首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
In soybean seeds, numerous variations in colors and pigmentation patterns exist, most of which are observed in the seed coat. Patterns of seed coat pigmentation are determined by four alleles (I, ii, ik and i) of the classically defined I locus, which controls the spatial distribution of anthocyanins and proanthocyanidins in the seed coat. Most commercial soybean cultivars produce yellow seeds with yellow cotyledons and nonpigmented seed coats, which are important traits of high-quality seeds. Plants carrying the I or ii allele show complete inhibition of pigmentation in the seed coat or pigmentation only in the hilum, respectively, resulting in a yellow seed phenotype. Classical genetic analyses of the I locus were performed in the 1920s and 1930s but, until recently, the molecular mechanism by which the I locus regulated seed coat pigmentation remained unclear. In this review, we provide an overview of the molecular suppressive mechanism of seed coat pigmentation in yellow soybean, with the main focus on the effect of the I allele. In addition, we discuss seed coat pigmentation phenomena in yellow soybean and their relationship to inhibition of I allele action.  相似文献   

2.
In yellow soybean, severe cold weather causes seed cracking on the dorsal side. Yellow soybeans carry the I or ii allele of the I locus and have a yellow (I) or pigmented (ii) hilum. We previously isolated an additional allele, designated as Ic, of the I locus, and reported that yellow soybeans with the IcIc genotype may be tolerant to cold-induced seed cracking. The Ic allele by itself, however, does not confer high tolerance. The association of a pubescence color gene (T) with suppression of low-temperature-induced seed coat deterioration has been previously reported. In the present study, we tested whether T is effective for the suppression of cold-induced seed cracking using two pairs of near-isogenic lines for the T locus in the iiii or IcIc background. In both backgrounds, the cracked seed rate of the near-isogenic line with the TT genotype was significantly lower than that with the tt genotype, which indicates that T has an inhibitory effect on cold-induced seed cracking. Furthermore, we also showed that gene pyramiding of Ic and T can improve tolerance to cold-induced seed cracking. Our findings should aid the development of highly SC-tolerant cultivars in soybean breeding programs.  相似文献   

3.
芥菜型油菜黄籽性状的遗传、基因定位和起源探讨   总被引:6,自引:1,他引:5  
油菜种皮颜色既是一个形态指示性状, 又与种子休眠和品质有关。以芥菜型油菜种皮颜色分离的2个BC6F2群体为作图群体,用微卫星(SSR)等标记进行连锁定位, 并用定位标记对22份材料进行关联分析, 通过反转录-聚合酶链反应(RT-PCR)分析12份材料种皮中4-二氢黄酮醇还原酶(DFR)、花色素合酶(ANS)和花色素还原酶(ANR)基因的表达, 对6份黄籽材料的种皮颜色基因等位性进行测定, 结果将芥菜型油菜控制种皮颜色的2个基因位点分别定位到A9和B3连锁群, 并找到其两侧紧密连锁标记, 发现黄籽材料种皮颜色基因位点附近0.9 cM和1.5 cM区域高度保守, 所有黑色种皮中DFR、ANS和ANR基因均表达, 所有黄色种皮中DFR和ANS均不表达,但ANR基因表达或不表达,黄籽材料的种皮颜色基因等位。根据这些结果结合前人研究, 认为芥菜型油菜种皮颜色基因是调控基因,黄籽为单一起源。  相似文献   

4.
利用同源克隆方法, 在芥菜型油菜中克隆了DFR基因。在DNA和cDNA中扩增的DFR基因大小分别为 1 612 bp和1 214 bp。该基因含有5个内含子, 开放阅读框为1 158 bp, 预计编码385个氨基酸, 预测分子量为42 886.0 Da, 推测的等电点为5.54。DFR基因在芥菜型油菜紫叶芥和黑籽近等基因系的叶片、胚和种皮中都表达, 在四川黄籽中只在叶片和胚中表达。DFR基因在四川黄籽种皮中不表达, 导致种皮中花色素和原花色素不能合成, 从而种皮透明, 形成黄籽, 因此DFR基因是油菜种皮颜色形成途径中一个关键基因。本研究为利用该基因与种子、种皮特异启动子构建反义表达载体或RNAi载体, 阐明油菜种皮颜色形成的分子机理和创造黄籽油菜新种质奠定了基础。  相似文献   

