首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The gene pool of Aegilops tauschii, the D-genome donor of common wheat (Triticum aestivum L.), can be easily accessed in wheat breeding, but remains largely unexplored. In our previous studies, many synthetic hexaploid wheat lines were produced through interspecific crosses between the tetraploid wheat cultivar Langdon and various A. tauschii accessions. The synthetic hexaploid wheat lines showed wide variation in many characteristics. To elucidate the genetic basis of variation in flowering-related traits, we analyzed quantitative trait loci (QTL) affecting time to heading, flowering and maturity, and the grain-filling period using four different F2 populations of synthetic hexaploid wheat lines. In total, 10 QTLs located on six D-genome chromosomes (all except 4D) were detected for the analyzed traits. The QTL on 1DL controlling heading time appeared to correspond to a flowering time QTL, previously considered to be an ortholog of Eps-A m 1 which is related to the narrow-sense earliness in einkorn wheat. The 5D QTL for heading time might be a novel locus associated with wheat flowering, while the 2DS QTL appears to be an allelic variant of the photoperiod response locus Ppd-D1. Some of the identified QTLs seemed to be novel loci regulating wheat flowering and maturation, including a QTL controlling the grain filling period on chromosome 3D. The exercise demonstrates that synthetic wheat lines can be useful for the identification of new, agriculturally important loci that can be transferred to, and used for the modification of flowering and grain maturation in hexaploid wheat.  相似文献   

2.
The D-genome progenitor of hexaploid wheat, Aegilops tauschii Coss., has a wide natural species range in central Eurasia and possesses wide natural variation in heading and flowering time. Here, we report identification of two Ae. tauschii accessions insensitive to short day length. Similarly to a loss or reduced degree of vernalization requirement, the photoperiod-insensitive mutations were found only in the early flowering sublineage (TauL1b) of Ae. tauschii. Quantitative trait locus (QTL) analyses using two F2 mapping populations showed that a QTL for heading time on the long arm of chromosome 5D was related to the early heading phenotype of the photoperiod-insensitive accessions under short-day conditions. In the photoperiod-insensitive accession, expression patterns of two flowering-related genes were altered under short-day conditions compared with the patterns in photoperiod-sensitive accessions. This study indicates that analysis of natural variations in the Ae. tauschii population is useful to find novel genetic loci controlling agronomically important traits.  相似文献   

3.
Aegilops tauschii Coss. is the D-genome donor to hexaploid bread wheat (Triticum aestivum) and is the most promising wild species as a genetic resource for wheat breeding. To study the population structure and diversity of 81 Ae. tauschii accessions collected from various regions of its geographical distribution, the genomic representation of these lines were used to develop a diversity array technology (DArT) marker array. This Ae. tauschii array and a previously developed DArT wheat array were used to scan the genomes of the 81 accessions. Out of 7500 markers (5500 wheat and 2000 Ae. tauschii), 4449 were polymorphic (3776 wheat and 673 Ae. tauschii). Phylogenetic and population structure studies revealed that the accessions could be divided into three groups. The two Ae. tauschii subspecies could also be separately clustered, suggesting that the current taxonomy might be valid. DArT markers are effective to detect very small polymorphisms. The information obtained about Ae. tauschii in the current study could be useful for wheat breeding. In addition, the new DArT array from this Ae. tauschii population is expected to be an effective tool for hexaploid wheat studies.  相似文献   

4.
Few genes are available to develop drought-tolerant bread wheat (Triticum aestivum L.) cultivars. One way to enhance bread wheat’s genetic diversity would be to take advantage of the diversity of wild species by creating synthetic hexaploid wheat (SW) with the genomic constitution of bread wheat. In this study, we compared the expression of traits encoded at different ploidy levels and evaluated the applicability of Aegilops tauschii drought-related traits using 33 Ae. tauschii accessions along with their corresponding SW lines under well-watered and drought conditions. We found wide variation in Ae. tauschii, and even wider variation in the SW lines. Some SW lines were more drought-tolerant than the standard cultivar Cham 6. Aegilops tauschii from some regions gave better performing SW lines. The traits of Ae. tauschii were not significantly correlated with their corresponding SW lines, indicating that the traits expressed in wild diploid relatives of wheat may not predict the traits that will be expressed in SW lines derived from them. We suggest that, regardless of the adaptability and performance of the Ae. tauschii under drought, production of SW could probably result in genotypes with enhanced trait expression due to gene interactions, and that the traits of the synthetic should be evaluated in hexaploid level.  相似文献   

