首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 171 毫秒
1.
旋风分离清选适用于小型水稻联合收割机,在保证清选损失率小的前提下,降低含杂率是设计的关键。为探寻分离筒中气流和籽粒两相流动规律,选取水稻脱出物中谷粒、颖壳、瘪谷、杂穗等为研究对象,利用Fluent软件对4LZ-0.8型水稻联合收割机清选系统中的旋风分离清选装置进行三维数值仿真模拟,分析不同工况下清选模型中各组分籽粒的运动轨迹,计算其分离效率。并以低损试验条件下谷粒清洁率为主目标进行台架试验,对最优模型进行了试验验证,评价扬谷轮转速、吸杂风机转速和分离组件距入口高度三因素与装置清选性能之间的影响关系,通过建立回归模型,进行多目标优化求解,得到较优参数组合:当扬谷轮转速为1 163 r/min,吸杂风机转速为1 920 r/min,分离组件距入口高度为63.26 mm时,预测所得谷粒清洁率为99.26%,可为清选装置再设计提供参考。  相似文献   

2.
旋风分离清选装置具有体积小、重量轻、结构简单等优点,现已广泛应用于小型水稻联合收割机。但其清选过程中仍存在损失率高、湿物料清选效果不佳等问题,通过对旋风分离筒内部结构进一步优化与改进,并运用Fluent 15.0软件对优化前后的分离筒内部气流场进行了比较分析。以吸杂风机转速、扬谷器转速、挡板倾斜角度为试验因素,清洁率和损失率为性能评价指标,运用三元二次正交试验方法进行了台架试验,试验结果表明:当吸杂风机转速为2 452 r/min,扬谷器转速为783.8 r/min,挡板倾斜角度为41°时,装置性能最佳,此时清洁率为98.26%,损失率为0.003 5%。对照试验结果表明:脱出物含水率越高,装置优化后性能提升效果越明显,该结果可为后期旋风分离筒结构优化设计提供参考。  相似文献   

3.
为满足小型油菜联合收获机清选要求,创新设计了一种油菜脱出物双向切入式旋风分离清选装置。对其圆筒筛、双向输送绞龙、双向切入式旋风分离筒、吸杂风机等关键部件进行了结构设计和参数确定,试制了样机并实施了室内台架试验。选取对清选性能影响较大的喂入量、抛料板转速、吸杂风机转速为因素,籽粒清洁率与损失率为评价指标开展单因素试验,以探明喂入量、抛料板转速和吸杂风机转速的较优范围;在此基础上开展了正交试验以寻求喂入量、抛料板转速、吸杂风机转速的优化参数组合。单因素试验结果表明,在喂入量不超过0.07 kg·s-1、抛料板转速为600~800 r·min-1、吸杂风机转速为1 600~1 800 r·min-1时,籽粒清洁率≥94%,清选损失率≤8%。正交试验结果表明,影响清选性能的主次因素依次为:吸杂风机转速、喂入量、抛料板转速,优化参数组合为喂入量0.06 kg·s-1、抛料板转速700 r·min-1、吸杂风机转速1 800 r·min-1,对应的籽粒清洁率为97.1...  相似文献   

4.
【目的】设计适合荞麦清选的旋风分离清选装置,为提高我国荞麦的机械化收获水平提供支持。【方法】以“西农9979”品种荞麦为试验对象,测定荞麦和籽粒的主要物料特性,采用 EDEM-Fluent 耦合的仿真方法,对旋风分离筒不同截面的气流速度云图和荞麦籽粒在旋风分离筒内的运动进行分析,并对清选的清洁率和损失率进行仿真。【结果】Fluent仿真分析表明,旋风分离筒轴向气流对称性较好,基本不受入口位置的影响,中心轴处气流速度约为10 m/s,筒壁周围的气流速度约为5 m/s。喂入口位于分离筒上部时,在径向截面处的喂入口气流速度和分离筒内筒壁周围的气流速度相同,可能造成荞麦籽粒的大量损失。EDEM仿真分析表明,旋风分离筒喂入口位于上部、中部和下部时,清洁率分别为99.50%,98.80%和98.28%,损失率分别为8.456%,0.433%和0.260%。根据仿真结果,选择喂入口位于旋风分离筒中部,台架验证试验结果表明,所设计荞麦旋风分离筒的平均清洁率为94.78%,平均损失率为1.67%,可以较好地实现荞麦的分离和清选。【结论】所设计荞麦旋风分离清选装置可以满足荞麦旋风分离清选的需要。  相似文献   

