首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Genetic parameters and genetic trends for weaning weight adjusted to 240 d of age (WW240), and weight gain from weaning to 24 mo of age (GW730) were estimated in a Colombian beef cattle population composed of Blanco Orejinegro, Romosinuano, Angus, and Zebu straightbred and crossbred animals. Calves were born and weaned in a single farm, and moved to 14 farms postweaning. Data were analyzed using a multiple trait mixed model procedures. Estimates of variance components and genetic parameters were obtained by Restricted Maximum Likelihood. The 2-trait model included the fixed effects of contemporary group (herd–year–season–sex), age of dam (WW240 only), breed direct genetic effects (as a function of breed fractions of calves), breed maternal genetic effects (as a function of breed fractions of dams; WW240 only), individual heterosis (as a function of calf heterozygosity), and maternal heterosis (as a function of dam heterozygosity; WW240 only). Random effects for WW240 were calf direct genetic, dam maternal genetic, permanent environmental maternal, and residual. Random effects for GW730 were calf direct genetic and residual. All relationships among animals were accounted for. Program AIREML was used to perform computations. Estimates of heritabilities for additive direct genetic effects were 0.20 ± 0.003 for WW240, and 0.32 ± 0.004 for GW730. Maternal heritability was 0.14 ± 0.002 for WW240. Estimates of heritability suggest that selection for preweaning and postweaning growth in this population is feasible. Low direct and maternal preweaning heritabilities suggest that nutrition and management should be improved to allow fuller expressions of calf direct growth and cow maternal ability. The genetic correlation between direct additive and maternal additive effects for WW240 was − 0.42 ± 0.009, indicating an antagonistic relationship between these effects. The correlation between additive direct genetic effects for WW240 and GW730 was almost zero (− 0.04 ± 0.009), suggesting that genes affecting growth preweaning may differ from those influencing growth postweaning. Trends were negative for direct WW240 and GW730 weighted yearly means of calves, sires, and dams from 1995 to 2006. Maternal WW240 showed near zero trends during these years. Trends for calf direct WW240 and GW730 followed sire trends closely, suggesting that more emphasis was placed on choosing sires than on dam replacements.  相似文献   

2.
Data from 1,909 purebred, F1, backcross and F2 and F3 inter se combinations of Angus and Hereford were used to estimate average individual, maternal and grandmaternal genetic effects, individual and maternal heterosis, dominance and epistatic genetic effects. Models for evaluating heterosis and epistatic or recombination effects were discussed. Average individual effects indicate that Angus, compared with Hereford, had calves that were born earlier, had lighter birth weights, lower pre- and postweaning gains and lower pregnancy rates. Angus also produced lighter weight carcasses with more fat cover and marbling. Maternal effects of Angus were in the direction of reduced birth weight, greater calving ease, higher preweaning but lower postweaning growth rate and increased fatness when contrasted with Hereford. There was a tendency for opposite direction of maternal and grandmaternal effects for traits influenced by preweaning maternal environment. When additive X additive effects were ignored, total heterosis was significant for earlier day born, heavier birth weight, preweaning and postweaning gain, and heavier and fatter carcasses. Heterosis retained in F3 inter se vs F1 generation crosses indicated that net epistatic effects were relatively negligible for date of calving, birth weight, weaning gain and fat cover. There was a greater reduction of heterosis effects than expected from dominance alone for survival, pregnancy and marbling score. Loss of heterosis in F3 was less than expected for postweaning gain, carcass weight and rib eye area. Except for survival, pregnancy and marbling, these deviations from dominance expectations, or lack of them, are favorable for F3 composite populations.  相似文献   