5.
Previous studies showed that the yellow seed color gene of a yellow mustard was located on the A09 chromosome. In this study, the sequences of the molecular markers linked to the yellow seed color gene were analyzed, the gene was primarily mapped to an interval of 23.304 to 29.402M. Twenty genes and eight markers’ sequences in this region were selected to design the IP and SCAR primers. These primers were used to screen a BC8S1 population consisting of 1256 individuals. As a result, five IP and five SCAR markers were successfully developed. IP4 and Y1 were located on either side of the yellow seed color gene at a distance of 0.1 and 0.3 cM, respectively. IP1, IP2 and IP3 derived from Bra036827, Bra036828, Bra036829 separately, co-segregated with the target gene. BLAST analysis indicated that the sequences of newly developed markers showed good collinearity with those of the A09 chromosome, and that the target gene might exist between 27.079 and 27.616M. In light of annotations of the genes in this region, only Bra036828 is associated with flavonoid biosynthesis. This gene has high similarity with the TRANSPARENT TESTA6 gene, Bra036828 was hence identified as being the gene possibly responsible for yellow seed color, in our research.  相似文献   

6.
7.
8.
The yellowing strain of Soybean dwarf virus (SbDV-YS) causes yellowing and yield loss in common bean (Phaseolus vulgaris). The most effective control is achieved through breeding for resistance. An indeterminate climbing cultivar with a white seed coat, ‘Oofuku’, is resistant to SbDV-YS in inoculation tests. We crossed ‘Oofuku’ with an elite cultivar, ‘Taisho-Kintoki’, which is SbDV-YS-susceptible, determinate dwarf with a red-purple seed coat, and performed amplified-fragment-length polymorphism analysis of F3 lines. From nucleotide sequences of the resistant-specific fragments and their flanking regions, we developed five DNA markers, of which DV86, DV386, and DV398 were closely linked to Sdvy-1, a resistance gene. Using the markers, we developed ‘Toiku-B79’ and ‘Toiku-B80’, the near-isogenic lines (NILs) incorporating Sdvy-1 in the background of ‘Taisho-Kintoki’. The NILs had similar growth habit, maturity date and seed shape to those of ‘Taisho-Kintoki’. The quality of boiled beans was also similar, except that the NILs had more seed coat cracking than ‘Taisho-Kintoki’. The NILs showed no SbDV-YS infection in inoculation tests. We suggest that Sdvy-1 is a useful source of SbDV-YS resistance in common bean.  相似文献   

9.
Development of yellow-seeded Brassica napus of double low quality   总被引:3,自引:0,他引:3  
M. H. Rahman    M. Joersbo  M. H. Poulsen   《Plant Breeding》2001,120(6):473-478
Two yellow‐seeded white‐petalled Brassica napus F7 inbred lines, developed from interspecific crosses, containing 26–28% emcic acid and more than 40 μmol glucosinolates (GLS)/g seed were crossed with two black/dark brown seeded B. napus varieties of double low quality and 287 doubled haploid (DH) lines were produced. The segregation in the DH lines indicated that three to four gene loci are involved in the determination of seed colour, and yellow seeds are formed when all alleles in all loci are in the homozygous recessive state. A dominant gene governed white petal colour and is linked with an erucic acid allele that, in the homozygous condition, produces 26–28% erucic acid. Four gene loci are involved in the control of total GLS content where low GLS was due to the presence of recessive alleles in the homozygous condition in all loci. From the DH breeding population a yellow‐seeded, yellow‐petalled, zero erucic acid line was obtained. This line was further crossed with conventional B. napus varieties of double low quality and, following pedigree selection, a yellow seeded B. napus of double low quality was obtained. The yellow seeds had higher oil plus protein content and lower fibre content than black seeds. A reduction of the concentration of chromogenic substances was found in the transparent seed coat of the yellow‐seeded B. napus.  相似文献   

10.
Brown rice of sugary-1 mutants has a wrinkled character because of the presence of phytoglycogen instead of starch in the inner part of the endosperm. Because the wrinkled phenotype was used as a sole selection marker for progeny of the sugary-1 strain, identification of mutant seeds with improved appearance is very difficult. We found that sugary-1 varieties contained not only phytoglycogen but also free glucose in the endosperm, and these were positively correlated. In the segregated F2 seeds that resulted from crossing Hokurikutou237 (sugary-1) and Koshihikari strains, glucose and phytoglycogen were also significantly correlated. Thus, we identified new sugary types with improved appearance from these progeny using glucose measurements. The F4 seeds of the improved strain had moderate phytoglycogen contents and seed germination characteristics. Native-PAGE showed that pullulanase activity in the improved strain increased in developing seeds compared with Hokurikutou237, although isoamylase activity was extremely low and similar to that in sugary-1 types. The new selection method in this study efficiently aids the development of improved sugary rice types that lack the wrinkled phenotype.  相似文献   