5.
小型油菜联合收获机双风道气流清选装置的设计与试验   总被引:1,自引:0,他引:1  
针对油菜收获脱粒清选中损失率与含杂率较高的现状,设计了一种配套小型油菜联合收获机的双风道气流清选装置,主要由圆盘分选筛、斜面集料器、清选筒、离心风机等组成。利用圆盘筛旋转产生的离心力作用对油菜脱出物进行初次筛分,分选得到的籽粒与小杂余的混合物,由斜面集料器收集滑入清选筒内,离心风机的运转使清选筒内产生负压气流,形成双向风道气流,对籽粒进行二次清选。基于流体动力学基本方程进行了双风道气流清选参数设计,利用ANSYS进行清选流场数值仿真分析,在自制试验台架进行了多因素正交试验。将油菜脱出物含杂率、清选筛转速和离心风机转速作为主要因素,通过单因素试验与正交试验,用清洁率与损失率对选定因素进行分析,得到最优清选方案。理论分析、数值模拟与试验结果基本吻合。结果表明:在喂入量为0.1 kg/s时,对于含杂率为15%的油菜脱出物,清选筛转速为50~80 r/min、离心风机转速为1 700~1 900 r/min时,清洁率为95.0%~98.5%,清选性能较好;含杂率为5%、清选筛转速为60 r/min、离心风机转速为1 800 r/min时,清选性能最优,清洁率达98.2%,含杂率小于4.2%。  相似文献   

6.
唐倩雯  尹健 《湖北农业科学》2012,51(9):1890-1894
为研究微型谷物联合收割机清选系统的旋风清选筒内流场的运动状况,借助FLUENT软件,采用RNG k-ε模型模拟,基于SMPLEC算法,对切线入口的旋风分离筒内的压力场和速度场进行三维数值模拟研究.通过数值模拟得到旋风分离筒内部压力场基本呈轴对称分布;清选筒内速度分为旋流和竖直流动,其分界面大致为吸杂管壁面向下的延长线.采用拉格朗日离散相模型对清选筒内谷物脱出物的运动轨迹进行追踪,得到在吸杂口的气压为-900~-600 Pa时清选筒内具有较好的分离效果.  相似文献   

7.
油葵脱粒清选装置的设计与试验研究   总被引:2,自引:0,他引:2  
为提高油葵脱粒装置的脱净率,降低清选装置的含杂率,设计了一种横轴流油葵脱粒清选装置并开展了试验研究。使用正交试验法对未脱净损失率和含杂率开展了优化,确定了脱粒清选装置工作参数的较优组合。试验表明,影响未脱净率的较优组合为滚筒转速450r/min、脱粒间隙20mm,脱净率可达98.86%;影响含杂率的较优组合为曲柄转速160r/min、风机倾角18°、风机转速1 000r/min,清洁率可达93.75%。  相似文献   

8.
为了解进料高度对旋风分离筒内气相流场分布的影响,提高风力清选装置的清选效果,以湖南农业大学研制的5TY–100型油菜脱粒机旋风分离筒为研究对象,利用Gambit对3种进料高度(50、150、250 mm)的旋风分离筒建模,导入FLUENT中模拟仿真。模拟仿真结果表明:进料高度不影响旋风分离筒内涡核的轴向空间尺寸,但对旋风分离筒内的负压、气流速度、切向速度及涡核体积产生影响,进料高度越小,旋风分离筒内部的负压值越小,气流速度值、切向速度值、涡核体积越大。综合分析可得,进料高度越小,物料的清选效果越好。  相似文献   

9.
为解决现有通用小型联合收割机脱粒装置内高残留的问题,选定农广4LZ-0.8小型联合收割机脱粒装置为原型机进行改进设计,为满足育种收获低混种的农艺要求,对脱粒装置底部曲面进行了改进,并采用了全程气流辅助清理和扬谷器清理的组合方式,解决了原有搅龙与刮板输送造成高残留的缺陷。设计了脱粒试验台进行试验,以喂入量、导向风管入口风速、扬谷器转速为试验因素,以脱粒装置内谷粒残留量为性能评价指标,先进行不同风速下最大喂入量的单因素试验,以确定试验因素范围,再运用回归分析方法建立了脱粒装置清残留的数学模型,优化确定了最佳参数组合。试验结果表明:当喂入量为0.6 kg/s;导向风管入口风速为12 m/s;扬谷器转速为1 000 r/min时,装置内整体残留量为0.18 g。  相似文献   