5.
It was recently shown that allopolyploidy brings novel epistatic interactions to genes belonging to different genomes. However, systematic studies of the phenotypic relationships between synthetic hexaploid wheats and their parental lines have not been conducted. In this study, 27 synthetic hexaploid wheats were produced by crossing the tetraploid wheat cultivar ‘Langdon’ with 27 accessions of Aegilops tauschii. Variations in 20 morphological and flowering traits were analysed in both the synthetic wheat lines and the parental Ae. tauschii accessions. The 20 traits exhibited large variations in the wheat lines. For many of the traits, the degree of variation in the parental accessions was reduced in the hexaploid derivatives. Principal component analysis of floret‐related traits divided the Ae. tauschii accessions into two subspecies, ssp. tauschii and ssp. strangulata, but this parental pattern of subspecific division was not detectable in the hexaploids. Our results suggest that the ‘Langdon’ genome may have an alleviating effect on the expression of D‐genome‐derived variations in derived synthetics.  相似文献   

6.
Wanquan Chen  Taiguo Liu  Li Gao 《Euphytica》2013,192(3):339-346
Stripe rust and leaf rust caused by Puccinia striiformis (Ps) Westend. and P. triticina (Pt) Eriks., respectively, are important foliar diseases of wheat worldwide. Breeding resistant wheat cultivars is the preferred strategy to control these diseases. Genes for resistance when introgressed from alien species or wheats of lower ploidy are frequently diluted effectiveness in the hexaploid wheat background or are completely suppressed. The objective of this study was to examine the expression of wheat stripe rust and leaf rust resistances derived from wild emmer wheat and Aegilops tauschii when combined in synthetic hexaploid lines. Eight amphidiploid wheat lines, synthesized by crossing five tetraploid wheats (AABB), viz. Triticum carthlicum var. darginicum, T. carthlicum var. fuligioscum, T. dicoccoides var. fuligioscum, T. durum with five lines of Ae. tauschii (DD), were evaluated in the seedling stage for resistance to five pathotypes of stripe rust caused by Ps and four pathotypes of leaf rust caused by Pt. Resistance in one or both parents was frequently suppressed in synthetic hexaploid lines, indicating the presence of suppressor genes in both Ae. tauschii and T. carthlicum var. darginicum. Specific suppression of resistance genes in the parental genotypes and to pathotypes of Ps and Pt were also observed. The presence and specificity of the suppressors for rust resistance obtained in this study provides useful knowledge for developing cultivars resistant to both rusts utilizing such genetic stocks in wheat breeding programs.  相似文献   

7.
The diploid D-genome progenitor of hexaploid wheat, Triticum tauschii (Coss.) Schmahl., was screened to identify mechanisms for resistance to pre-harvest sprouting. A number of promising mechanisms were identified, and transferred to hexaploid wheat via wide-hybridisation. One identified mechanism, an inhibitory phenolic compound present in the bracts surrounding the grain, has been shown to function effectively in synthetic hexaploid wheats. A number of seed-borne dormancy mechanisms were also identified. Expression of embryo dormancy in synthetic hexaploid wheats was demonstrated when compared with non-dormant hexaploid wheat. Effects of the seed coat on dormancy were also studied, with the seed coat of synthetic hexaploids accelerating rather than inhibiting germination. Embryo dormancy was also demonstrated in two `direct-cross' hybrids. The results suggest that a combination of the described mechanisms may produce white wheats with resistance to pre-harvest sprouting adequate for most Australian climatic conditions. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