11.
Summary In the first inbred generation (I1) of cv. Black 4495 a dark green, slowly growing mutant (coded ds) was found, whereas the I1 of its self-compatible dihaploid, B16, comprised this ds mutant and in addition the mutants virescens (v) and yellow margin (ym). The occurrence of ds and ym might trace back to diploid S. phureja, one of the ancestors of Black 4495. No lethal mutants were observed in I1 of B16. Analysis of I1 of cv. Gineke revealed a simplex condition for virescence and either duplex or triplex heterozygosity for one lethal gene. On the other hand, the I1 of its dihaploid, G254, segregated for virescence and for three different lethal genes. It is shown that both in B16 and in G254 homozygosity of an S-bearing translocation causes early death of embryo and endosperm, thus preventing seed development. From this study it appeared that the three lethal genes from G254 affect germination rate of the seeds. The genotypes at 11 loci of B16 and G254 are presented.Visiting scientists from Birmingham, England and Mlochow, Poland, respectively.  相似文献   

12.
The inheritance of siliqua locule number and seed coat colour in Brassica juncea was investigated, using three lines each of tetralocular brown seeded and bilocular yellow seeded. Three crosses of tetralocular brown seeded × bilocular yellow seeded lines were attempted and their F1, F2 and backcross generations were examined for segregation of these two traits. Brown seed colour and bilocular siliqua characters were found to be dominant over yellow seed and tetralocular siliqua, respectively. Chi‐square tests indicated that each trait is controlled by different sets of duplicate pairs of genes. Bilocular siliquae or brown seeds can result from the presence of either of two dominant alleles, whereas tetralocular siliquae or yellow seeds are produced when alleles at both loci are recessive. A joint segregation analysis of F2 data indicated that the genes governing siliqua locule number and seed colour were inherited independently.  相似文献   

13.
The inheritance of siliqua orientation and seed coat colour in Brassica tournefortii was investigated using four genotypes varying in these two characters. The F1, F2 and backcross generations of two crosses were used for studying the segregation pattern of the traits. The plants were classified for seed colour as having brown or yellow seeds and for siliqua orientation as having upright, semi‐spread or spread siliqua. Seed colour was found to be under monogenic control with brown being dominant over yellow. Siliqua orientation was under digenic polymeric gene action: upright siliqua was produced by the presence of two dominant genes and spread siliqua by two recessive genes. The absence of even a single dominant gene resulted in a third type of siliqua orientation, semi‐spread siliqua.  相似文献   

14.
15.
Imported genetically modified (GM) canola (Brassica napus) is approved by Japanese law. Some GM canola varieties have been found around importation sites, and there is public concern that these may have any harmful effects on related species such as reduction of wild relatives. Because B. juncea is distributed throughout Japan and is known to be high crossability with B. napus, it is assumed to be a recipient of B. napus. However, there are few reports for introgression of cross-combination in B. juncea × B. napus. To assess crossability, we artificially pollinated B. juncea with B. napus. After harvesting a large number of progeny seeds, we observed false hybrids and metaxenia of seed coats. Seed coat color was classified into four categories and false hybrids were confirmed by morphological characteristics and random amplified polymorphic DNA (RAPD) markers. Furthermore, the occurrence of false hybrids was affected by varietal differences in B. napus, whereas that of metaxenia was related to hybridity. Therefore, we suggest that metaxenia can be used as a marker for hybrid identification in B. juncea L. cv. Kikarashina × B. napus. Our results suggest that hybrid productivity in B. juncea × B. napus should not be evaluated by only seed productivity, crossability ought to be assessed the detection of true hybrids.  相似文献   

16.
Transgenic photo-thermo sensitive genic male sterility Oryza sativa L. cv. “261S” plants with the anti-Waxy gene were successfully obtained using an Agrobacterium tumefaciens-mediated co-transformation method. Marker-free homozygous transgenic lines with the anti-Waxy gene were obtained. The setting seed rates of the transgenic plants via self-pollination or via crossing with the restorer line WX99075 rice and the 1000-grain weight of the transgenic plants and the F2 hybrid seeds obtained by crossing the transgenic or non-transgenic plants with the restorer line WX99075 rice, and the number of panicles of the transgenic plants and yields of the F2 hybrid rice, were analysed. Quality indexes of the transgenic plants and of the F2 hybrid seeds were analysed. Our researches results indicate that hybrid female and hybrid descendant edibility could be improved via the introduction of the anti-Waxy gene, but the grain yields of the reserve seeds via self-pollination of the transgenic photo-thermo sensitive genic sterile lines and of the hybrid rice were not affected.  相似文献   