10.
为解决4LZ–4.0大豆联合收割机清选装置清选过程含杂率和损失率偏高的问题,选取鱼鳞筛角度(17.1°、27.1°、37.1°)、风机转速(969、1090、1212 r/min)和喂入量(2.0、2.5、3.0 kg/s)设计了三因素三水平响应面试验,测试清选装置损失率和含杂率,筛选最优清选参数组合。结果表明:清选参数最优组合为鱼鳞筛角度26.8°、风机转速1075 r/min、喂入量2.3 kg/s,最优组合下的损失率与含杂率分别为0.18%和2.07%,对比优化前分别降低了0.26%与0.44%;收割机清选装置效果最优时,大豆脱出物在沿清选筛纵向质量占比从29.88%减少到6.34%,沿清选筛横向质量占比分布先从27.51%减小到7.88%,再增加到18.96%,呈“前面多后面少,两边多中间少”近似“Y”状分布。  相似文献   

11.
目的】研究采用气吸式原理研究设计气吸式巴旦木壳仁风选装置,并采用软件参数优化,为巴旦木壳仁风选装备研发与优化提供理论参考。【方法】运用有限元软件Fluent18.0,对风腔三维模型进行流体仿真,风腔内部形成局部湍流现象,调节风腔过渡口相对位置适当提高清选效率。运用数据分析软件Design Expert对风选试验数据分析和计算。研究各因素对损失率影响顺序为喂入量、振动频率和风机转速。【结果】最佳参数组合为:喂入量4 kg/min、风机转速2 300 r/min、振动频率53 Hz,清选率为95.68%,损失率为2.85%。【结论】各因素对清选率的贡献率从大到小排序依次是:喂入量、风机转速、振动频率。该装置在验证试验中清选率指标明显上升。  相似文献   

12.
采用清粮装置试验台进行了水稻收割清选试验,得到了影响谷粒损失率与清洁率的主次参数和参数较佳组合;筛面上气流纵向分布与风扇出风道的配置;谷粒沿筛面的分选规律;振动参数与气流参数无明显互补提出以筛子加速度对筛面的垂直分量a_(E1)~V与平行分量a_(E1)~H作为清选性能的特征参数.  相似文献   

13.
小区小麦联合收获机清选系统的仿真分析   总被引:4,自引:2,他引:4  
采用FLUENT软件对小区小麦联合收获机清选筒内部气相流场和颗粒的运动状况进行了三维数值仿真模拟,利用RNGk-ε方程模拟其中的气相流场,利用DPM模型模拟小麦颗粒和颖壳在清选筒中的运动.通过改变清选筒入口位置、入口大小和喂入速度3个因素,对其分离效率进行对比分析,结果表明:3个因素对清选系统分离效率影响程度的主次顺序依次是入口位置、入口大小、喂入速度;以入口位置395mm、喂入速度9m·s-1、入口大小65mm×100mm确定的清选系统清选效果较好.  相似文献   

14.
乔国春  张义峰 《安徽农业科学》2012,(30):15039-15040,15042
[目的]研究损失率对清选环节的影响规律。[方法]以风机转速、风机倾角、曲柄转速为试验因素,以损失率作为评价指标,在清选试验台上进行水稻清选试验。[结果]得到回归模型。[结论]得到了影响损失率的主因素,为风筛式清选装置的设计及制造提供依据。  相似文献   

15.
大豆联合收获机气力卸粮装置的设计与试验   总被引:1,自引:0,他引:1  
针对现阶段大豆联合收获机传统螺旋运输器卸粮过程中籽粒破碎率较高的问题,设计一种大豆联合收获机气力卸粮装置。以叶轮转速、风机转速、卸粮软管内径为试验因素,破碎率及卸粮效率为试验指标进行三因素三水平响应面试验。结果表明:3个因素对破碎率影响程度的主次顺序为,风机转速、叶轮转速、卸粮软管内径,对卸粮效率影响程度的主次顺序为,叶轮转速、卸粮软管内径、风机转速;通过多目标参数优化分析得到适合气力卸粮的工作参数为,叶轮转速15r/min、风机转速3 166r/min、软管内径100mm,此时破碎率为1.49%,卸粮效率1.3L/s。该装置能有效降低联合收获机卸粮过程对大豆造成的损伤。  相似文献   

16.
小区小麦育种联合收获机试验研究   总被引:1,自引:0,他引:1  
根据小麦育种试验种子收获方法和农业技术要求,通过理论分析和田间试验,研制出小区小麦育种联合收获机。该机可一次完成切割、脱粒、分离、清选、集粮等全部作业。以喂入量、滚筒转速、吸杂风机转速为因素,以脱粒总损失率、脱粒破碎率、分离含杂率为评价指标进行作业性能试验。结合正交试验,应用综合平衡法得出了该机作业时各参数的最优方案为:喂入量0.3 kg·s-1,滚筒转速1 350 r·min-1,吸杂风机转速1 000 r·min-1。以该最优组合作业参数进行田间试验,结果表明,该机平均脱粒总损失率为0.43%,平均分离含杂率为15.03%,平均脱粒破碎率为0.48%,装置罩壳残留率为0,符合小区小麦育种收获要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号