagebrush. This result was unexpected because sites dominated by Wyoming big sagebrush are typically thought to be less resilient to disturbance and less resistant to invasion than sites dominated by mountain big sagebrush. Together, these results indicate some of the benefits, risks, and contingent outcomes of sagebrush reduction treatments that should be considered carefully in any future decisions about applying such treatments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号