3.
Published information on relative performance of beef breed crosses was used to derive combined estimates of purebred breed values for predominant temperate beef breeds. The sources of information were largely from the United States, Canada, and New Zealand, although some European estimates were also included. Emphasis was on maternal traits of potential economic importance to the suckler beef production system, but some postweaning traits were also considered. The estimates were taken from comparison studies undertaken in the 1970s, 1980s and 1990s, each with representative samples of beef breeds used in temperate agriculture. Weighting factors for breed-cross estimates were derived using the number of sires and offspring that contributed to that estimate. These weights were then used in a weighted multiple regression analysis to obtain single purebred breed effects. Both direct additive and maternal additive genetic effects were estimated for preweaning traits. Important genetic differences between the breeds were shown for many of the traits. Significant regression coefficients were estimated for the effect of mature weight on calving ease, both maternal and direct additive genetic, survival to weaning direct, and birth weight direct. The breeds with greater mature weight were found to have greater maternal genetic effects for calving ease but negative direct genetic effects on calving ease. A negative effect of mature weight on the direct genetic effect of survival to weaning was observed. A cluster analysis was done using 17 breeds for which information existed on nine maternal traits. Regression was used to predict breed-cross-specific heterosis using genetic distance. Only five traits, birth weight, survival to weaning, cow fertility, and preweaning and postweaning growth rate had enough breed-cross-specific heterosis estimates to develop a prediction model. The breed biological values estimated provide a basis to predict the biological value of crossbred suckler cows and their offspring.  相似文献   

4.
Reliabilities for a multiple-trait maternal model were obtained by combining reliabilities obtained from single-trait models. Single-trait reliabilities were obtained using an approximation that supported models with additive and permanent environmental effects. For the direct effect, the maternal and permanent environmental variances were assigned to the residual. For the maternal effect, variance of the direct effect was assigned to the residual. Data included 10,550 birth weight, 11,819 weaning weight, and 3,617 postweaning gain records of Senepol cattle. Reliabilities were obtained by generalized inversion and by using single-trait and multiple-trait approximation methods. Some reliabilities obtained by inversion were negative because inbreeding was ignored in calculating the inverse of the relationship matrix. The multiple-trait approximation method reduced the bias of approximation when compared with the single-trait method. The correlations between reliabilities obtained by inversion and by multiple-trait procedures for the direct effect were 0.85 for birth weight, 0.94 for weaning weight, and 0.96 for postweaning gain. Correlations for maternal effects for birth weight and weaning weight were 0.96 to 0.98 for both approximations. Further improvements can be achieved by refining the single-trait procedures.  相似文献   

5.
The objective of this study was to ascertain whether maternal additive genetic variance exists for within-litter variation in birth weight and for change in within-litter variation in piglet weight during suckling. A further objective was to estimate maternal genetic correlations of these two traits with mortality, birth weight, growth, and number of piglets born alive. Data were obtained from L?vsta research station, Swedish University of Agricultural Sciences, and included 22,521 piglets born in 2,003 litters by 1,074 Swedish Yorkshire sows. No cross fostering was used in the herd. The following seven traits were analysed in a multivariate animal (sow) model: number of piglets born alive, within-litter SD in birth weight, within-litter SD in piglet weight at 3 wk of age, mean weight at birth, mean weight at 3 wk of age, proportion of stillborn piglets, and proportion of dead piglets during suckling. Maternal genetic variance for the change in within-litter SD in piglet weight during suckling was assessed from the estimated additive genetic covariance components by conditioning on within-litter SD in birth weight. Similarly, mean growth of piglets during suckling was assessed from the additive genetic covariance components by conditioning on mean weight at birth. The heritability for within-litter SD in birth weight was 0.08 and 0.06 for within-litter SD in piglet weight at 3 wk. The genetic correlation between these two traits was 0.71. Little maternal genetic variance was found for the change in within-litter SD in piglet weight during suckling, and opportunity for genetic improvement of this trait by selective breeding seems limited. The genetic correlation of within-litter SD in birth weight with proportion of dead piglets during suckling was 0.25 and of within-litter SD in birth weight with mean growth of piglets was -0.31. The maternal genetic variance and heritability found for within-litter SD in birth weight indicates that genetic improvement of this trait by selective breeding is possible. In addition, selection for sows' capacity to give birth to homogeneous litters may be advantageous for piglet survival, piglet growth, and litter homogeneity at weaning.  相似文献   