8.
Y. M. Yan    S. L. K. Hsam    J. Z. Yu    Y. Jiang  F. J. Zeller 《Plant Breeding》2003,122(2):120-124
Gliadin variation at Gli‐Dt1 and Gli‐Dt2 loci in 198 Aegilops tauschii accessions was studied by acid polyacrylamide gel electrophoresis (A‐PAGE) and capillary electrophoresis (CE). High genetic polymorphisms were found at both gliadin coding loci, revealing a total of 184 and 169 gliadin variants at the Gli‐Dt1 and Gli‐Dt2 loci, respectively. In particular, 12 gliadin blocks encoded by different alleles were apparently expressed and readily identified in six synthetic hexaploids produced by hybridization between Triticum durum and Ae. tauschii accessions. Compared with Ae. tauschii ssp. eusquarrosa, the gliadin profile of the D genome in Ae. tauschii ssp. strangulata more resembles that of T. aestivum, supporting the view that the subspecies strangulata is the most likely progenitor of bread wheat. Capillary electrophoresis analysis showed that the method is capable of separating and characterizing gliadins with speed, in high resolution using small sample amounts, and is well‐suited to detect protein alleles and to identify desirable genotypes in wheat quality improvement.  相似文献   

9.
Synthetic hexaploid wheats are of interest to wheat breeding programs, especially for introducing new genes that confer resistance to biotic and abiotic stresses. A group of 54 synthetic hexaploid wheats derived from crosses between emmer wheat(Triticum dicoccum, source of the A and B genomes) and goat grass (Aegilops tauschii, D genome donor) were investigated for genetic diversity. Using the AFLP technique, dendrograms revealed clear grouping according to geographical origin for the T. dicoccum parents but no clear groups for the Ae. tauschii parents. The geographical clustering of the T. dicoccum parents was also reflected in the dendrogram of their derived synthetic hexaploids. Diversity of the T. dicoccum parents and their derived synthetic hexaploids was further evaluated by measuring 18morphological and agronomic traits on the plants. Clustering based on morphological and agronomic data also reflected geographical origin. However, comparison of genetic distances obtained from AFLP and agronomic data showed no correlation between the two diversity measurements. Nevertheless, similarities among major clusters with the two systems could be identified. Based on percentage of polymorphic markers, the synthetic hexaploids had a considerably higher level of AFLP diversity (39%) than normally observed in cultivated hexaploid wheat (12–21%). This suggests that synthetic hexaploid wheats can be used to introduce new genetic diversity into the bread wheat gene pool. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
CIMMYT新型人工合成小麦Pina和Pinb基因等位变异   总被引:4,自引:0,他引:4  
六倍体人工合成小麦由硬粒小麦(Triticum turgidum subsp. durum)与粗山羊草(Aegilops tauschii Coss.)杂交产生,是研究小麦进化过程中基因变异的重要材料。以国际玉米小麦改良中心(CIMMYT)提供的57份由野生二粒小麦(T. turgidum subsp. dicoccoides)与粗山羊草杂交产生的新型人工合成六倍体小麦为材料,用单籽粒特性测定仪和Pina、Pinb特异性PCR引物对其籽粒硬度变异以及控制籽粒硬度的主效基因Pina和Pinb的分布情况进行了研究。结果表明,这些材料的SKCS硬度值变异较大,从10.5到42.6,其中15~30的占78%。共有Pina-D1a、Pina-D1c、Pinb-D1h和Pinb-D1j 4种等位变异型,基因型为Pina-D1a/Pinb-D1j的8个,占14%;基因型为Pina-D1c/Pinb-D1h的49个,占86%。方差分析表明,基因型Pina-D1a/Pinb-D1j与Pina-D1c/Pinb-D1h对籽粒硬度的影响差异不显著,但父本粗山羊草和母本野生二粒小麦以及二者间的互作对籽粒硬度有显著影响,说明除Pina和Pinb外,还有其他微效基因影响籽粒硬度的形成。  相似文献   