17.
X. P. Liu    J. X. Tu    B. Y. Chen  T. D. Fu 《Plant Breeding》2005,124(1):9-12
A yellow‐seeded doubled haploid (DH) line no. 2127‐17, derived from a resynthesized Brassica napus L., was crossed with two black‐seeded Brassica cultivars ‘Quantum’ and ‘Sprint’ of spring type. The inheritance of seed colour was investigated in the F2, and BC1 populations of the two crosses and also in the DH population derived from the F1 of the cross ‘Quantum’× no. 2127‐17. Seed colour analysis was performed with the colorimeter CR‐300 (Minolta, Japan) together with a visual classification system. The immediate F1 seeds of the reciprocals in the two crosses had the same colour as the self‐pollinated seeds of the respective black‐ and yellow‐seeded female parents, indicating the maternal control of seed colour. The F1 plants produced yellow‐brown seeds that were darker in colour than the seeds of no. 2127‐17, indicating the partial dominance of yellow seed over black. In the segregating BC1 progenies of the two crosses, the frequencies of the black‐ and yellow‐seeded plants fit well with a 1 : 1 ratio. In the cross with ‘Quantum’, the frequencies of yellow‐seeded and black‐seeded plants fit with a 13 : 3 ratio in the F2 progeny, and with a 3 : 1 ratio in the DH progeny. However, a 49 : 15 segregation ratio was observed for the yellow‐seeded and black‐seeded plants in the F2 progeny of the cross with ‘Sprint’. It was postulated from these results that seed colour was controlled by three pairs of genes. A dominant yellow‐seeded gene (Y) was identified in no. 2127‐17 that had epistatic effects on the two independent dominant black‐seeded genes (B and C), thereby inhibiting the biosynthesis of seed coat pigments.  相似文献   

18.
黄精种子形态及发芽特性研究   总被引:4,自引:1,他引:3  
研究了黄精果实及种子不同发育时期内源激素ABA含量的变化与收获种子类型,以及不同类型黄精种子形态、生活力、千粒重与发芽的相关性.结果表明:3种类型黄精种子属不同发育时期的种子,其外观形态和各种物理特性指标都存在一定差异,其中黄皮种子最大,长、宽平均值分别为4.372 mm和3.710 mm,活性较弱,发芽率45.16%;绿皮种子的千粒重、生活力、发芽率均最高,分别为35.6 g、85%和85.71%;黑皮种子基本没有生活力.说明绿皮种子质量最好,黄皮种子次之.  相似文献   

19.
以3对遗传背景相同的甘蓝型黄籽和黑籽油菜为材料,研究甘蓝型油菜种子发育过程中內源细胞分裂素(ZR)、各种色素、色素合成相关酶活性的动态变化及其相互关系,并以外源细胞分裂素类物质(6-BA)加以验证,结果表明,相同遗传背景下的黄籽油菜种子的ZR含量较黑籽油菜高,花后27 d比黑籽高4~5倍; 在甘蓝型黄籽油菜种子发育前期(27 d阶段)种子中细胞分裂素含量越高其成熟种子色泽就越浅; 种子的ZR含量与种皮中类黄酮、花色素、黑色素含量显著负相关,与多酚含量显著正相关,与酪氨酸酶显著负相关,与苯丙氨酸解氨酶、多酚氧化酶无显著相关性; 施用外源细胞分裂素6-BA (50 mg L–1)可显著提高黄籽油菜黄籽度,明显降低甘蓝型油菜种皮中黑色素、花色素、类黄酮含量,对黑籽种皮的多酚含量无显著影响,但可增加黄籽种皮多酚含量; 6-BA处理可降低油菜种皮中酪氨酸酶、苯丙氨酸解氨酶活性,对多酚氧化酶活性无显著影响。表明细胞分裂素可减缓甘蓝型油菜种皮各色素合成,从而影响黄籽油菜色泽;该过程可能是通过调控色素合成的相关酶活性来实现的。  相似文献   

20.
Phytic acid (PA) is the storage form of phosphorus (P) in seeds and plays an important role in the nutritional quality of food crops. There is little information on the genetics of seed and seedling PA in mungbean [Vigna radiata (L.) Wilczek]. Quantitative trait loci (QTL) were identified for phytic acid P (PAP), total P (TP), and inorganic P (IP) in mungbean seeds and seedlings, and for flowering, maturity and seed weight, in an F2 population developed from a cross between low PAP cultivated mungbean (V1725BG) and high PAP wild mungbean (AusTRCF321925). Seven QTLs were detected for P compounds in seed; two for PAP, four for IP and one for TP. Six QTLs were identified for P compounds in seedling; three for PAP, two for TP and one for IP. Only one QTL co-localized between P compounds in seed and seedling suggesting that low PAP seed and low PAP seedling must be selected for at different QTLs. Seed PAP and TP were positively correlated with days to flowering and maturity, indicating the importance of plant phenology to seed P content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号