6.
Correlated effects of selection for components of litter size on growth and backfat thickness were estimated using data from 3 pig lines derived from the same base population of Large White. Two lines were selected for 6 generations on either high ovulation rate at puberty (OR) or high prenatal survival corrected for ovulation rate in the first 2 parities (PS). The third line was an unselected control (C). Genetic parameters for individual piglet BW at birth (IWB); at 3 wk of age (IW3W); and at weaning (IWW); ADG from birth to weaning (ADGBW), from weaning to 10 wk of age (ADGPW), and from 25 to 90 kg of BW (ADGT); and age (AGET) and average backfat thickness (ABT) at 90 kg of BW were estimated using REML methodology applied to a multivariate animal model. In addition to fixed effects, the model included the common environment of birth litter, as well as direct and maternal additive genetic effects as random effects. Genetic trends were estimated by computing differences between OR or PS and C lines at each generation using both least squares (LS) and mixed model (MM) methodology. Average genetic trends for direct and maternal effects were computed by regressing line differences on generation number. Estimates of direct and maternal heritabilities were, respectively, 0.10, 0.12, 0.20, 0.24, and 0.41, and 0.17, 0.33, 0.32, 0.41, and 0.21 (SE = 0.03 to 0.04) for IWB, IW3W, IWW, ADGBW, and ADGPW. Genetic correlations between direct and maternal effects were moderately negative for IWB (-0.21 +/- 0.18), but larger for the 4 other traits (-0.59 to -0.74). Maternal effects were nonsignificant and were removed from the final analyses of ADGT, AGET, and ABT. Direct heritability estimates were 0.34, 0.46, and 0.21 (SE = 0.03 to 0.05) for ADGT, AGET, and ABT, respectively. Direct and maternal genetic correlations of OR with performance traits were nonsignificant, with the exception of maternal correlations with IWB (-0.28 +/- 0.13) and ADGPW (0.23 +/- 0.11) and direct correlation with AGET (-0.23 +/- 0.09). Prenatal survival also had low direct but moderate to strong maternal genetic correlations (-0.34 to -0.65) with performance traits. The only significant genetic trends were a negative maternal trend for IBW in the OR line and favorable direct trends for postweaning growth (ADGT and AGET) in both lines. Selection for components of litter size has limited effects on growth and backfat thickness, although it slightly reduces birth weight and improves postweaning growth.  相似文献   

7.
Analysis of variance (ANOVA) and symmetric differences squared (SDS) methods for estimating genetic and environmental variances and covariances associated with beef cattle weaning weight were compared via simulation. Simulation was based on the pedigree and record structure of 503 beef weaning weights collected over 19 yr from a university herd. The SDS methodology was used with four models. The simplest model included direct (g) and maternal (gm) additive genetic effects, genetic covariance between direct and maternal additive genetic effects (sigma ggm), permanent maternal environmental effects (m) and temporary environmental effects (e). The second model also allowed for a nonzero environmental covariance (sigma mem) between dam and offspring weaning weights. Models 3 and 4 were models 1 and 2, respectively, expanded to include a grandmaternal genetic effect (gn) and covariances sigma ggn and sigma gmgn. Two ANOVA solution sets for the parameters of model 4 were obtained using sire, dam, maternal grandsire, maternal grandam and phenotypic variances and offspring-dam (covOD), offspring-sire (covOS), offspring-grandam (covOGD), and offspring-maternal half-aunt or uncle (covOMH) covariances. Four ANOVA solution sets for the parameters of model 2 were obtained using sire, dam, within dam and maternal grandsire variances, covOD and either covOS or covOGD. Two sets of 1,000 replicates of the data were simulated. These data were used to compare precision and accuracy of SDS and ANOVA estimators, to estimate correlations among SDS and ANOVA estimators, and to study the importance of taking inbreeding into account with SDS methodology. All ANOVA estimators for rho ggm were biased downward. The SDS procedure had a clear advantage over ANOVA. Averages of SDS estimates were closer to parameter values used to simulate the data and their standard deviations were generally smaller. The standard deviations of both SDS and ANOVA estimates of rho ggm were very large. It is important to allow for a nonzero sigma mem (at least when it is negative) when using SDS methods; otherwise estimators of sigma 2gm and sigma ggm are biased upward and downward, respectively.  相似文献   