11.
Greater variability in starch properties is found in lower ploidy wheats than in commercial hexaploid wheats. This paper reports on the starch properties and variability in granule bound starch synthase (GBSS) loci of 17 diploid (Aegilops tauschii) and 12 tetraploid (durums) potential progenitors of wheat, compared with 29 synthetic hexaploid wheats produced from such progenitors. Starch properties examined were granule size distribution, swelling power, amylose content, gelatinisation and amylose-lipid dissociation properties. A PCR screening method was able to detect the presence or absence of each of the three GBSS genes. It also detected polymorphisms in eight diploids and nine hexaploids, all displaying the same 25 bases deletion in the D genome allele of GBSS. Two tetraploids and five hexaploids were null 4A for GBSS. There was little difference in the amylose contents and amylose-lipid dissociation peak temperatures of the synthetic hexaploids and the lower ploidy wheats. The synthetic hexaploids showed intermediate swelling power values with the durums giving the highest swelling powers. The durums also had higher B granule contents than the A. tauschii accessions, but not as high as the synthetics. However, the A. tauschii samples gave the highest gelatinisation peak temperatures. The presence of the null 4A mutation was positively correlated with swelling power, amylose content and DSC measurements. The new smaller D genome allele of GBSS was associated with slightly higher swelling power. These results confirm the value of wheat progenitor lines as sources of new starch properties for hexaploid wheat. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
Stripe rust, caused by Puccinia striiformis f. sp. tritici (PST), is one of the most important diseases of common wheat (Triticum aestivum L.). China has the largest stripe rust epidemic areas in the world and yield losses can be large. Aegilops tauschii Coss, the D-genome progenitor of common wheat, includes two subspecies, tauschii and strangulata (Eig) Tzvel. The ssp. strangulata accession AS2388 is highly resistant to the prevailing physiological races of PST in China, and possesses a single dominant gene for stripe rust resistance. In order to tag this gene, AS2388 was crossed with the highly susceptible ssp. tauschii accession AS87. The parents, F2 plants, and F2:3 families were tested at adult plant stage in field trials with six currently prevailing races. Simple sequence repeat (SSR) primers were used to identify molecular markers linked to the resistance gene. SSR markers Xwmc285 and Xwmc617 were linked to the resistance gene on chromosome arm 4DS flanking it at 1.7 and 34.6 cM, respectively. Based on the chromosomal location, this gene temporarily designated as YrAS2388 is probably novel. The resistance in Ae. tauschii AS2388 was partially expressed in two newly developed synthetic hexaploid backgrounds.  相似文献   

13.
Wheat pre-breeding using wild progenitors   总被引:6,自引:1,他引:6  
J. J. Valkoun 《Euphytica》2001,119(1-2):17-23
To facilitate the use of wheat wild relatives in conventional breedingprograms, a wheat pre-breeding activity started at ICARDA in 1994/1995season. Preliminary results of gene introgression from wild diploidprogenitors, Triticum urartu, T. baeoticum, Aegilops speltoides andAe. tauschii and tetraploid T. dicoccoides are described. Crosseswith wild diploid Triticum spp. yielded high variation in plant andspike morphology. Synthetic hexaploids were produced from crosses of alocal durum wheat landrace `Haurani' with two Ae. tauschiiaccessions. Both Ae. tauschii accessions carry hybrid necrosis allelesthat gave necrotic plant phenotypes in crosses with some bread wheats.Backcross progenies with agronomical desirable traits, i.e. high spikeproductivity, short plant stature, earliness, drought tolerance and highproductive tillering, were identified in crosses of durum wheat with wild Triticum spp. and in a cross of one of the hexaploid synthetics with alocally adapted bread wheat cv. `Cham 6'. Resistance to yellow rust wasfound in durum wheat crosses with the three wild Triticum spp. andAe. speltoides and leaf rust resistance was identified in crosses withT. baeoticum and Ae. speltoides. The results show that wheatimmediate progenitors may be a valuable and readily accessible source ofnew genetic diversity for wheat improvement.  相似文献   