8.
The purpose of the present study was to obtain estimates of variance components and genetic parameters for direct and maternal effects on various growth traits in Beetal goat by fitting four animal models, attempting to separate direct genetic, maternal genetic and maternal permanent environmental effects under restricted maximum likelihood procedure. The data of 3,308 growth trait records of Beetal kids born during the period from 2004 to 2019 were used in the present study. Based on best fitted models, the direct additive h2 estimates were 0.06, 0.27, 0.37, 0.17 and 0.10 for birth weight (BWT), weight at 3 (WT3), 6 (WT6), 9 (WT9) and 12 (WT12) months of age, respectively. Maternal permanent environmental effects significantly contributed for 10% and 7% of total variance for BWT and WWT, respectively, which reduced direct heritability by 40 and 10% for respective traits from the models without these effects. For average daily gain (ADG1) and Kleiber ratios (KR1) up to weaning period (3 months) traits, maternal permanent environmental effects accounted for 7% and 8% of phenotypic variance, respectively, and resulted in a reduction of 6.6% and 5.4% in direct h2 of respective traits. For post-weaning traits, the maternal effects were non-significant (p > .05) which indicates diminishing influence of mothering ability for these traits. High and positive genetic correlations were obtained among WT3-WT6, WT6-WT9 and WT9-WT12 with correlations of 0.96 ± 0.25, 0.84 ± 0.23 and 0.90 ± 0.13, respectively. Thus, early selection at weaning age can be practised taking into consideration maternal variation for effective response to selection in Beetal goat.  相似文献   

9.
Estimates of genetic parameters for growth traits in Kermani sheep   总被引:3,自引:0,他引:3  
Birth weight (BW), weaning weight (WW), 6-month weight (W6), 9-month weight (W9) and yearling weight (YW) of Kermani lambs were used to estimate genetic parameters. The data were collected from Shahrbabak Sheep Breeding Research Station in Iran during the period of 1993-1998. The fixed effects in the model were lambing year, sex, type of birth and age of dam. Number of days between birth date and the date of obtaining measurement of each record was used as a covariate. Estimates of (co)variance components and genetic parameters were obtained by restricted maximum likelihood, using single and two-trait animal models. Based on the most appropriate fitted model, direct and maternal heritabilities of BW, WW, W6, W9 and YW were estimated to be 0.10 +/- 0.06 and 0.27 +/- 0.04, 0.22 +/- 0.09 and 0.19 +/- 0.05, 0.09 +/- 0.06 and 0.25 +/- 0.04, 0.13 +/- 0.08 and 0.18 +/- 0.05, and 0.14 +/- 0.08 and 0.14 +/- 0.06 respectively. Direct and maternal genetic correlations between the lamb weights varied between 0.66 and 0.99, and 0.11 and 0.99. The results showed that the maternal influence on lamb weights decreased with age at measurement. Ignoring maternal effects in the model caused overestimation of direct heritability. Maternal effects are significant sources of variation for growth traits and ignoring maternal effects in the model would cause inaccurate genetic evaluation of lambs.  相似文献   

10.
Parameters for direct and maternal dominance were estimated in models that included non-additive genetic effects. The analyses used weaning weight records adjusted for age of dam from populations of Canadian Hereford (n = 467,814), American Gelbvieh (n = 501,552), and American Charolais (n = 314,552). Method R estimates of direct additive genetic, maternal additive genetic, permanent maternal environment, direct dominance, and maternal dominance variances as a proportion of the total variance were 23, 12, 13, 19, and 14% in Hereford; 27, 7, 10, 18, and 2% in Gelbvieh; and 34, 15, 15, 23, and 2% in Charolais. The correlations between direct and maternal additive genetic effects were -0.30, -0.23, and -0.47 in Hereford, Gelbvieh, and Charolais, respectively. The correlations between direct and maternal dominance were -0.38, -0.02, and -0.04 in Hereford, Gelbvieh, and Charolais, respectively. Estimates of inbreeding depression were -0.20, -0.18, and -0.13 kg per 1% of inbreeding for Hereford, Gelbvieh, and Charolais, respectively. Estimates of the maternal inbreeding depression were -0.01, -0.02, and -0.02 kg, respectively. The high ratio of direct dominance to additive genetic variances provided some evidence that direct dominance effects should be considered in beef cattle evaluation. However, maternal dominance effects seemed to be important only for Hereford cattle.  相似文献   

11.
Data on litter size, weaning weights at 60, 90, and 120 d, postweaning gains from weaning to 120 or 365 d of age, fleece weight, and fiber diameter from Targhee, Suffolk, and Polypay flocks participating in the U.S. National Sheep Improvement Program were used to estimate genetic parameters for litter size and genetic relationships between early-life traits and future litter size. Records on 7,591 lambings by 3,131 Targhee ewes, 10,295 lambings by 5,038 Suffolk ewes, and 6,061 lambings by 2,709 Polypay ewes were used. Heritability estimates for litter size ranged from .09 to .11 across breeds; repeatability ranged from .09 to .13. Additive genetic effects on litter size were generally positively, and occasionally significantly, correlated with animal additive genetic effects on weaning weights and postweaning gains. Genetic correlations (r(a)) ranged from .08 to .48 in Targhee and from .17 to .43 in Suffolk but were close to 0 in Polypay (-.14 to .09). Additive maternal effects on weaning weight were positively associated with litter size in Suffolk and Polypay; this correlation was negative (-.23 to -.35), but not significant, in Targhee. Fleece weight was not strongly associated with litter size; (r(a) = -.09 to .21). However, fiber diameter had a significant undesirable correlation with litter size (.30) in Targhee. Estimates of phenotypic correlations of litter size with early-life traits were uniformly small (-.02 to .08). Thus, although occasional genetic antagonisms between litter size and early-life traits were observed in these data, none appeared large enough to prevent simultaneous genetic improvement in both traits.  相似文献   

12.
Components of (co)variance for weaning weight were estimated from field data provided by the American Simmental Association. These components were obtained for the observational components of variance corresponding to a sire, maternal grandsire, and dam within maternal grandsire model. From these estimates, direct additive genetic variance (Sigma2A), maternal additive genetic variance (Sigma2M), covariance between direct and maternal additive genetic effects (SigmaAM), variance of permanent environment(Sigma2pe) and temporary environment variance(Sigma2te) were determined. A procedure to approximate restricted maximum likelihood (REML) estimates of the observational components of variance based on the expectation-maximization (EM) algorithm is described. From these results, phenotypic variance ( ) of weaning weight was 667.88 kg2. Values forSigma2A, Sigma2M, Sigma2pe and Sigma2te were 79,30,58,38,49.45, and 469.97 kg2, respectively. Genetic correlation between direct and maternal additive genetic effects was .16.  相似文献   