14.
High molecular weight glutenin subunit composition and variation in 95 Elite-1 synthetic hexaploid (SH) wheats (Triticum turgidum/Aegilops tauschii; 2n = 6× = 42; AABBDD) were determined by sodium dodecyl sulphate polyacrylamide gel electrophoresis method (SDS-PAGE). Twenty two different alleles at Glu-1 loci in SHs were observed. Forty four different patterns of HMW-GS in synthetics were found. This higher HMW glutenin composition was due to higher proportion of D-genome encoded subunits in these SHs. 8% urea/SDS-PAGE better discriminated subunit 2* than 12% gels. However 12% urea/SDS-PAGE allowed differentiated mobility of Glu-Dt1 subunits. Genetic variability at Glu-Dt1 locus was greater than Glu-A1 and Glu-B1 loci. The relative high frequency of superior alleles, Glu-B1b and Glu-Dt1d indicated the superior bread making quality attributes embedded in these synthetic hexaploid wheats. Of the 95 Elite-1 SHs 27.1% possessed superior alleles at Glu-A1 and 51% had superior alleles at Glu-B1 locus. At Glu-Dt1 frequency of inferior allele 1Dx2 + 1Dy12 was very low (5.26%) and nine different rare alleles along with the higher frequency (22.1%) of D-genome encoded subunit, 1Dx5 + 1Dy10, were observed. These superior alleles shall form the priority selective sieve for their usage in wheat improvement efforts.  相似文献   

15.
The objective of this study was to identify allelic variations at Glu-1 loci of wheat (Triticum aestivum L.) advanced lines derived from hybridization of bread wheat and synthetic hexaploid wheats (2n = 6x = 42; AABBDD). Locally adapted wheat genotypes were crossed with synthetic hexaploid wheats. From the 134 different cross combinations made, 202 F8 advanced lines were selected and their HMW-GS composition was studied using SDS-PAGE. In total, 24 allelic variants and 68 HMW-GS combinations were observed at Glu-A1, Glu-B1, and Glu-D1 loci. In bread wheat, the Glu-D1 locus is usually characterized by subunits 1Dx2+1Dy12 and 1Dx5+1Dy10 with the latter having a stronger effect on bread-making quality. The subunit 1Dx5+1Dy10 was predominantly observed in these advanced lines. The inferior subunit 1Dx2+1Dy12, predominant in adapted wheat germplasm showed a comparative low frequency in the derived advanced breeding lines. Its successful replacement is due to the other better allelic variants at the Glu-D1 locus inherited in these synthetic hexaploid wheats from Aegilops tauschii (2n = 2x = 14; DD).  相似文献   

16.
Tolerance of wheat (Triticum aestivumL.) to high temperature might be improved by introducing alien genes from amphiploids. Our objectives were to determine responses of synthetic hexaploid and octaploid amphiploid wheats to high temperature and evaluate their potential usefulness for developing improved cultivars. Thirty synthetic hexaploids from durum wheat (T. turgidum L.) × Aegilops tauschii Cos. Accessions and four octaploid amphiploids from Chinese Spring wheat × different grasses were grown at 20/15 and 30/25 °C day/night during maturation. Tolerance was ascertained by two measures of senescence, leaf chlorophyll content and grain filling duration, plus grain yield and its components. Leaf chlorophyll was measured after 10 and 15 days of treatment, and grain yield was determined at maturity to calculate the heat susceptibility index(HSI), a gauge of the reduction in yield at high temperature of each line relative to all other lines. Chlorophyll content, grain filling duration, yield, and kernel weight were highly negatively correlated with HIS of the hexaploid amphiploids at30/25 °C, but grain yield was positively correlated with HSI at20/15 °C. The hexaploid lines might be useful for improving wheat for regions where stress from high temperature occurs frequently. Chlorophyll content and grain filling duration also were highly negatively correlated with HSI of the octaploid lines, but they would be less directly useful for improving wheat because the kernel number was reduced greatly due to unbalanced meiotic chromosomal segregation. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