13.
The objective of this study was to investigate the importance of maternal genetic effects on postweaning performance traits of Yorkshire, Landrace, Duroc, and Hampshire breeds of swine. Data consisted of performance test records collected in a commercial swine operation from 1992 to 1999. Boars from 60% of the litters were culled at weaning based on a combination of maternal and performance indexes that differed by breed. Remaining boars and all females were grown to 100 d of age. At this time all pigs were weighed (WT100) and selected for testing using recalculated breed-specific indexes (n = 15,594, 55,497, 12,267, and 9,782 for Landrace, Yorkshire, Duroc, and Hampshire, respectively). All pigs were weighed at the end of the 77-d test, and backfat (BF) and loin eye area (LEA) were measured over the 12th rib by ultrasound. Average daily feed intake was calculated for boars, and ADG was calculated for all animals. Genetic parameters were estimated for each breed and trait using multiple-trait DFREML procedures. Fixed effects were contemporary groups and either initial or final test age as a covariate. Four models were examined. Model 1 included only the additive genetic effect of the animal. Model 2 added the common litter environmental effect; Model 3 added the maternal genetic value assumed to be uncorrelated with additive genetic effects. Model 4 was the same as Model 3 with additive and maternal genetic effects assumed to be correlated. All models were two-trait models with WT100 as the second trait. Ratios of likelihoods were used to compare models. Maternal effects were important (P < 0.05) for WT100, ADG, ADFI, LEA, and BF in Landrace; for WT100, ADG, LEA, and BF in Yorkshire; for WT100 and ADG in Duroc, and for WT100 in Hampshire. Estimates of heritabilities for direct additive effects using the appropriate model for ADG, ADFI, LEA, and BF were 0.28, 0.34, 0.48, and 0.63 for Landrace; 0.26, 0.31, 0.39, and 0.65 for Yorkshire; 0.14, 0.20, 0.26, and 0.35 for Duroc; and 0.17, 0.23, 0.25, and 0.31 for Hampshire, respectively. Heritability estimates for maternal genetic effects for ADG, ADFI, LEA, and BF were 0.02, 0.05, 0.06, and 0.07 for Landrace and 0.02, 0, 0.04, and 0.06 for Yorkshire, respectively. They were zero for all traits except ADG (0.03) in Duroc and for all traits in Hampshire. Maternal effects may need to be considered in genetic evaluation of performance traits in some breeds of swine.  相似文献   

14.
Birth weight, preweaning gain and weaning weight (adjusted 180-d weight) data, collected at McGregor, Texas, were analyzed for genetic differences. Breedtypes represented in the data were Brahman, Hereford and various Brahman-Hereford crosses. Preweaning gain was calculated as adjusted 180-d weight less birth weight. All statistical models included effects of dam age, year, season and sex. Analyses were performed using a breedtype model and a regression model that redefined breedtype as direct additive, direct heterotic, maternal additive and maternal heterotic effects. Brahman dams produced calves with lightest birth weights. Brahman-sired calves were heaviest at birth compared with those by other sire breedtypes. The estimated Brahman direct additive effect on birth weight was 4.6 kg greater than Hereford. The Brahman maternal additive effect was 7.5 kg less than Hereford. Direct and maternal heterotic effects on birth weight were 2.2 and .6 kg, respectively. Calves from F1 dams had larger preweaning gains than those of the other breedtypes. The Brahman direct additive effect on preweaning gain was 17.7 kg less than Hereford and the Brahman maternal additive effect was 20 kg greater than Hereford. Direct and maternal heterotic effects on preweaning gain were 19.6 and 19.5 kg, respectively. Results of weaning weight analyses were similar to preweaning gain analyses. The largest effects on weaning weight were direct and maternal heterosis, which were 21.6 and 19.8 kg, respectively.  相似文献   

15.
Maternal effects are an important source of variation in early growth and body traits in sheep but are often excluded from genetic analyses. Maternal additive genetic, maternal environmental, and cytoplasmic effects were investigated in a large Suffolk breeding scheme using a range of models involving different combinations of these effects with the direct additive genetic effect. Weights at 8 wk of age and at scanning (mean age 146 d) and ultrasonically measured muscle and fat depth were analyzed using an animal model on 55,683 (8-wk weight) and 28,947 (scanning traits) lamb records. Simple additive models always overestimated the heritability of all traits when compared to more complex models. The successive inclusion of maternal environmental, maternal genetic, and the covariance between direct and maternal additive effects in the model significantly improved the fit for almost all models and all traits, as indicated by a likelihood ratio test. Under the full model, the heritability of both weight traits was low (0.14 and 0.20 for 8-wk and scanning weight, respectively). The maternal additive and maternal environmental effects, as a proportion of the phenotypic variance, were similar (0.10 and 0.08 for 8-wk weight and 0.07 and 0.06 for scanning weight). The two scanning traits had higher heritabilities (0.29 and 0.27 for muscle depth and fat depth, respectively) with low levels of maternal genetic and maternal environmental variance. No evidence was found of a cytoplasmic effect on any of the traits studied under the full model. Breeding schemes for early growth and body traits in sheep should account for maternal effects in their genetic evaluations in order to improve their accuracy. The exact model to use will depend on the trait and individual circumstances of the scheme.  相似文献   

16.
Demographic characteristics and genetic trends in birth weight and pre- and postweaning ADG were examined in a population of Hereford cattle (Line 1). Line 1 was founded largely from two paternal half-sib sires and has been selected for postweaning growth. There were pedigree records on 951 members of the base population that predated 1935, when data collection began. Numbers of records analyzed using mixed-model methodology were 4,716 birth weight, 4,427 preweaning ADG, and 3,579 postweaning ADG. Birth weight and preweaning ADG were considered to have direct and maternal genetic components. Inbreeding accumulated rapidly from 1935 to 1960 and more slowly (.22%/yr) thereafter. Any reduction in additive genetic variance due to inbreeding and selection may have been offset by a concurrent reduction in generation interval that was observed as time progressed. Expected selection differential for 365-d weight, averaged over sexes, was 31.2 kg per generation. For birth weight, annual genetic trends in direct and maternal effects were 42 +/- 3 g and 15 +/- 3 g, respectively. Annual direct and maternal genetic trends for preweaning ADG were .70 +/- .06 g/d and .63 +/- .06 g/d, respectively. Direct response in postweaning ADG was linear and equal to 5.3 +/- .6 g.d-1.yr-1. As a result, estimated breeding values of birth weight, 200-d weight, and 365-d weight increased by 3.2 kg, 14.5 kg, and 62.4 kg, respectively, from 1935 to 1989. Selection within Line 1 was effective in increasing genetic potential for growth over 13 generations. No selection plateau was observed in any of the traits examined.  相似文献   

17.
Estimates of (co)variance components were obtained for weights at birth, weaning and 6, 9 and 12 months of age in Chokla sheep maintained at the Central Sheep and Wool Research Institute, Avikanagar, Rajasthan, India, over a period of 21 years (1980–2000). Records of 2030 lambs descended from 150 rams and 616 ewes were used in the study. Analyses were carried out by restricted maximum likelihood (REML) fitting an animal model and ignoring or including maternal genetic or permanent environmental effects. Six different animal models were fitted for all traits. The best model was chosen after testing the improvement of the log-likelihood values. Direct heritability estimates were inflated substantially for all traits when maternal effects were ignored. Heritability estimates for weight at birth, weaning and 6, 9 and 12 months of age were 0.20, 0.18, 0.16, 0.22 and 0.23, respectively in the best models. Additive maternal and maternal permanent environmental effects were both significant at birth, accounting for 9% and 12% of phenotypic variance, respectively, but the source of maternal effects (additive versus permanent environmental) at later ages could not be clearly identified. The estimated repeatabilities across years of ewe effects on lamb body weights were 0.26, 0.14, 0.12, 0.13, and 0.15 at birth, weaning, 6, 9 and 12 months of age, respectively. These results indicate that modest rates of genetic progress are possible for all weights.  相似文献   