17.
Y. Li  Y. Song  R. Zhou  G. Branlard  J. Jia 《Plant Breeding》2009,128(3):235-243
Whereas gluten fraction accounts for 30–60% of the variation in wheat bread‐making quality, there remains substantial variation determined by non‐gluten factors. The objective of this study was to detect new loci for wheat quality. The genetics of sodium dodecyl sulphate‐sedimentation volume (Ssd), grain hardness (GH), grain protein content, wet gluten content (WGC) and water absorption (Abs) in a set of 198 recombinant inbred lines derived from two commercial varieties was studied by quantitative trait loci (QTL) analysis. A genetic map based on 255 marker loci, consisting of 250 simple sequence repeat markers and five glutenin loci, Glu‐A1, Glu‐B1, Glu‐D1, Glu‐B3 and Glu‐D3, was constructed. A total of 73 QTLs were detected for all traits. A major QTL for GH was detected on chromosome 1B and its relative contribution to phenotypic variation was 27.7%. A major QTL for Abs on chromosome 5D explained more than 30% of the phenotypic variation. Variations in Ssd were explained by four kinds of genes. Some QTLs for correlated traits mapped to the same regions forming QTL clusters or indicated pleiotropic effects.  相似文献   

18.
A. Blanco    C. de  Giovanni  B. Laddomada    A. Sciancalepore    R. Simeone    K. M. Devos    M. D. Gale 《Plant Breeding》1996,115(5):310-316
Seed storage protein content of durum wheat (Triticum turgidum var. durum) has an important effect on nutritional value and pasta-making characteristics. The objective of this study was to determine by association with genetic markers the number, chromosomal location, and magnitude of effect of quantitative trait loci (QTLs) controlling protein concentration in kernels. A set of 65 recombinant inbred lines (RIs) was developed by single seed descent from a cross between cultivated durum wheat cv. ‘Messapia’ (low protein content) and accession MG4343 of the wild tetraploid wheat var. dicoccoides (high protein content). This population was characterized for eight morphological, six storage protein, one isozyme and 124 RFLP loci. Field trials were conducted in one location in 1993 and two locations in 1994. QTLs were mapped by regression analysis on each marker locus for each location and for the average across environments. A total of six putative QTLs were located on chromosome arms 4BS, SAL, 6AS, 6BS and 7BS. The number and size of QTLs detected varied across environments. The marker with the highest r2 value per QTL in each environment and across environments was chosen for a multiple linear regression analysis, which explained 49.2- 56.4% of the phenotypic variation for protein content. Only some of the markers were found to be negatively associated with plant grain yield and/or seed weight in one or two of the environments.  相似文献   

19.
Grain shape is an important trait for improving rice yield. A number of quantitative trait loci (QTLs) for this trait have been identified by using primary F2 mapping populations and recombinant inbred lines, in which QTLs with a small effect are harder to detect than they would be in advanced generations. In this study, we developed two advanced mapping populations (chromosome segment substitution lines [CSSLs] and BC4F2 lines consisting of more than 2000 individuals) in the genetic backgrounds of two improved cultivars: a japonica cultivar (Koshihikari) with short, round grains, and an indica cultivar (IR64) with long, slender grains. We compared the ability of these materials to reveal QTLs for grain shape with that of an F2 population. Only 8 QTLs for grain length or grain width were detected in the F2 population, versus 47 in the CSSL population and 65 in the BC4F2 population. These results strongly suggest that advanced mapping populations can reveal QTLs for agronomic traits under complicated genetic control, and that DNA markers linked with the QTLs are useful for choosing superior allelic combinations to enhance grain shape in the Koshihikari and IR64 genetic backgrounds.  相似文献   

20.
Advanced backcross QTL analysis was used to identify QTLs for seedling and adult plant resistance to leaf rust in introgression lines derived from a cross between the spring wheat cultivar ‘Saratovskaya 29’ and a synthetic allopolyploid wheat (T. timopheevii/T. tauschii). F2 mapping populations involving two backcross selections (‘BC5’ and ‘BC9’ lines) were genotyped with microsatellite markers. Two significant QTL for adult plant resistance were identified in line ‘BC5’: one on chromosome 2B, but originating from chromosome 2G, explained 31% of the trait variance. The other, derived from T. tauschii and mapped to the short arm of chromosome 2D explained 19% of the trait variance. In the second line, one major seedling and adult plant resistance QTL was identified on chromosome 2B. Both QTL co-located to the same marker interval. Such introgression lines, resulting from the reconstruction of common wheat genome, are of interest both as initial material for breeding and improvement of current cultivars, and as a resource for the study of the interaction and transformation of genomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号