18.
To estimate adjustment factors and genetic parameters for gestation length (GES), AI and calving date records (n = 40,356) were extracted from the Canadian Charolais Association field database. The average time from AI to calving date was 285.2 d (SD = 4.49 d) and ranged from 274 to 296 d. Fixed effects were sex of calf, age of dam (2, 3, 4, 5 to 10, > or = 11 yr), and gestation contemporary group (year of birth x herd of origin). Variance components were estimated using REML and 4 animal models (n = 84,332) containing from 0 to 3 random maternal effects. Model 1 (M1) contained only direct genetic effects. Model 2 (M2) was G1 plus maternal genetic effects with the direct x maternal genetic covariance constrained to zero, and model 3 (M3) was G2 without the covariance constraint. Model 4 (M4) extended G3 to include a random maternal permanent environmental effect. Direct heritability estimates were high and similar among all models (0.61 to 0.64), and maternal heritability estimates were low, ranging from 0.01 (M2) to 0.09 (M3). Likelihood ratio tests and parameter estimates suggested that M4 was the most appropriate (P < 0.05) model. With M4, phenotypic variance (18.35 d2) was partitioned into direct and maternal genetic, and maternal permanent environmental components (hd2 = 0.64 +/- 0.04, hm2 = 0.07 +/- 0.01, r(d,m) = -0.37 +/- 0.06, and c2 = 0.03 +/- 0.01, respectively). Linear contrasts were used to estimate that bull calves gestated 1.26 d longer (P < 0.02) than heifers, and adjustments to a mature equivalent (5 to 10 yr old) age of dam were 1.49 (P < 0.01), 0.56 (P < 0.01), 0.33 (P < 0.01), and -0.24 (P < 0.14) d for GES records of calves born to 2-, 3-, 4-, and > or = 11-yr-old cows, respectively. Bivariate animal models were used to estimate genetic parameters for GES with birth and adjusted 205-d weaning weights, and postweaning gain. Direct GES was positively correlated with direct birth weight (BWT; 0.34 +/- 0.04) but negatively correlated with maternal BWT (-0.20 +/- 0.07). Maternal GES had a low, negative genetic correlation with direct BWT (-0.15 +/- 0.05) but a high and positive genetic correlation with maternal BWT (0.62 +/- 0.07). Generally, GES had near-zero genetic correlations with direct and maternal weaning weights. Results suggest that important genetic associations exist for GES with BWT, but genetic correlations with weaning weight and postweaning gain were less important.  相似文献   

19.
Heritability of 2-yr-old heifer calving difficulty score was estimated in nine purebred and three composite populations with a total of 5,986 calving difficulty scores from 520 sires and 388 maternal grandsires. Estimates were 0.43 for direct (calf) genetic effects and 0.23 for maternal (heifer) genetic effects. The correlation between direct and maternal effects was -0.26. Direct effects were strongly positively correlated with birth weight and moderately correlated with 200-d weight and postweaning gain. Smaller negative correlations of maternal calving difficulty with direct effects of birth weight, weaning weight, and postweaning gain were estimated. Calving difficulty was scored from 1 to 7. Predicted heritabilities using seven optimal scores were similar to those using four scores. The predicted heritability using only two categories was reduced 23%. Phenotypic and direct genetic variance increased with increasing average population calving difficulty score. The estimated direct and maternal heritabilities for 2-yr-old calving difficulty score were larger than many literature estimates. These estimates suggested substantial variance for direct and maternal genetic effects. The direct effects of 2-yr-old calving difficulty score seemed to be much more closely tied to birth weight than were maternal effects.  相似文献   

20.
Estimates of (co)variance and genetic parameters of birth, weaning (205 days) and yearling (365 days) weight were obtained using single-trait animal models. The data were analysed by restricted maximum likelihood, fitting an animal model that included direct and maternal genetic and permanent environmental effects. The data included records collected between 1976 and 2001. The pedigree information extended as far back as early 1960s. The heritabilities for direct effects of birth, weaning and yearling weights were 0.36, 0.29 and 0.25, respectively. Heritability estimates for maternal effects were 0.13, 0.16 and 0.15 for birth, weaning and yearling weights, respectively. The correlations between direct and maternal additive genetic effects were negative for all traits analysed. The results indicate that both direct and maternal effects should be included in a selection programme for all the traits analysed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号